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We present an alternative implementation of the Kalman filter employed for track fitting within the LHCb 
experiment. It uses simple parametrizations for the extrapolation of particle trajectories in the field of the 
LHCb dipole magnet and for the effects of multiple scattering in the detector material. A speedup of more 
than a factor of four is achieved while maintaining the quality of the estimated track quantities. This 
Kalman filter implementation could be used in the purely software-based trigger of the LHCb upgrade.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

The LHCb experiment is a dedicated heavy flavour physics ex-
periment at the LHC focusing on the study of hadrons containing 
b and c quarks [1]. Due to the high luminosity at the LHC and 
the high proton-proton interaction cross section, a sophisticated 
trigger system is needed to reduce the rate of collisions saved for 
offline analysis. During Runs 1 and 2 of the LHC, this trigger sys-
tem consisted of a hardware stage, reducing the rate from 40 MHz
to 1 MHz, followed by a two-stage software trigger. In the latter, 
the full tracking system was read out and a partial (first stage) and 
full (second stage) event reconstruction were performed [2]. Both 
software stages included a fit of selected track candidates using a 
Kalman filter to extract their parameters and to reject fake tracks. 
In addition, the software trigger allowed an online calibration and 
alignment of the detector [3].

During Run 3 of the LHC, LHCb will be provided with a fac-
tor five higher luminosity compared to Run 2. In this scope, most 
of the subdetectors are currently being replaced or upgraded [4–7]
and a new trigger strategy has been developed [8]. The hardware 
trigger will be removed and a two-stage, fully software-based trig-
ger will process the full 30 MHz1 of bunch-crossing rate. In the 
first stage, tracks with a high transverse momentum (pT) and pri-
mary vertices will be reconstructed. These objects are used to 
select events with displaced topologies typical for b-hadron and c-
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and non-colliding bunches reduce this to a collision frequency of 30 MHz at LHCb.
https://doi.org/10.1016/j.cpc.2021.108026
0010-4655/© 2021 The Authors. Published by Elsevier B.V. This is an open access article
hadron decays, and to select high-pT objects from decays of heavy 
vector bosons. In the second stage, a full event reconstruction will 
be performed, without any requirement on the pT and includ-
ing particle identification. A large number of exclusive and several 
universal event selections based on the decay topology will be ap-
plied.

In LHCb, track reconstruction is split into a pattern recogni-
tion and a Kalman filtering [9,10] stage. During pattern recognition, 
sets in each subdetector are constructed from signals that poten-
tially result from the passage of a single charged particle. Sim-
ple parametrizations are used throughout this procedure as it is 
only concerned with finding the right sets of signals and not to 
provide the best estimate of the track parameters. During the fil-
tering stage, an estimate for the track parameters is calculated, 
and fake tracks are rejected. Given that the output of the filter-
ing stage is used for physics selections the best possible precision 
needs to be achieved, hence an (extended) Kalman filter is used 
for track fitting. Ideally, Kalman filtering of the track candidates 
is already performed during the first trigger stage. However, the 
Kalman filter which was used during Run 1 and 2 in LHCb, in the 
following called default Kalman, is significantly too slow. It relies on 
lookup tables for the magnetic field and the material distribution 
of the detector [11], so-called maps. In addition it uses Runge-Kutta 
methods to solve the differential equations necessary to propagate 
the particle through the regions with an inhomogeneous magnetic 
field. Accessing the values in the lookup table and solving the dif-
ferential equations are time consuming and prohibit the usage of 
the current Kalman filter in the first stage of the upgraded trigger 
system. This conclusion is independent of the choice of computing 
architecture (CPU or GPU) which is used for the first trigger stage.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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In this paper, a fully parametrized version of the Kalman filter 
in LHCb, called parametrized Kalman, is presented. It obtains precise 
values of track parameters and track quality variables, while rely-
ing on neither computationally costly extrapolation methods nor 
material or magnetic field maps.

2. Detector and simulation

The LHCb detector [1] is a single-arm forward spectrometer 
covering the pseudorapidity range 2 < η < 5. Its Run 3 con-
figuration includes a high-precision tracking system consisting 
of a silicon-pixel vertex detector surrounding the pp interaction 
region [5] (VELO), a large-area silicon-strip detector (Upstream 
Tracker (UT)) [7] located upstream of a dipole magnet with a bend-
ing power of about 4 Tm [12], and three stations of scintillating-
fibre detectors (SciFi) [7] placed downstream of the magnet. Differ-
ent types of charged hadrons are distinguished using information 
from two ring-imaging Cherenkov detectors [13,6]. Photons, elec-
trons and hadrons are identified by a calorimeter system consisting 
of an electromagnetic and a hadronic calorimeter [14,6]. Muons are 
identified by a system composed of alternating layers of iron and 
multiwire proportional chambers [15,6].

Given the lack of collision data at this point for Run 3, sim-
ulation is required to model the effects of the detector response, 
the detector acceptance and the imposed selection requirements. 
In the simulation, pp collisions are generated using Pythia [16]
with a specific LHCb configuration [17]. Decays of unstable parti-
cles are described by EvtGen [18], in which final-state radiation is 
generated using Photos [19]. The interaction of the generated par-
ticles with the detector, and its response, are implemented using 
the Geant4 toolkit [20] as described in Ref. [21].

3. Principles

In the following, the Kalman filter formalism and its applica-
tion in the LHCb track reconstruction is outlined. During Kalman 
filtering, the information from measurements at detector planes 
is successively combined to obtain optimal estimates of the track 
parameters. The track is represented as a set of states at fixed z-
positions,2 which are typically detector layers. Each of these states 
is given by x = (x, y, tx, t y, q

p ) and the corresponding covariance 
matrix P , where tx and t y are the slopes with respect to the z
axis, q the charge of the particle in units of the electron charge 
and p its absolute momentum.

The Kalman filter procedure needs an estimate of a state as a 
starting point. Filtering is then a repeated application of two steps. 
Firstly, the current state is extrapolated to the next detector layer, 
and secondly, the extrapolated state is updated using the measure-
ment in this layer. If the track has no associated measurement 
in this layer, the update step is omitted. These steps can be for-
malized as follows: given the state (xk−1|k−1, P k−1|k−1) at position 
zk−1, the extrapolated state (xk|k−1, Pk|k−1) at position zk is given 
by

xk|k−1 = f k(xk−1|k−1), (1)

P k|k−1 = F k P k−1|k−1 F T
k + Q k, (2)

where the extrapolation function f k(x) is given by five individual 

mappings f k = ( f x
k , f y

k , f tx
k , f t y

k , f
q
p

k ). This leads to the transport 
matrix F k as

2 The detector coordinate system is chosen such that the z-axis is parallel to the 
beam line and charged particles are deflected in the direction of the x-axis.
2

F ij
k = ∂ f i

k

∂x j
. (3)

The noise matrix Q k accounts for uncertainties of the extrapola-
tion, e.g. due to scattering at the material of the detector layers or 
the material in between.

The extrapolated state is then combined with the measurement 
mk in the respective detector layer to obtain the new state esti-
mate at the position zk , xk|k and P k|k , using the following steps:

rk = mk − Hkxk|k−1, (4)

Sk = Hk P k|k−1 H T
k + Rk, (5)

K k = P k|k−1 H T
k S−1

k , (6)

xk|k = xk|k−1 + K krk, (7)

P k|k = (1 − K k Hk)P k|k−1. (8)

Here Hk projects the estimated state vector to the measurement 
space in order to allow a calculation of the residual rk . The covari-
ance matrix of this residual is given by Sk and is combined with 
the covariance matrix of the state to obtain the Kalman gain K k . 
The latter defines then how the estimated state is modified by the 
residual. The variance of the residual is given by Rk .

Starting at the most upstream measurement, the measurements 
are successively added and the track parameters updated until the 
last detector layer is reached. The same procedure is repeated 
starting at the most downstream measurement and successively 
including more upstream measurements. This yields two sets of 
states at every measurement position, which can be combined to 
obtain the respective optimal state.

The quality of a track can be estimated by its χ2
track value. The 

value at each measurement is given by:

χ2
k = χ2

k−1 + rT
k P −1

k|k rk, (9)

and χ2
track is then simply χ2

k after all measurements have been 
added using the combined, optimal states.

The optimal state estimates and the measurement information 
can also be used to remove measurements that show a large sep-
aration from the fitted trajectory by having a large contribution 
to the χ2

track value. They are therefore likely to be wrongly asso-
ciated to the respective track, and are so-called outliers. Once an 
outlier is removed, all Kalman filter steps are performed again. This 
procedure can be repeated until the maximum allowed number of 
outliers are removed, or no more outliers are present.

The above formalism is also the basis of the Kalman filter that 
is currently used for track fitting in the LHCb experiment. The ex-
trapolation functions f k are based on maps of the magnetic field 
along the trajectory and numerical models for the extrapolations. 
Their complexities range up to a fifth-order Runge-Kutta method. 
The noise matrices Q k are obtained by a dedicated model for the 
multiple scattering and a map of the material traversed by the par-
ticle.

In the parametrized Kalman filter presented in this paper, these 
two costly steps are replaced by simple parametrizations. The ex-
trapolation functions f k are given by analytic expressions that al-
low a fast evaluation and calculation of the derivatives in Equation 
(3). The noise matrices Q k depend on the momentum of the par-
ticle and are parametrized by a few parameters per extrapolation 
step.

An important difference with respect to the default Kalman fil-
ter is the treatment of energy loss due to the interaction with 
the detector material. While the multiple scattering is taken di-
rectly into account, the energy loss is not part of the extrapolation 

functions f k , i.e. f
q
p is the unity transformation. This shortcoming 
k
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is compensated by choosing the momentum of the state vectors 
to represent the momentum at the moment of production of the 
particle. Thereby, the extrapolation functions also take this initial 
momentum as input and thus indirectly take into account all en-
ergy loss that happened on average up to the respective detector 
layer. The only caveat being that q

p after the filtering is only the 
best representation of the true value at the production point of 
the particle.

4. Parametrizations

Depending on the strength of the magnetic field and the typi-
cal distance between detector layers, different empirical analytical 
functions for the extrapolation are used.

Inside the VELO, where the magnetic field is very weak, these 
functions and the noise matrix are given by:

f (x) =

⎛
⎜⎜⎜⎜⎜⎝

f x(x)

f y(x)

f tx(x)

f t y (x)

f
q
p (x)

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

x + 0.5[tx + f tx(x)]�z

y + t y�z

tx + pV
0

q
p (z0 + pV

1)�z

t y
q
p

⎞
⎟⎟⎟⎟⎟⎠

(10)

and

Q =

⎛
⎜⎜⎜⎜⎜⎜⎝

(
p̃V

1�z
)2

Q txtx 0 p̃V
2

√
Q xx Q txtx 0 0

0
(

p̃V
1 �z

)2
Q t yt y 0 p̃V

3

√
Q yy Q t yt y 0

p̃V
2

√
Q xx Q txtx 0

(
p̃V

0

∣∣∣ q
p

∣∣∣)2
0 0

0 p̃V
3

√
Q yy Q t yt y 0

(
p̃V

0

∣∣∣ q
p

∣∣∣)2
0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(11)

where �z is the extrapolation distance along the z-direction and 
z0 the initial or final z coordinate for a downstream or upstream 
extrapolation, respectively. The parameters pV

0 , pV
1 and p̃V

0 to p̃V
3

are the same for all upstream and downstream extrapolations in-
side the VELO. They are determined using simulated B0

s → φφ de-
cays within the LHCb software framework, where φ→ K +K − . This 
simulated sample allows to create a dataset D , containing pairs of 
states representing two consecutive measurements of one track in-
side the VELO. In addition to the true state parameters obtained 
from the simulation, also an extrapolation of each state to the z
position of the respective other state is included in the dataset. 
Such extrapolation is based on the default extrapolation algorithm 
in LHCb [11]. This dataset allows tuning the parameters employing 
a minimization of the following likelihood-inspired function:
∏

D

[
G

(
f s(x1) − xs

2,
√

Q ss
)

+ c
]
. (12)

Here, G(x, σx) is a normalized Gaussian distribution centered 
around 0 with width σx . The two states of each dataset entry 
are represented by x1 and x2, and the variable s is one of the 
state variables, s ∈ {x, tx, y, t y}. The positive empirical constant c is 
chosen to be small with respect to the amplitude of the Gaussian 
function and softens the impact of outliers.

In a first step, the extrapolation functions f x to f tx are tuned 
individually, taking into account that f x depends on the previ-
ously determined parameters for f tx . These tuning minimizations 
employ the state vector x2 that is obtained by the extrapola-
tion of the state vector x1. This choice improves the precision of 
the parametrized extrapolation, by removing the effect of multi-
ple scattering that would be present if instead the true state was 
chosen for x2.
3

In a second step, the parameters of the extrapolation functions 
are fixed, and a minimization of the following function is per-
formed:
∏

D

[
G2

(
f d(x1) − xd

2, f td (x1) − xtd
2 ,

√
Q dd,

√
Q tdtd ,

Q dtd/
√

Q dd Q tdtd

)
+ c

]
. (13)

Here, G2(x, y, σy, σy, ρ) is a normalized two-dimensional Gaussian 
distribution centered around 0 with widths σx and σy and a corre-
lation factor ρ . The variable d is either x or y. In this minimization, 
the true state vector x2 is used in order to get the correct estimate 
of the parameters for the respective elements of the noise matrix 
Q .

Inside the UT and the SciFi detector stations, the magnetic field 
is significantly stronger than inside the VELO and higher order 
terms are needed for the extrapolation functions:

f (x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x + [
pT

3tx + (1 − pT
3) f tx(x)

]
�z

y + [
pT

5t y + (1 − pT
5) f t y (x)

]
�z

tx +
[

pT
0

q
p + pT

1(
q
p )3 + pT

2 y2 q
p

]
�z

t y + pT
4

q
p tx

y
|y|

q
p

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (14)

The noise matrix is given in full analogy to Equation (11) with 
the parameters p̃T

0 to p̃T
3, where T either stands for the UT or the 

SciFi detector. These parameters and the parameters pT
0 to pT

4 are 
individually determined on simulation for every step from one de-
tector layer to the next and for the upstream and downstream 
extrapolation separately. The same strategy as for the tuning of 
the parameters related to the extrapolation inside the VELO is fol-
lowed.

For the long extrapolations between the different tracking sub-
detectors, more sophisticated parametrizations are necessary. In 
the case of the step between the VELO and the UT, where the 
magnetic field is still weak, the extrapolation is based on two 
equations. The first describes the change in momentum along the 
x-direction of the particle:

�px = p

⎛
⎜⎝ tx,UT√

1 + t2
x,UT + t2

y,UT

− tx,V√
1 + t2

x,V + t2
y,V

⎞
⎟⎠

= q

∫
(dl × B)x , (15)

where tx/y,UT and tx/y,V are the state variables at the first UT 
detector layer and the last measurement inside the VELO, respec-
tively. The right hand side of the equation consists of an integral 
of the magnetic field along the trajectory of the particle. Note that 
the integral expression is simply a parameter which was fitted for 
on the dataset. The second ingredient for the extrapolation is to 
model the effect of the magnetic field as a single kink of the tra-
jectory at a certain z-position zmag between the VELO and the UT:

xUT = xV + (zmag − zV)tx,V + (zUT − zmag)tx,UT, (16)

where zV and zUT are the positions of the states inside the VELO 
and the UT, respectively.

Equation (15) can be solved for tx,UT and Equation (16) is then 
employed to get an expression for xUT. The unknowns in these 
expressions are parametrized as a function of the state variables 
inside the VELO:



P. Billoir, M. De Cian, P.A. Günther et al. Computer Physics Communications 265 (2021) 108026
t y,UT = t y,V + pS
0

q

p
tx,V

yV

|yV| (17)
∫

(dl × B)x = pS
1 + pS

2zV + pS
3t2

y,V (18)

zmag = pS
4 + pS

5zV + pS
6z2

V + pS
7t2

y,V. (19)

In addition, the y-position of the extrapolated state is given by:

yUT = yV +
[

pS
8t y,V + (1 − pS

8)t y,UT

]
�z, (20)

where �z is defined as the difference between zUT and zV. The 
noise matrix is defined in analogy to Equation (11) with the pa-
rameters p̃S

0 to p̃S
3. These parameters and the parameters pS

0 to pS
8

are individually determined for the upstream and downstream ex-
trapolation. The same strategy as for the tuning of the parameters 
related to the extrapolation inside the VELO is followed.

The extrapolation from the UT to the SciFi detector is more del-
icate because it is done over a distance of more than 5 meters 
through a strong magnetic field. Moreover, this field is far from 
uniform - in particular, it varies rapidly in the upper and lower 
regions, close to the magnet yoke. To ensure a good quality of 
the global track fit, the error on the extrapolation should be well 
below the other sources of error, mainly multiple scattering. The 
chosen solution is an expansion of the magnetic deviation in pow-
ers of q/p. The parametrization aims at giving good precision for 
charged particles used in physics analyses, that is for trajectories 
which roughly come from the origin.

To do so, the ideal direction (t0
x , t0

y) as the one of a particle of 
charge q, momentum p, starting from the origin and hitting the 
UT detector layer in a given point (x, y) is defined. As a good ap-
proximation, we can take t0

x = x/z + Bq/p, t0
y = y/z, where B is 

proportional to the integrated field between the origin and the UT. 
The deviations from the ideal direction, δtx = tx − t0

x , δt y = t y − t0
y , 

are small, so only a first order expansion in δtx, δt y is considered. 
Corrections of higher order would be negligible compared to mul-
tiple scattering errors.

Finally, a polynomial expansion in q/p for the ideal direction is 
built, and a correction in δtx, δt y with coefficients which are them-
selves polynomials of q/p is added:

f x(x) = x + tx�z +
K1∑

k=1

Ax
k(x, y)

(
q

p

)k

+
K2∑

k=1

(
Bx

k(x, y) δtx + C x
k(x, y) δt y

)(
q

p

)k

, (21)

where the first two terms are the straight line extrapolation, and 
the next ones the curvature correction. Similar expressions are 
used for the other state parameters f y(x), f tx (x), f t y (x). The de-
grees of expansion K1 and K2 are tuned for each parameter to 
obtain the required precision. In practice K1 = 9, K2 = 7 for f x

and f tx and K1 = 7, K2 = 5 for f y and f t y are used.
The dependence on x, y of the coefficients Au

k , Bu
k , C u

k , with 
u = x, y, tx, t y , is described through a tabulation on a grid of 50 
× 50 points regularly spaced on the rectangle defined by |x/z| ≤
0.25, |y/z| ≤ 0.25, by steps �X , �Y . In order to avoid a sys-
tematic convexity bias of a bilinear interpolation, the values at 
x, y are computed by a quadratic interpolation between the tab-
ulated values at the six closest points on the grid: if (X, Y ) is the 
closest one, these values are: F00 = (X, Y ), F+0 = F (X + �X, Y ), 
F−0 = F (X − �X, Y ), F0+ = F (X, Y + �Y ), F0− = F (X, Y − �Y ), 
and Fεxεy = F (X + εx�X, Y + εy�Y ), where εx and εy are the 
signs of ξ = (x − X)/�X and ψ = (y − Y )/�Y , respectively. With 
these notations the interpolation formula for a quantity F is given 
by:
4

F (x, y) = F00 + Fd ξψ + (
(F+0 − F−0) ξ + (F0+ − F0−)ψ

+ (F+0 + F−0 − 2F00) ξ2 + (F0+ + F0− − 2F00)ψ2)/2
(22)

with Fd = εxεy(F00 + Fεxεy − Fεx0 − F0εy ). (23)

The tabulated values are obtained using the standard Runge-
Kutta method of order 4, with 20 values of q/p in the range 
(−1/pmin, 1/pmin), with pmin = 3000 MeV/c and a polynomial fit in 
q/p. As a consequence, they do not give a reliable result for mo-
menta below pmin . Another limitation is the larger errors on the 
edges of the acceptance, especially for |t y | � 0.25, where the field 
has strong spatial variations.

5. Performance

A sample of simulated proton-proton collisions that include a 
B0

s → φφ, φ→ K +K − decay is used to compare the reconstruction 
quality of the parametrized and the default Kalman filter. The ex-
trapolation of the most upstream state estimate to the beam line 
is the same in both filters and is based on a simplified material 
map of the detector [11]. Therefore, not the state near the beam 
line, but the state at the most upstream measurement is employed 
for the comparison of the two Kalman filters. Although only tracks 
with measurements in each of the subdetectors are considered for 
this study, this is in principle not a requirement for operating the 
parameterized Kalman filter

Fig. 1 compares the resolution of the momentum, the x-position 
and the slope tx as a function of the true momentum of a particle. 
Since the position and slope are nearly exclusively determined by 
the measurements in the VELO, where only a very weak magnetic 
field is present, the parametrizations of the parametrized Kalman 
filter are sufficient to obtain results comparable to the default 
Kalman filter in these variables. In contrast, the momentum esti-
mate strongly depends on the extrapolations in regions with strong 
magnetic field. There, especially at momenta below 10 GeV/c, an 
up to 20% worse resolution is observed for the parametrized 
Kalman filter.

The Kalman filter does not only provide an estimate of the state 
parameters, but also a corresponding covariance matrix. In Fig. 2
the pull distributions of the estimated momentum, x-position and 
slope tx for the parametrized Kalman filter are shown. In all three 
cases, good uncertainty estimates are visible. However, in analogy 
to the observations made for the resolution, the pull distribution 
of the momentum features slightly more pronounced tails.

Besides the estimate of the state near the beam line, which is 
used for the reconstruction of charged particles, an important out-
put of the Kalman filter is the fit quality described by the χ2

track
per degrees of freedom Ndof. In Fig. 3, this quantity is shown for 
the parametrized Kalman filter for real tracks coming from a parti-
cle and fake tracks consisting of random combinations of clusters. 
In addition, the real track efficiencies and fake track rejection rates 
are shown for both Kalman filter versions when applying upper 
bounds on this quantity. The parametrized Kalman filter shows a 
slightly worse but overall comparable performance in separating 
the two track classes.

The fitted tracks are combined to reconstruct B0
s → φφ candi-

dates. Fig. 4 shows the invariant mass distribution of candidates 
based on the two Kalman filter versions. A single Gaussian dis-
tribution and a first order polynomial are employed to model the 
signal peak and the combinatorial background, respectively. This 
yields nearly identical estimated mass resolutions of 12.8 MeV/c2

and 12.9 MeV/c2 for the default and the parametrized Kalman fil-
ter, respectively.

In order to compare the timing performance of the paramet-
rized Kalman filter and the default Kalman filter, throughput stud-
ies on a machine with two Intel(R) Xeon(R) Silver 4214 processors 
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Fig. 1. Comparison of the resolution in simulation in (top left) momentum, (top right) x-position and (bottom) slope tx between the default and parametrized Kalman filter. 
The resolution is represented by the root mean square of the residual distribution when comparing to the true value.

Fig. 2. Pull distributions of the momentum, x-position and slope tx estimates of the parametrized Kalman filter at the most upstream measurement. The given values 
correspond to the mean, width and root mean square of a Gaussian function that is fitted to the distribution.
5
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Fig. 3. Track quality estimate, χ2
track/Ndof , in simulation for the parametrized filter (left). Fake tracks are shown in red and real tracks in black. Real track efficiency and fake 

track rejection for the parametrized and default Kalman filter (right). (For interpretation of the colours in the figure(s), the reader is referred to the web version of this 
article.)

Fig. 4. Reconstructed B0
s mass in simulated B0

s → φφ decays for the parametrized and the default Kalman filter. Fit projections are overlaid.
were performed. Simulated proton-proton collisions were used in 
order to mimic the situation of real data taking. Depending on the 
configuration of the outlier removal strategy, an overall speedup 
factor between 4 and 5.5 with respect to the default Kalman filter 
was achieved. The largest speedup is achieved when no iterations 
for the outlier removal are performed. Singling out the calculation 
steps of the Kalman filter, i.e. neglecting the part of the algorithms 
where the measurement information is constructed, the speedup 
factor is even larger and ranges from 5.7 to 10.

In the case of the parametrized Kalman filter, and singling out 
again the calculation step of the Kalman filter, 50% of the time is 
spent extrapolating the states between the detector layers. Here, 
the extrapolation between the UT and the SciFi constitutes the 
biggest component with a relative fraction of 40%. The remaining 
Kalman filter steps, consisting of updating the states with the clus-
ter information and the combination of upstream and downstream 
filtered states, are responsible for 16% and 14% of the time spent, 
respectively. The extrapolation to the beam line, which is based 
on the default LHCb extrapolation algorithm, is responsible for the 
remaining 20% of the time budget.

6. Conclusion

We presented an alternative implementation of a Kalman filter 
for the LHCb experiment. Based on simple parametrizations of ma-
terial effects and the extrapolation through the magnetic field of 
the detector, this algorithm achieves a significant speedup with re-
spect to the current implementation, while retaining comparable 
quality of the track parameters. In the future, further improve-
ments of the parametrizations might allow an even better estimate 
6

of the track parameters and a subsequent speedup. Ideas currently 
under discussion include for example an analytic parametrization 
of the x and y dependence of the parameters employed in the ex-
trapolation from the UT to the SciFi detector and a better account 
for the limited acceptance of low momentum particles. The ver-
sion presented in this document or a future implementation might 
therefore be well suited for the usage in the LHCb software trigger 
system for Run 3 of the LHC.
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