
The DIRAC interware: current, upcoming and planned ca-
pabilities and technologies

Federico Stagni1,∗, Andrei Tsaregorodtsev2,∗∗, André Sailer1,∗∗∗, and Christophe Haen1,∗∗∗∗

1CERN, EP Department, European Organization for Nuclear Research, Switzerland
2Aix Marseille University, CNRS/IN2P3, CPPM, Marseille, France

Abstract. Efficient access to distributed computing and storage resources is
mandatory for the success of current and future High Energy and Nuclear
Physics Experiments. DIRAC is an interware to build and operate distributed
computing systems. It provides a development framework and a rich set of ser-
vices for the Workload, Data and Production Management tasks of large scien-
tific communities. A single DIRAC installation provides a complete solution for
the distributed computing of one, or more than one collaboration. The DIRAC
Workload Management System (WMS) provides a transparent, uniform inter-
face for managing computing resources. The DIRAC Data Management System
(DMS) offers all the necessary tools to ensure data handling operations: it sup-
ports transparent access to storage resources based on multiple technologies,
and is easily expandable. Distributed Data management can be performed, also
using third party services, and operations are resilient with respect to failures.
DIRAC is highly customizable and can be easily extended. For these reasons,
a vast and heterogeneous set of scientific collaborations have adopted DIRAC
as the base for their computing models. Users from different experiments can
interact with the system in different ways, depending on their specific tasks, ex-
pertise level and previous experience using command line tools, python APIs
or Web Portals. The requirements of the diverse DIRAC user communities and
hosting infrastructures triggered multiple developments to improve the system
usability: examples include the adoption of industry standard authorization and
authentication infrastructure solutions, the management of diverse computing
resources (cloud, HPC, GPGPU, etc.), the handling of high-intensity work and
data flows, but also advanced monitoring and accounting using no-SQL based
solutions and message queues. This contribution will highlight DIRAC’s cur-
rent, upcoming and planned capabilities and technologies.

1 Introduction

DIRAC [1] is a software framework that enables communities to interact with distributed
computing resources. It builds a layer between users and resources, hiding diversities across
computing, storage, catalog, and queuing resources. DIRAC has been adopted by several

∗e-mail: federico.stagni@cern.ch
∗∗e-mail: atsareg@in2p3.fr
∗∗∗e-mail: andre.philippe.sailer@cern.ch
∗∗∗∗e-mail: christophe.denis.haen@cern.ch

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 245, 03035 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024503035



HEP and non-HEP experiments’ communities [2], with different goals, intents, resources
and workflows: it is experiment agnostic, extensible, and flexible [3].

1.1 The DIRAC project

DIRAC is an open source project, which was started around 2002 as an LHCb project. Fol-
lowing interest of adoption from other communities its code was made available under open
licence in 2009. Now, it is hosted on GitHub1 and is released under the GPLv3 license.
DIRAC has no dedicated funding scheme; communities using it are welcome to participate
in its development. DIRAC is publicly documented, with an active assistance forum animated
by the users and developers themselves. A yearly user workshop and weekly open developers
meetings gather together users and experts. The project counts about five core programmers,
and a dozen contributing developers.

The DIRAC consortium has been established in 2014 as a representing body for the de-
velopment and maintenance of the DIRAC software. The consortium counts a small set of
active members, each of which elects a representative, while consortium members elect every
second year a Director, and a Technical Director. Institutes that are part of the consortium
engage in the maintenance and in the promotion of the DIRAC software.

DIRAC is a collection of "systems", i.e. the Workload Management System (WMS), the
Data Management System (DMS), the Transformation System (TS), the Request Manage-
ment System (RMS), and others. Each of these DIRAC systems has components (processes)
like services and agents, while databases are used to persist the needed information; some of
these systems are introduced in the following sections. DIRAC architecture is a microservice
architecture.

1.2 Goal and organization of this paper

Within this paper we explore current and upcoming DIRAC features. The intent is to show
how DIRAC is a fully capable distributed computing system. This paper is organized as fol-
lowing: section 2 explains the capabilities of the DIRAC Workload Management System.
Section 3 explores DIRAC Data Management System. Section 4 explains how DIRAC pro-
vides a fully capable Production and Dataset management system. Section 5 explains DIRAC
development plans. Finally, conclusions are given in the section 6.

2 Exploiting computing resources

The DIRAC Workload Management System (WMS) is in charge of exploiting distributed
computing resources. In other words, it manages jobs, and pilot jobs [4] (from here on
simply called "pilots").

The Grid model was initially conceived as a “push” model, where jobs were submitted
from a queue of jobs, managed by each and every experiment in an independent way through
their Workload Management software. The “push” model proved to be inefficient and error
prone. To face these issues DIRAC introduced, back in 2006, the so-called pilots, which are
startup scripts which land at the worker node, perform sanity checks and then pull payload
jobs from the central queue, by matching the capabilities of the worker nodes with the re-
quirements of the waiting jobs. A pilot job that fails prior to having matched a job causes no
particular troubles. The advantages of the pilot job concept are now well established: pilots
are not only increasing the aggregate users’ job throughput efficiency, but also helping to

1https://github.com/DIRACGrid

2

EPJ Web of Conferences 245, 03035 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024503035



manage the heterogeneous computing resources, presenting them to the central services in a
uniform coherent way. Each LHC Virtual Organization (VO) has, since then, moved to the
pilots model, which is now a standard solution.

More recently, the emergence of new distributed computing resources (private and com-
mercial clouds, High Performance Computing clusters, volunteer computing, etc) changed
the traditional landscape of computing for offline processing. It is therefore crucial to pro-
vide a very versatile and flexible system for handling distributed computing (production and
user data analysis). If we restrict for a moment our vision to LHC experiments, and we an-
alyze the amount of CPU cycles they used in the last year, we can notice that all of them
have consumed more CPU-hours than those official reserved (pledged) to them by WLCG
(the Worldwide LHC Computing Grid) in accordance with Memorandum of Understanding
(MOU) [5]. Each community found ways to exploit non-reserved CPUs (or even GPUs),
often not supported resources and computing elements. Such resources may be private to
the experiment (e.g. the “online” computing farm - often simply called “High Level Trig-
ger” farm) or public; resources may sometimes be donated free of charge, like in the case of
volunteer computing, or not, like public commercial cloud providers. Integrating non-grid
resources is common to all communities that have been using WLCG in the past, and still
do. Communities that use DIRAC want to exploit all possible CPU or GPU cycles. Software
like DIRAC aims to make this easy, and the DIRAC pilot is the federator of each and every
computing resource.

The transparent access to the underlying resources is realized by implementing the pilot
model. The DIRAC pilot has the following characteristics:

• a DIRAC pilot is what creates the possibility to run jobs on a worker node;

• it is a simple, standalone python project, that can be easily extended by communities which
want to provide their own commands;

• it can be sent, as a “pilot job”, to all types of GRID Computing Elements (CEs);

• can be run as part of the contextualization of a (Virtual, or not) Machine;

• can run on almost every computing resource, provided that:

– Python 2.6+ is installed on the WN;
– it hosts an Operating System onto which DIRAC can be installed (i.e. a Red Hat Enter-

prise Linux derivative, on a x86 architecture).

The main role of the DIRAC WMS is to exploit different types of computing resources.
These include:

• Grids, via Computing Element. The Computing Element types supported are CREAM
(EGI), HTCondor-CE (OSG), and ARC (NorduGRID);

• Clusters behind a batch system: it often happens that (e.g. university) computing clusters
are only accessible through a locally configured batch system. For this case, DIRAC pro-
vides the possibility to access through an SSH/GSISSH tunnel, a really thin layer that we
call “SSH CE”. In this case, DIRAC interacts directly with the batch system (PBS, LSF,
Condor, Torque and SLURM are among those supported);

• Vacuum type of resources, like VAC/vcycle resources, but also BOINC Volunteer re-
sources, or experiments’ farms, like in the case of LHCb’s HLT farm (the High Level
Trigger farm);

• Virtual Machines (VMs) schedulers, with support to Openstack, Keystone v2 and v3, Open-
Nebula XML-RPC, Amazon EC2 (boto2), Apache libcloud, rocci cli, OCCI REST. For this

3

EPJ Web of Conferences 245, 03035 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024503035



case, the contextualization of VMs come from standard images with, at least, the DIRAC
pilot;

• High Performance Computing (HPC) sites, that may require specific configurations.

DIRAC WMS manages single jobs, and single pilots. Collections of jobs are normally
dubbed "Productions": to know how DIRAC manages Productions, please refer to section 4.

3 Organizing Data

The DIRAC Data Management System (DMS), together with the DIRAC Storage Manage-
ment System (SMS) provides the necessary functionalties to execute and control all activities
related with your data. The DMS provides the basic functionalities to upload (or remove) a
local file in (or from) a Storage Element (SE), and register the corresponding replica(s) in the
configured File Catalog(s) (FC). Several SEs endpoint types are supported, as well as several
FC types.

DIRAC also provides the functionalities for running massive data replications (also using
File Transfer Service - FTS[6]) or retrievals of data archived on Tape for its later processing.
This functionality can be achieved using the DIRAC Request Management System (RMS)
and DIRAC Transformation System (TS) that will be discusses in later sections.

To achieve this functionality the DMS and SMS require a proper description of the in-
volved external servers (SE, FTS, etc.) as well as a number of Agents and associated Ser-
vices that animate them. In the following sections the different aspects of each functional
component are explained in some detail.

The whole DIRAC DMS relies on a few key concepts:

• Storage Element (SE): abstraction of a physical storage endpoint, described in the DIRAC
Configuration System, together with all the configuration necessary to physically access the
files.

• Logical File Name (LFN): the LFN is the name of a file, a path. It uniquely identifies a
File throughout the DIRAC namespace. A file can have one or several Replicas.

• Replica: The physical copy of an LFN, stored at a Storage Element (SE). The couple
(LFN,Storage Element) uniquely identifies a physical copy of a file (also known as
Physical File Name, or PFN). PFNs can be accessed via several protocols, e.g. root,
gsiftp, srm, http, file, dip.

• Catalog: This is the namespace of the DMS. Files and their metadata are listed there.
The concept of Catalogs is just the one of a namespace. It is a place where you list your
files and their metadata (size, checksum, list of SEs where they are stored, etc). Arbitrary
metadata keys are also possible, and can be used to find files. DIRAC supports having
several catalogs: in general, any operation done to one catalog will be performed to the
others. If a new catalog needs to be added, such catalog just need to have a corresponding
plugin.

Systems in DIRAC (other than DMS) or users, when dealing with files, only have to care
about LFNs. If, for some (unlikely) reasons, they need to address a specific replica, then they
should use the couple (LFN, Storage Element name). At no point, anywhere, there is a
protocol or a URL leaking out of the low level of the DMS.

The DIRAC DMS is a system for managing single files, and implementing the concepts
listed above. Collections of files are normally dubbed Datasets: to know how DIRAC man-
ages Datasets, please refer to section 4.

4

EPJ Web of Conferences 245, 03035 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024503035



Figure 1. An example of two Requests in the RMS, each containing one or more operation, and
one or more file

4 DIRAC for jobs Productions, and Datasets management

In order to know how DIRAC organizes jobs into Productions, and files into Datasets, we
first need to know about two DIRAC systems: the Request Management System (RMS),
and the Transformation System (TS).

4.1 The DIRAC Request Management System (RMS)

The DIRAC Request Management System (RMS) is a generic system that allows for asyn-
chronous actions execution. Its application ranges from failover system (to cover the case
when, e.g. a DIRAC service or a Storage Element is unavailable at a certain point in time) to
asynchronous task list (typically, for large scale data management operations like replications
or removals). The RMS service is itself resilient to failure thanks to Request Proxies that can
be scattered around your installation.

At the core of the RMS are Requests, Operations and Files.

• A Request is like a TODO list associated to a User and group. For example, this TODO
list could be what is left to do at the end of a job (setting the job status, moving the output
file to its final destination, etc).

• Each item on this TODO list is described by an Operation. There are several types of Oper-
ations readily available in DIRAC, for example ReplicateAndRegister (to copy a file),
RemoveFile (to remove a file), ForwardDISET (to execute DISET calls), SetFileStatus
(for setting a status of a file in the Transformation System), etc. DIRAC extensions may
code their specialized Operations if needed.

• Files are LFNs. When an Operation acts on LFNs, Files corresponding to the LFNs are
associated to the Operation. But not all the Operations have Files.

An example of two fictitious requests, together with their files and operations can be
found in figure 1.

4.2 The DIRAC Transformation System (TS)

The DIRAC Transformation System (TS) is used to automatise common tasks related to
production activities. Just to make some basic examples, the TS can handle the generation of
Simulation jobs, or Data Re-processing jobs as soon as a ‘pre-defined‘ data-set is available,

5

EPJ Web of Conferences 245, 03035 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024503035



or Data Replication to ‘pre-defined‘ SE destinations as soon as the first replica is registered
in the Catalog.

The TS is a generic system for queueing similar operation types on certain datasets and
forward them to the appropriate systems. A system is either (today) the DIRAC WMS (for
productions) or the DIRAC RMS (for dataset management operation types)

In practice, the TS is a key component in DIRAC for managing datasets, and jobs pro-
ductions. It is a very flexible systems, with a neat and simple design. The main parameters
of a Transformation are the following:

• Type (e.g. Simulation, DataProcessing, Removal, Replication)

• The possibility of having (or not) Input Files.

• A Plugin, which defines the way input datasets are split into groups (e.g. by size, by
destination, by metadata, or by whatever can be coded)

Within the TS a user can (for example), generate several identical tasks, differing by few
parameters (e.g. Input Files list), extend the number of tasks, have one single high-level object
(the Transformation) associated to a given production for global monitoring. Two admittedly
simplistic examples follow:

• Example for dataset management: take all my holidays pictures from 2018 with
tag=sunset, make sure that there is one copy on tape and one on disk, distributed on
all the sites according to free space, and group the operations by group of at most 100 files;

• Example for jobs productions: take all my holidays pictures from 2018 with tag=sunset,
make sure to run (only once) the red-enhancerworkflow on each one of them, using only
Tier2 sites.

From the examples above, it should become apparent that full flexibility is given with
respect to the files’ distribution and jobs’ management.

4.3 Combining DIRAC systems for Dataset and Productions Management

By combining the functionalities of the DIRAC TS with those of the DIRAC WMS, DIRAC
provides a system for running Jobs productions, with a workflow presented in figure 2. For
achieving a full Dataset management, the TS, RMS and DMS system needs to work together
with a worklow like the one presented in figure 3. In these figures other DIRAC systems
appear: the Configuration System (CS), the Resource Status System (RSS) [7] and the Ac-
counting and Monitoring System. The details of these systems are not presented in this paper.
More information can be found in DIRAC documentation at dirac.readthedocs.io.

DIRAC version 7, released in 2019, also introduced a new system named Production
Management System (PMS), which provides a high-level interface for productions manage-
ment. Details are not discussed within this paper, but documentation, like for the previously
mentioned systems, can be found in the DIRAC official documentation.

5 Ongoing developments

There are multiple developments going on within the DIRAC Project in order to follow the
technology evolution of distributed computing systems, add new functionalities and improve
the overall quality of the software. One specific development involves moving the code base
to python 3: the DIRAC pilot is already python 2 and 3 compatible, and the server code is
gradually moving in the same direction. There are several other developments going on at the
moment, but within this paper we concentrate on a specific one, which can be found in the
next section.

6

EPJ Web of Conferences 245, 03035 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024503035



Figure 2. Productions management through DIRAC Transformation and Workload Management Sys-
tems

Figure 3. Datasets management through DIRAC Transformation, Request Management and Data Man-
agement Systems

5.1 Support for OAuth2/OIDC based authentication and authorization
infrastructures

In most of the currently existing multi-community grid infrastructures the security of all
operations is based on the X.509 standard. Each user obtains a certificate from one of the
recognized Certification Authorities (CA) and registers it with a VO Management Service
(e.g. VOMS [8]), which keeps the user identity information together with an associated
profile for each user. In order to access grid resources users are generating proxy certificates
which can be delegated to remote services in order to perform operations on the user’s behalf.
While DIRAC does not have a strong dependency from VOMS, the users’ information stored
in the DIRAC Registry can be synchronized with VOMS and mapped onto the definition of
the DIRAC groups to which the user can belong. The properties of the groups define the
rights that users can have when accessing DIRAC services. Users can therefore generate
proxy certificates with VOMS extensions to access Grid resources.

The X.509 standard based security is well supported in academia institutions but is not
well suited for all researchers, nor for all DIRAC users. On the other hand, there are well-
established industry standards, developed mostly for web applications, that allow identifi-
cation of users as well as delegation of user rights to remote application servers. There-
fore, grid projects started migrating to (or adding) new security infrastructures based on the

7

EPJ Web of Conferences 245, 03035 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024503035



OAuth2/OIDC [9] technology. With this technology, the users’ registration is done by local
identity providers, for example, a university LDAP index. On the grid level a Single-Sign-On
(SSO) solution is provided by a federation of multiple identity providers to ensure mutual
recognition of user security tokens. In particular, the EGI infrastructure has come up with the
Check-In SSO service as a federated user identity provider (aai.egi.eu).

The DIRAC user management subsystem was recently updated in order to support this
technology. Users can be identified and registered in the DIRAC Registry based on their SSO
tokens containing also additional user metadata. The metadata defines user rights within the
DIRAC framework similarly to the VOMS user profile data. When a user authenticates for the
first time in the DIRAC Web Portal, she can be registered automatically to the Registry based
on configurable rules for interpreting the user metadata. Alternatively, service administrators
can receive the user registration request to perform extra validation of the user registration
request if needed.

For each authenticated user, a session is created which keeps up-to-date metadata and
access tokens to be used when accessing third party services. Another long-living session
can be also created to maintain valid user tokens to be used for asynchronous operations
performed on the users’ behalf by the DIRAC system. This is a mechanism analogous to the
MyProxy [10] service or to the DIRAC ProxyManager service. It is important to note that
the DIRAC implementation of the new security framework was initially done for the EGI
Check-In SSO service. However, the resulting solution is generic and can be configured to
work with multiple identity providers and SSO systems.

The DIRAC service/client communication protocol is still based on the X.509 certificates.
Also access to most of the grid services is based on this standard. Therefore, a mechanism to
provide proxy certificates to access the services is needed. New mechanisms of provisioning
proxy certificates were developed in addition to the already existing DIRAC ProxyManager
service. The proxy certificates can be generated on the fly using a special DIRAC Certifica-
tion Authority (CA) which can be configured for a given DIRAC installation. These proxies
can only be used for internal service/client communications. Another mechanism is to use an
external Proxy Provider service, which generates on the fly an X.509 proxy certificate upon
a successful user authentication with a given SSO system. An example of such service is the
RCAuth portal (rcauth.eu). With these mechanisms, users can get proxy certificates without
the necessity to obtain an original certificate from one of the CAs. The complex authoriza-
tion flow is made transparent for the user with standard Web interfaces. This includes also
obtaining the proxy certificate with command line tools (dirac-proxy-init command). In the
latter case, the user receives a URL of the DIRAC Authentication interface, copies it to a web
browser and follows a standard login dialogue with a given SSO portal. Alternatively, the
URL can be in the form of a QR code suitable for authentication with a smart phone. After
the successful authentication, the proxy certificate is generated in the user environment. The
user gets the command line prompt back and continues to use DIRAC services in a usual way.

6 Summary and conclusions

DIRAC aims at being a complete distributed computing management tool. For many years
now it has been adopted as distributed computing system of choice by several communities.

This paper introduced the most commonly used DIRAC functionalities, but many more
are provided, including a full-capable web portal. To know more about it, DIRAC developers
and consortium members maintain a quite large documentation, which can be found in the
official DIRAC documentation [11]. Users workshops are held once a year, developers and
hackathons are run weekly. DIRAC developers put in high regards testing and automation, as
well as using de-facto technology standards.

8

EPJ Web of Conferences 245, 03035 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024503035



DIRAC is developed by members of a few collaborations. Notably, LHCb still maintain,
to date, the largest fraction of expertise and developments.

References

[1] F. Stagni, A. Tsaregorodtsev, M.U. Garcia, P. Charpentier, K.D. Ciba, Z. Mathe,
A. Sailer, R. Graciani, C. Haen, W. Krzemien et al., Diracgrid/dirac: v6r20p15 (2018),
https://doi.org/10.5281/zenodo.1451647

[2] F. Stagni, A. Tsaregorodtsev, L. Arrabito, A. Sailer, T. Hara, X. Zhang, Journal of
Physics: Conference Series 898, 092020 (2017)

[3] S. Camarasu-Pop et al., Exploiting GPUs on distributed infrastructures for medical
imaging applications with VIP and DIRAC, in 42nd international convention on infor-
mation and communication technology, electronics and microelectronics (MIPRO 2019)
Opatija, Croatia, May 20-24, 2019 (2019), pp. 190–195

[4] F. Stagni, A. McNab, C. Luzzi, W. Krzemien, Journal of Physics: Conference Series
898, 092024 (2017)

[5] various, Tech. rep. (2019), https://cds.cern.ch/record/2696169
[6] A. Kiryanov, A.A. Ayllon, O. Keeble, Procedia Comp. Sci. 66, 670 (2015)
[7] F. Stagni, M. Ubeda, A. Tsaregorodtsev, V. Romanovskiy, S. Roiser, P. Charpentier,

R. Graciani, Journal of Physics: Conference Series 513, 032093 (2014)
[8] R. Alfieri, R. Cecchini, V. Ciaschini, L. dell’Agnello, A. Frohner, A. Gianoli,

K. Lörentey, F. Spataro, VOMS, an Authorization System for Virtual Organizations.,
in European Across Grids Conference, edited by F.F. Rivera, M. Bubak, A. Gómez-
Tato, R. Doallo (Springer, 2003), Vol. 2970 of Lecture Notes in Computer Science, pp.
33–40, ISBN 3-540-21048-2

[9] D. Hardt, The OAuth 2.0 Authorization Framework, RFC 6749 (2012), https://
rfc-editor.org/rfc/rfc6749.txt

[10] J. Caballero, J. Hover, M. Litmaath, T. Maeno, P. Nilsson, M. Potekhin, T. Wenaus,
X. Zhao, J. Phys.: Conf. Ser. 219, 072028. 6 p (2010)

[11] DIRAC, Dirac documentation, http://dirac.readthedocs.io/

9

EPJ Web of Conferences 245, 03035 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024503035


