EPJ Web of Conferences 245, 03017 (2020) https://doi.org/10.1051/epjconf/202024503017
CHEP 2019

Operational Intelligence for Distributed Computing Sys-
tems for Exascale Science

Alessandro Di Girolamo', Federica Legger?, Panos Paparrigopoulos', Alexei Klimentov®,
Jaroslava Schovancova', Valentin Kuznetsov®, Mario Lassnig', Luca Clissa®®, Lorenzo
Rinaldi®®, Mayank Sharma', Hamed Bakhshiansohi®, Marian Zvada’, Daniele Bonacorsi®®,
Simone Rossi Tisbeni!?, Luca Giommi®®, Leticia Decker de Sousa®®, Tommaso Diotalevi®?,

Maria Grigorieva*!!, and Sergey Padolski®

'CERN, Geneva, Switzerland

2INFN Turin, Italy

3Cornell University, USA

4Moscow State University, Moscow, Russia

SDESY

®Brookhaven National Laboratory (BNL), USA
"University of Nebraska-Lincoln, Lincoln, NE, USA
8University of Bologna, Bologna, Italy

°INFN Bologna, Italy

OINFN-CNAF Bologna, Italy

""Moscow Center of Fundamental and Applied Mathematics, Moscow, Russia

Abstract. In the near future, large scientific collaborations will face unprece-
dented computing challenges. Processing and storing exabyte datasets require
a federated infrastructure of distributed computing resources. The current sys-
tems have proven to be mature and capable of meeting the experiment goals, by
allowing timely delivery of scientific results. However, a substantial amount
of interventions from software developers, shifters and operational teams is
needed to efficiently manage such heterogeneous infrastructures. A wealth of
operational data can be exploited to increase the level of automation in comput-
ing operations by using adequate techniques, such as machine learning (ML),
tailored to solve specific problems. The Operational Intelligence project is a
joint effort from various WLCG communities aimed at increasing the level of
automation in computing operations. We discuss how state-of-the-art technolo-
gies can be used to build general solutions to common problems and to reduce
the operational cost of the experiment computing infrastructure.

1 Introduction

The Operational Intelligence (Oplnt) project starts as a joint effort of several HEP experi-
ments. We currently focus on the operational challenges of the distributed computing infras-
tructures of the Worldwide LHC Computing Grid (WLCG)[1], and discuss possible techno-
logical solutions. Machine Learning (ML) models applied to the prediction of intelligent data
placements and access patterns can help to increase the efficiency of resource exploitation and
the overall throughput of the experiments distributed computing infrastructures. Time-series

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).



EPJ Web of Conferences 245, 03017 (2020) https://doi.org/10.1051/epjconf/202024503017
CHEP 2019

analyses may allow for the estimation of the time needed to complete certain tasks, such as
processing a certain number of events or transferring a certain amount of data. Anomaly
detection techniques can be employed to predict system failures, leading for example to net-
work congestion. Every year thousands of tickets are submitted to ATLAS[2] and CMS|3]
issue tracking systems, hence further processed by the experiment operators. Recording and
analyzing shifter actions can be used to automate tasks such as submitting tickets to support
centers, or to suggest possible solutions to repeating issues.

1.1 The WLCG computing infrastructure

The computing infrastructure of the LHC experiments is based on the WLCG, and relies
on distributed facilities that continuously process LHC data, produce simulations of physics
processes at the LHC, and provide data access and computational power to the physics com-
munity for analysis. In total, the LHC experiments rely on more than 400 PB of disk storage,
700 PB of tape storage, almost 1 million CPU cores, and both dedicated and shared network
infrastructures. Such infrastructure is distributed across more than 200 computing centres
worldwide under different administrative domains. These include off-the-shelf resources with
commodity hardware, such as a typical university computing cluster, and a growing number
of non standard resources, such as HPCs and opportunistic/volunteer resources, as well as
commercial and scientific clouds.

1.2 Operational model

HEP computing systems are operating in a complex, heterogeneous, and dynamically chang-
ing environment. The operation and maintenance of the computing infrastructure must guar-
antee on the one hand constant and optimum utilization of the available resources, and on
the other hand high data throughput according to the physics goals and priorities set by each
experiment. Unstable behavior of a distributed computing environment can arise at various
levels:

e Application: anomalous job execution time due to rare and unusual workflows, wrong
configuration parameters, missing software dependencies, runtime exceptions, software
defects;

e Middleware: authentication, authorization, data transfers, schedulers, computing elements,
data flow policies;

e Network: data transfer rate between computing sites/elements;
e Resource: memory/storage/CPU issues, low packet I/O rates.

Many workload and data management routine operations are already automated. This in-
cludes job dispatching and scheduling, brokerage and re-brokerage, recovery of failed jobs
affected by sporadic issues, fair-share based access to resources, replication of popular data,
recovery of lost data, and deletion or archival of unused data. A variety of automatic tests are
periodically executed to check the health of the infrastructure. Failures of critical elements
can be automatically handled in some cases, for example by automatic restart of services,
and faulty resources can be automatically excluded from the global infrastructures. How-
ever, most issues still need to be spotted manually by teams of operators, and some of them
need the intervention of experts to be resolved. Typically this is handled by the experiments
by having dedicated teams of operators and experts for the central workload and data man-
agement services, and local support for each distributed facility or groups of geographically



EPJ Web of Conferences 245, 03017 (2020) https://doi.org/10.1051/epjconf/202024503017
CHEP 2019

close ones or belonging to the same administrative domain. Such activities may be organised
in shifts to cover the various time zones.

Operators of the various teams are constantly checking several sources of aggregated in-
formation such as test results, system performance metrics, or system logs to spot possible
issues and take appropriate actions. Often failures in one subsystem or facility can generate
failures in a multitude of other systems, causing avalanche effects. Therefore operators need
to be able to correlate the various sources of information to find the root cause of the issue.
Once the cause is found, it may either be solved by the operators themselves following doc-
umented procedures, or escalated to the relevant experts. The escalation is currently being
done either in the form of email, chat, meeting, or most frequently by using a ticketing system
such as JIRA[4], SNOW]5], or GGUS[6].

While it is difficult to quantify how many Full Time Equivalents (FTE) are doing such
tremendous efforts daily, WLCG experiments claim to have around 100 persons for a total of
50 FTEs involved at various levels in global computing operations. Thousands of tickets are
filed and handled every year. Similarly, a case study from the telecom industry reports that
complex customer issues may involve hundreds of engineers, and several days to identify a
root cause and to apply network fixes [7].

2 The Opint Framework

In general, there is a lack of a common tool capable of: aggregating various sources of
monitoring data and alerts, extracting relevant information and producing useful metrics,
keeping a history of past problems and solutions, proposing corrective actions based on past
experiences, and automate corrective actions for recurrent issues. We propose to address the
above issues by developing a smart platform with the following features:

e pipeline for aggregation of instrumentation data streams;

data collection and storage of the aggregated data;

o intelligent algorithms able to spot anomalies in the incoming data streams;
e recommendation system to predict actions to be taken to cure arising issues;
e integrated view for human operators of the current metrics and alerts;

e collection of feedback from human operators on recommendation, to be used to improve
future suggestions;

e knowledge base containing a history of the issues, suggestions, and resolution actions;
e ultimately automation of corrective actions without human intervention;
e provide feedback to upstream systems to improve error reporting.

We will evaluate and adapt to our needs the architecture shown in Figure 1. We foresee the
following layers:

e Data providers: at the bottom of the stack, these are the various subsystems, components,
services of the computing infrastructure;

e Data sources: this is a storage layer for monitoring and logging information produced by
the data providers;

e Processing: this layer is responsible for all operations such as data cleaning, sanitation,
anonymization, aggregation, necessary to prepare the data for further processing by the
layers above;



EPJ Web of Conferences 245, 03017 (2020) https://doi.org/10.1051/epjconf/202024503017

==

Visualization / Monitoring

alerts
{

Actions

e =

. @0
Logging ‘:J-éo E Data sources

.

Q) S

A ® B
Sg;tgg:lséms Data Providers
services g EEE \’i E[:

Figure 1. The proposed architecture of the Op Int Framework.

e Analytics: this layer is responsible for extracting insights from the data, such as perfor-
mance metrics, alerts, and may trigger further processing;

e Visualization: this is the user interface, which can be of the form of web interfaces, chat
bots, emails, to expose the results to human operators, and collect their feedback on the
suggestion of the framework.

Each individual layer of the data processing pipeline should be independent and encapsu-
lated via containerized solutions. This technology can provide a high level of abstraction from
underlying hardware resources and mitigates various maintenance issues related to the chosen
technology stack and its inter-dependencies. Each layer should clearly define data formats
and APIs which can take care of data transformation and delegation. Such choices should
be defined based on the chosen technology middlewares, for example a JSON based schema
can be a good candidate for data exchange between the Analytics and Visualization layers,
while DataFrames or NumPy arrays may be good candidates for the data exchange between
Processing and Analytics layers. The layer encapsulations should guarantee transparent data
flow between each layer and chosen middleware such that it can be easily replaceable with
newest tools available in the IT world.

3 Challenges

There are challenges that need to be undertaken in optimising operations for data manage-
ment, workflow management, and sites. The Operational Intelligence effort is addressing
them by developing a set of general techniques, and tailoring them to the specific challenges.



EPJ Web of Conferences 245, 03017 (2020) https://doi.org/10.1051/epjconf/202024503017
CHEP 2019

3.1 Data management operations

One of the major problems in data management operations is to tackle the root cause of job
failures related to missing input data, i.e., jobs could not start due to the input data not being
available on time at the required compute site. The objective for Operational Intelligence is
to design an intelligent predictive algorithm to send alarms in case of steady state violations,
e.g., degraded transfer performances between storage systems. This means harmonizing and
analyzing the data transfer metrics, which have already been collected and stored in a suitable
analytics platform, and looking for potential correlations among the available metrics. These
correlations can be used to send specific alarms and operational actions if potential anomalies
are detected. The shifter/expert can then validate the proposed actions, which in turn sends
feedback to the algorithm to improve over time.

In particular, we developed two alternative pipelines to address this problem using an un-
supervised learning approach, thus enabling the discovery of new, unknown failure patterns.
Both approaches analyze log messages through a Word2Vec model [8] that learns how to rep-
resent all tokens as Vector Space Model (VSM), thus allowing to vectorize log messages and
discover their similarities. Considering the composite and diverse nature of the computing
environment, we started analyzing the lowest-level source of information, i.e. data from the
File Transfer Service (FTS) [9]. This makes the strategy as general as possible, and not lim-
ited to dedicated subsystems or experiment-specific configurations. A clustering algorithm is
applied to group related errors, with the possibility of multi-stage clusterization to refine the
model outcome.

The first pipeline is designed for (but not limited to) online processing and it exploits
the DBSCAN algorithm [10] to gather similar messages together!. This choice allows the
detection of clusters of varying shapes, which is particularly useful when dealing with out-
liers. A representative log pattern is then extracted from each cluster so that the shifter has
to inspect just one error per group rather than all the single messages. The second approach
is thought for offline processing and it is inspired by the work in [11]. During training, a
K-Means algorithm [12] is adopted for clustering. The results are then validated by experts
to build a knowledge base where an error category is attached to each cluster together with
the solution. In production, the Word2Vec representation of a new message is compared to
all the known issues and assigned to the closest category. If the minimum distance is greater
than a threshold, a new issue is created and manual intervention is required. To validate our
approaches we are building a reference dataset with labels for error categories and solving
actions, which will ease the comparison of alternative algorithms and make the investigation
of novel techniques sustainable.

3.2 Workload management operations

The succeeding rate for the payload execution in distributed computing environments may
suffer from any of the factors noted in Section 1.2. Each failure event may require a unique
approach to detection and investigation. Another impact on operations complexity is the
large variety of leveraged systems. The sources of an issue can be anywhere among hun-
dreds of computing elements, thousands of servers and many software layers. Additionally,
non-infrastructure errors may occur due to defects in the software or user mistakes. To ad-
dress these operational challenges, we started several projects for the automation of workload
problem detection, and to optimise the information delivery channels.

Thttps://pypi.org/project/clusterlogs/



EPJ Web of Conferences 245, 03017 (2020) https://doi.org/10.1051/epjconf/202024503017
CHEP 2019

3.2.1 Jobs Buster

The Jobs Buster project aims at identifying workload problems and at taking automatic de-
cisions on how to address spotted issues by using ML techniques. We are currently focusing
on reliable issue detection functionality. Accomplishment of this goal itself could sufficiently
reduce human efforts spent on workload operations. Issue detection has two primary tasks:
identify complete sets of failed jobs (or delayed in execution) due to the same reason within
each set, and find the root cause for each failure reason to precisely point to the problem.

We developed the following approach to extract a minimal feature set and their values to
spot job failures: using a sample of failed and succeeded jobs we build a prediction model
which is able to "forecast" the lost wall time for any job in the analysed sample. We use the
job description retrieved from the workload management system as features which impact
the job behaviour. Examples of such descriptors are: computing element where the job is
running, software release version used to build the executable, the physics group the submitter
belongs to, the memory requirements supplied in the job definition and others. Once the
model is built we extract from it the principal factor responsible for the job misbehaviour.
We then create a sub sample of jobs with the same principal factor and repeat the same
procedure. This procedure points us to the next principal factor. Such recursive procedure
is necessary because the same principal factor, for example a particular computing element,
may correspond to both successful and failed jobs, and the failed jobs may still be due to
multiple reasons: some jobs may have a memory leak, others a missing library dependency.
The failure report generated by Jobs Buster is available in the monitoring framework of the
ATLAS experiment [13], and experts are currently assessing its functionality.

3.2.2 Unified information delivery system

One of the most important requirements of successful operations is the ability to detect the
right message and route it to the right person within a predefined time. With increasing scale
of the computing resources and system complexity, the current monitoring systems must
play a more proactive role in data processing and targeting. One of the directions of the
Operational Intelligence initiative is to establish approaches for efficient information delivery
and to minimize efforts on its adaptation for particular needs.

We deployed a message-based monitoring architecture which allows to encapsulate infor-
mation producers as services which are completely isolated from the information distribution
and visualization components, and execute them at the place where the operational data is ac-
tually generated. We use the Neural Autonomic Transport System (NATS) [14] for message
delivering within system components. The messages are converted into metrics and injected
into the VictoriaMetrics [15] system which is used as Prometheus [16] back-end. These met-
rics can be visualized in Grafana dashboards, and we rely on AlertManager [17] to notify
users through various channels, such as Slack or email groups, about potentials anomalies.
The system is used to target different CMS operators, which may be interested in different
sets of metrics, for example all jobs failed at a certain site, failed jobs belonging to a certain
campaign or task, or job failures with certain exit codes.

3.3 Site Operations

One peculiar instance of the Operational Intelligence efforts is focused towards the optimiza-
tion of the computing operations at the distributed WLCG computing centers. Despite the
diverse levels of maturity and automation of the adopted solutions, site operations relies still
heavily on human efforts in the form of reactive maintenance. The richness of the already



EPJ Web of Conferences 245, 03017 (2020) https://doi.org/10.1051/epjconf/202024503017
CHEP 2019

collected and available data (for example in log files) is not yet fully exploited to extract
actionable insight. Solutions to reduce the need for manual intervention are being explored,
relying on analytics components as well as data science methods (such as machine and deep
learning).

Currently, both supervised and unsupervised approaches are used [18], as well as anomaly
detection and log template extraction approaches [19], and various techniques adopted from
Natural Language Processing (NLP) research. All methods are based on a quick prototype
and validation cycle, in order to timely develop, train, and test models against new unseen
log data being collected in real time, with the goal of validating one or more approaches as
valuable to the early detection of symptoms of future failures at sites. The aim is to reduce
the latency between the time a problem is detected and the time it is actually addressed (even
aiming at anticipating its occurrence thus mitigating the impact of a possible failure), and to
increase the quality and focus of operator interventions by equipping them with additional
details, and correlations to other anomalies.

The ultimate goal is to eventually be able to address a variety of common issues that
prevent an effective use of the resources of the computing sites, and move the bar from a
run-to-failure approach to a series of designed diagnostic tools for ML-enforced predictive
maintenance at sites.

4 Conclusions

The Operational Intelligence effort is the result of joint activities from various WLCG com-
munities, aiming at reducing the person-power cost of operating distributed computing sys-
tems. This challenge is tackled at several angles: on one side we are developing intelligent
algorithms to spot and predict issues, on the other we are developing a smart platform to
support operators and computing experts in their daily tasks by exploiting the predictions of
the studied ML models.

5 Acknowledgements

This work has received funding from the European Union’s Horizon 2020 research and inno-
vation programme under the Marie Sktodowska-Curie grant agreement LHCBIGDATA No.
799062. The work dedicated to the development of log clusterization methods was partially
supported by Russian Science Foundation grant No.18-71-10003.

References

[1] I. Bird, Computing for the Large Hadron Collider, Annual Review of Nuclear and Particle
Science, 61, 99-118 (2011)

[2] The ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider,
Journal of Instrumentation, 3, S08003 (2008)

[3] The CMS Collaboration, The CMS Experiment at the CERN LHC, Journal of Instru-
mentation, 3, S08004 (2008)

[4] CERN JIRA instance https./its.cern.chjjira

[51 CERN Service Now portal https://cern.service-now.com/

[6] GGUS https:/ggus.eupages/home.php

[7] P. Tapia et al., “Implementing Operational Al in Telecom Environments”, Tupl White
Paper (2018)



EPJ Web of Conferences 245, 03017 (2020) https://doi.org/10.1051/epjconf/202024503017
CHEP 2019

[8] T. Mikolov et al., Efficient estimation of word representations in vector space, arXiv
preprint arXiv:1301.3781 (2013).

[9] E. Karavakis, A. Manzi, O. Keeble, M. Arsuaga Rios, “FTS improvements for LHC
Run-3 and beyond”, 2020 in preparation for the proceedings of CHEP 2019 Conference,
Adelaide (Australia)

[10] M. Ester, et al. A density-based algorithm for discovering clusters in large spatial
databases with noise, Kdd, Vol 96 No. 34, p. 226-231 (1996)

[11] Q. Lin, et al., Log clustering based problem identification for online service systems,
Proc. 38th Int. Conf. on Software Engineering Companion. ACM, p. 102-111 (2016)

[12] D. Arthur, S. Vassilvitskii, k-means++: The advantages of careful seeding. Proc. of the
Annu. ACM-SIAM Symp. on Discrete Algorithms, 8, p. 1027-1035 (2007).

[13] Jobs Buster, https://bigpanda.cern.chjoifjobsbuster/?hours=12&jobtype=prod

[14] NATS https:/nats.io/

[15] VictoriaMetrics https:/victoriametrics.com/

[16] Prometheus https./prometheus.io

[17] Prometheus AlertManager https./jprometheus.io/docs/alerting/alertmanager/

[18] L. Giommi et al., “Towards Predictive Maintenance with Machine Learning at the
INFN-CNAF computing centre”, Proceedings of International Symposium on Grids &
Clouds 2019.

[19] L. Decker de Sousa et al., “Big Data Analysis for Predictive Maintenance at the INFN-
CNAF Data Center using Machine Learning Approaches”. Proceedings of the 25th Con-
ference of Open Innovations Association FRUCT 2019. IEEE p. 448-451.

Copyright 2020 CERN for the benefit of the ATLAS and CMS Collaboration. Reproduction
of this article or parts of it is allowed as specified in the CC-BY-4.0 license.



