
Vol.:(0123456789)1 3

Computing and Software for Big Science (2022) 6:2
https://doi.org/10.1007/s41781-021-00077-9

ORIGINAL ARTICLE

Deep Learning Strategies for ProtoDUNE Raw Data Denoising

Marco Rossi1,2  · Sofia Vallecorsa1

Received: 3 July 2021 / Accepted: 14 December 2021
© The Author(s) 2022

Abstract
In this work, we investigate different machine learning-based strategies for denoising raw simulation data from the Pro-
toDUNE experiment. The ProtoDUNE detector is hosted by CERN and it aims to test and calibrate the technologies for
DUNE, a forthcoming experiment in neutrino physics. The reconstruction workchain consists of converting digital detector
signals into physical high-level quantities. We address the first step in reconstruction, namely raw data denoising, leverag-
ing deep learning algorithms. We design two architectures based on graph neural networks, aiming to enhance the receptive
field of basic convolutional neural networks. We benchmark this approach against traditional algorithms implemented by
the DUNE collaboration. We test the capabilities of graph neural network hardware accelerator setups to speed up training
and inference processes.

Keywords  Deep learning · ProtoDUNE · Denoising · Convolutional neural networks · Graph networks

Introduction

Deep learning algorithms achieved outstanding results in
many research fields in the last few years. The neutrino high
energy physics community [1–4], and in general the particle
physics one [5, 6], is making an effort to apply such tech-
nologies to create a new generation of automated tools. In
general, capable of processing efficiently huge amounts of
information, these algorithms work with increased perfor-
mance to mine deeper in collected data and discover hidden
patterns responsible for potential new physics scenarios.
Event reconstruction algorithms, i.e., reconstruction, the
process of extraction of useful quantities from detector or
simulated data, are especially suited to the application of
this approach.

DUNE [7] is a next-generation experiment in the neu-
trino oscillation research field. The DUNE Far Detector (FD)
[8–10], based at the Sanford Underground Research Facil-
ity (SURF) in South Dakota, will be the largest monolithic
Liquid Argon Time Projecting Chamber (LArTPC) detector

ever built. To test and validate technologies for the construc-
tion of such detector, a prototype, ProtoDUNE Single Phase
(SP) [11], has been built at the CERN Neutrino Platform.

Particle interactions with the liquid Argon produce ioni-
zation electrons that are drifted, thanks to an electric field,
towards Anode Plane Assemblies (APAs) made of three
readout planes that collect the deposited charge through
time. Each readout plane is a bundle of wires, oriented in a
specific direction and continuously monitored by the detec-
tor: two planes are called induction planes, while the last one
is named the collection plane. In particular, the ProtoDUNE
SP cage envelope is surrounded by 6 different APAs, each
with two induction planes of 800 wires and a collection one,
holding together 960 wires. Overall, a total of 15,360 wires
on the sides of the detector provide a comprehensive and
detailed picture of events from different points of view.

ProtoDUNE SP measures a digitized value of the induced
current on each wire (ADC value). Since the detector maxi-
mum sampling rate is 2MHz and the common readout time
windows at ProtoDUNE SP last 500ns , raw data (or raw dig-
its) form a sequence of 6000 current measurements per wire.
In this paper, we focus on event reconstruction of Proto-
DUNE SP simulated data. We simulate interactions with the
help of the LArSoft [12] framework and its dunetpc pack-
age. Figure 4 shows an example of the simulated data from a
single collection plane: raw digits are cast into a 6000 × 960

 *	 Marco Rossi
	 marco.rossi@cern.ch

1	 CERN openlab, 1211 Geneva 23, Switzerland
2	 TIF Lab, Dipartimento di Fisica, Università degli Studi

di Milano and INFN Sezione di Milano, Via Celoria 16,
20133 Milan, Italy

http://orcid.org/0000-0002-7882-2798
http://crossmark.crossref.org/dialog/?doi=10.1007/s41781-021-00077-9&domain=pdf

	 Computing and Software for Big Science (2022) 6:2

1 3

 2   Page 2 of 9

resolution image plotting the ADC values heat map over
time versus wire number axes.

Raw digits recorded by detector electronics intrinsi-
cally contain noise that must be filtered out. The traditional
approach [8], developed by the MicroBooNE experiment
[13, 14], is based on a 2-dimensional deconvolution and
consists of two steps: first, a mask is produced to identify
the Regions Of Interest (ROI) in the raw data containing
signals; then, in those regions, Gaussian shape peaks are
fitted to match the inputs, filtering them in Fourier space and
deconvolving back the results.

The goal of this work is to tackle the denoising prob-
lem, implementing automatic tools at the readout plane
view level. The nature of the inputs, above all sparsity and
size, represents a challenging benchmark for Deep Learning
models. Images indeed contain signals, mainly organized
in long monodimensional tracks and clusters, divided by
almost empty extended regions. Then, trying to train clas-
sic deep feed-forward models on sparse inputs might lead
to sub-optimal results, since gradients would receive a large
contribution from pixels in those noise-dominated empty
regions. Moreover, the high image resolution might result
in a pixel receptive field limited to just local neighborhoods,
which are small compared to the extension of the meaningful
spatial features included in the plane views. Finally, han-
dling the size of the inputs requires careful RAM and GPU
memory management while dealing with complex model
architectures.

The paper is organized as follows. First, in section“ Pro-
posed Models”, we describe the models and operations used
to tackle the problem. Then, the section “Dataset and Train-
ing” illustrates the dataset we generated and the methods
employed to train the networks. The section “Experiments
Results” is devoted to the presentation of experimental
results. Finally, in section “Conclusions”, we present our
conclusion and future development directions.

Proposed Models

Convolutional neural networks (CNN) are based on a stack
of sliding kernels comprised of multiple filters, that are
trained according to some optimization method to output a
feature map. The convolutional kernel generates each feature
map pixel as a function of a small neighboring portion of
the input image. Hence, the receptive field of the pixels in
each layer is constrained by the kernel size, which could be
enlarged by increasing the depth of the network. The scope
of the present section is to describe an alternative approach
to the issue: by enriching the network with alternative opera-
tions we hope to increase the expressiveness of the internal
representation by exploiting non-local correlations between

pixel values, alongside the already discussed local neighbor-
hood pixel intensities.

Graph Convolutional Neural Network

We implement a Graph Convolutional Neural Network
(GraphCNN) inspired by [15, 16] and based on the Edge
Conditioned Convolution (ECC) operation, first presented
in [17]. We employ a simplified version of the ECC layer: it
builds the output representation as a pixel-wise average of
a common convolution with a 3 × 3 kernel and a Non-Local
Aggregation (NLA) operation. We wrap such operations into
a network layer called Graph Convolution (GCONV). Fig-
ure 1 sketches the GCONV layer mechanism.

The NLA connects each pixel to its k closest ones in fea-
ture space, according to the Euclidean distance, and mixes
the information through a feed-forward layer. If at layer l,
the i-th of an n-pixel input image is described by the vector
�l

i
∈ ℝ

dl , then the NLA output �l+1
i

 has the following form:

With Nl
i
 being the neighborhood of pixel i in the Hl

i
 repre-

sentation at layer l; {Θl,Wl} ∈ ℝ
dl+1×dl and �l ∈ ℝ

dl+1 are
trainable weights and biases shared throughout pixels; � is
the element-wise sigmoid function.

Note that the operation in Eq. (1) requires building a
k-NN graph which requires an amount of memory propor-
tional to the area of the input image times the number of
neighbors per pixel k. Assuming we fix k = 8 , with an input
image of 960 × 6000 pixels and employing single precision
floating point numbers, the graph construction operation
burden is of order O(200 MB) . If the architecture involves
multiple graph building operations, the GPU memory is eas-
ily saturated. Therefore, we have to limit the model inputs to
just crops of the actual image as explained in section “Net-
work Training”.

(1)

�l+1
i

= �

(
1

|Nl
i
|

∑

j∈Nl
i

Θl
(
�l

i
−�l

j

)
+Wl�l

i
+ �l

)
∈ ℝ

dl+1 .

Fig. 1   GCONV layer. The inner representation vector �l

i
 is updated to

�l+1
i

 by means of NLA and 2D convolution operations. NLA relies on
a previously computed KNN graph

Computing and Software for Big Science (2022) 6:2 	

1 3

Page 3 of 9  2

Figure 2 shows our GCNN network architecture. Note the
final residual connection in the top branch: the usual sum has
been replaced by a multiplication. This choice is tailor made
on the input data themselves, which are mainly comprised
of long tracks separated by empty space. In those regions it
could be easier to learn how to remove the noise multiplica-
tively rather than additively. The network, in principle, does
not have to learn to perfectly profile the noise and then sub-
tract it from the input itself, whereas it can employ a mask
to cut down such uninteresting regions with multiplications
by small numbers.

U‑Shaped Self‑Constructing Graph Network

As stated in the previous section, the main limitation of the
GCNN model is the memory consumption burden due to
the graph operation: graph building scales linearly with the
size of the inputs, therefore, the model accepts crops rather
than the full APA image. The cropping workaround prevents
very long-range correlations between pixels being taken into
account and leads to inference time performance issues. If
the user does not have access to a high GPU memory band-
width, only batches of crops can be processed in parallel and
processing big datasets is not time efficient.

As an alternative approach to the GCNN, we follow the
idea introduced in [19] with the Self-Constructing Graph
Network (SCG-Net): a graph neural network that outputs
results from a low dimensional representation of the high
resolution image created by a full CNN; the original shape of
the image is then retrieved interpolating between pixels. In
the original work, a bilinear interpolation is employed for the
upsampling. In this way the authors were able to process big
images containing up to 6000 × 6000 pixels. This seems a
more natural approach to the problem when the input images
contain dense features, rather than sparse and localized ones
as in our case. We believe that the entire pipeline potentially
washes out the fine grained information contained in the
input during downscaling, which cannot be recovered by
means of a simple interpolation.

Therefore, we introduce the U-shaped Self-Constructing
Graph Network (USCG-Net), where a U-Net [20] like net-
work structure with residual connections carries the informa-
tion from the input node all the way to the outputs. Figure 3
shows the USCG-Net architecture, with pooling blocks,
comprised of convolutional and pooling layers, that take
care of stepwise scaling the inputs. A pretrained ResNeXt-50
with a 32 × 4 template [18] is used to build an initial fea-
ture map to be fed into the SCG layer. The early-layer

Fig. 2   GCNN architecture. The model takes noisy input images �
and outputs denoised ones xDN . The design is organized with low-
and high-pass filters (LPF and HPF) as in [15]. As explained in sec-
tion “Network Training”, we concatenate a pretrained ROI block with

preprocessing layers to make the network distinguish between signal
and background. The ROI block, indeed, performs the binary seg-
mentation

Fig. 3   USCG-Net architecture. The Pooling block has a two
folded aim thanks to its adaptive pooling layer: on the left branch
it downscales the input, while on the right one it provides upsam-
pling. According to [18], ResNeXt-50 with 32 × 4 template is
arranged in 4 main blocks, containing 9, 12, 18 and 9 convolu-

tional layers, respectively. In the chart, we refer to such blocks as
������� − �� < ����������� > and we insert a residual connec-
tion between the second and the third block. The 1 × 1 convolutions
in the horizontal links are needed to adapt the number of filters in the
image to perform the residual recombination operation

	 Computing and Software for Big Science (2022) 6:2

1 3

 2   Page 4 of 9

representation of the pretrained network should be generic
enough to catch the spatial features of the inputs, driving
the training process during the initial phases of the optimi-
zation. Note the residual recombination operations in the
right branch: the sum in the residual connections has been
replaced by a convolution with a 1 × 1 kernel to increase
the complexity of the network. Finally, for the final residual
link, we employ again the multiplication trick, as explained
in section “Graph Convolutional Neural Network”.

The SGC layer is the core of the network: the input image
is turned into a graph, allowing connections between distant
pixels. The SCG layer [19] takes in an image � ∈ ℝ

h×w×d
and through an encoding functions, represented by dense
layers, maps it into two outputs: an adjacency matrix
� ∈ ℝ

n×n , describing the graph edges, and a node feature
vector �̂ ∈ ℝ

n×c . In the above formulas, d and c are the input
and output channel dimensions, respectively and n, which
is equal to the input image resolution h × w , is the number
of extracted nodes. The predicted graph is then analyzed by
a 1-layer graph neural network, such as GCN [21] or GIN
[22], to further mix the node features, yielding a final node
feature vector �̂� ∈ ℝ

n×c� . In our experiments, we exploited
the GCN layer as default; architecture variants with other
kinds of graph layers can be addressed in a future work. �̂′
can be finally projected back into ℝh×w×c� and upsampled by
pooling blocks in the right branch of the USCG-Net to the
original image resolution.

Dataset and Training

Datsets

In this section, we present the datasets used to train and test
our models. We underline that we present results for simu-
lated data only, testing on detector data is out of the scope of
the present work. We simulate interactions within the Pro-
toDUNE SP chamber through the LArSoft [12] framework
and its dunetpc package. We consider events originating
from a proton beam of various energies, plus cosmic rays,
interacting with the Argon targets. Our supervised training
approach is based on simulated raw digits. The simulation
provides also the associated noise-free charge depositions:
we employ this information as target outputs for the denois-
ing models.

Table 1 describes the considered datasets. In Figs. 4
and 5, we show visual examples from v08_24_00 and
v09_10_00 datasets. We plot raw digit images and hor-
izontal slices, namely single channel waveforms, either
with (raw waveform) and without noise (clear waveform).
Noise is mainly comprised of a pedestal value that changes
across different datasets and a background noise that

overwhelms small energy depositions and modifies spikes
amplitudes. We consider the v08_24_00 dataset a sim-
plified dataset since it is smaller and contains easier fea-
tures to denoise and segment than the v09_10_00 one.
v09_10_00 is more complex due to the detector data
driven approach upon which the generator software is
based. Clear waveforms are not simply zero in the empty
regions, but rather contain small steps. Moreover, low-fre-
quency negative tails after big spikes in clear waveforms
are clearly visible in Fig. 7.

We hold out from our datasets 10% of images for vali-
dation and 10% for testing. The validation set is used to
choose the best model, while the test set is employed to
present the final results given in section “Experiments
Results”. The criterion chosen to present results is to
aggregate each performance quantity, over the test or
validation set, then report it as a symmetric interval with
the central value and its uncertainty being the arithmetic
mean and the standard deviation on the mean, respectively.
This choice also influences the best model selection dur-
ing training, namely, the network checkpoint at epoch end
that achieves the lowest upper bound of the loss function
interval.

We remark that, as described in section “Introduction”,
a single event at ProtoDUNE SP is recorded by 6 different
APAs, that in turn provide 3 plane views. Therefore, one
event does not count as one training point for our neural
networks. In section “Proposed Models”, we anticipated
that the GCNN network acts independently on small crops:
if 32 × 32 crops are employed, each event in the dataset
becomes 9 × 104 crops. The USCG-Net, instead, processes
entire plane views. The two datasets provide 18 and 126
plane views to assess the model performance and its asso-
ciated uncertainty. Note that the output image has a dimen-
sionality of the order of millions of pixels and each pixel
value provides a contribution in the computation of the
final performance metric.

Table 1   Datasets for training and testing

The two differ in the producer package version, the size and the event
beam energies. The second dataset contains 10 events for each proton
energy specified

dunetpc n events p energy

v08_24_00 10 2 GeV

v09_10_00 70 0.3 GeV ,
0.5 GeV ,
1 GeV ,
2 GeV,

3 GeV ,
6 GeV ,
7 GeV

Computing and Software for Big Science (2022) 6:2 	

1 3

Page 5 of 9  2

Network Training

All networks that we train share the same preprocessing
procedure, where we take the plane views in a dataset and
apply a median subtraction to each of them. This step is
fundamental to estimate and subtract the pedestal value. We
introduce this operation mimicking the traditional approach
because it contributes to improve the final performance.
Furthermore, for network training stability, the inputs are
rescaled in the unit range according to the min–max nor-
malization technique.

The GCNN network suffers from the memory issue dis-
cussed in section “Graph Convolutional Neural Network”.
To address this problem, we employ a data parallel approach,
cropping the inputs into 32 × 32 pixels images and process-
ing every tile independently. However, this solution requires
some subtleties in the training process due to the nature of
the inputs.

Since the inputs contain sparse features, it is likely that
the most of the crops contain little to no signal. It is mean-
ingless to feed the network with multiple empty crops. To

speed up the training, we decide to train on just a subset of
the available crops. This choice, in turn, triggers a second
issue: sampling randomly the subset of crops provides an
extremely unbalanced dataset, where we are very likely to
miss crops containing interesting charge depositions. Hence,
we fix the percentage of crops containing signal to balance
the signal to background pixel ratio: in our experiments, we
keep this quantity at 99% . The cropping procedure works
as follows: we mark as signal all the pixels in clear wave-
forms that have non-zero ADC value count in a plane view;
we sample randomly the desired number of crop centers,
complying with the exact ratio of signal to background per-
centage; we finally crop the plane views around the drawn
centers.

We train the GCNN network in Fig. 2 for both the image
segmentation task and denoising, managed by the ROI Block
and the network final outputs, respectively. Image segmen-
tation is a classification task at the pixel level, where the
labels usually correspond to a finite set of exhaustive and
mutually exclusive classes: the ROI block, indeed, is trained
to distinguish between pixels that contain or not electron

0 1000 2000 3000 4000 5000

Time

0

100

200

300

400

W
ire

N
um

be
r

Collection plane, ADC heatmap

500

750

1000

1250

1500

1750

2000

2250

2500

ProtoDUNE SP simulation, dunetpc v08 24 00

0 1000 2000 3000 4000 5000 6000

Time

500

520

540

560

580

600

A
D
C

Collection Wire, Raw Waveform
ProtoDUNE SP simulation, dunetpc v08 24 00

0 1000 2000 3000 4000 5000 6000

Time

0

20

40

60

80

100

A
D
C

Collection Wire, Clear Waveform
ProtoDUNE SP simulation, dunetpc v08 24 00

Fig. 4   Example taken from dunetpc v08_24_00 dataset. Collection plane view with noisy and clear waveforms extracted from the channel
marked by the horizontal orange dashed line

0 1000 2000 3000 4000 5000

Time

0

100

200

300

400

W
ire

N
um

be
r

Collection plane, ADC heatmap

1000

1250

1500

1750

2000

2250

2500

2750

ProtoDUNE SP simulation, dunetpc v09 10 00

0 1000 2000 3000 4000 5000 6000

Time

900

950

1000

1050

1100

1150

1200

A
D
C

Collection Wire, Raw Waveform
ProtoDUNE SP simulation, dunetpc v09 10 00

0 1000 2000 3000 4000 5000 6000

Time

0

50

100

150

200

250

300

A
D
C

Collection Wire, Clear Waveform
ProtoDUNE SP simulation, dunetpc v09 10 00

Fig. 5   Example taken from dunetpc v09_10_00 dataset. Collection plane view with noisy and clear waveforms extracted from the channel
marked by the horizontal orange dashed line

	 Computing and Software for Big Science (2022) 6:2

1 3

 2   Page 6 of 9

induced current signals. Image denoising, instead, aims at
subtracting the noise contribution from each pixel intensity
and is a regression task.

To optimize the two parts of the network, we design an
ad hoc training strategy as follows. First, we train the ROI
Block alone on image segmentation for 100 epochs and save
the best configuration: in this step, the network branch learns
to distinguish between signal and background, i.e., empty
pixels. We employ binary cross-entropy as the loss func-
tion, along with the AMSGrad variant [23] of the Adam
algorithm [24] as the optimizer with a learning rate of 10−3 .
Second, we freeze and attach the trained ROI block weights
to the remaining part of the network. Then, we train the
GCNN on image denoising for a further 50 epochs and save
the network’s best configuration.

The GCNN denoising model is trained using the AMS-
Grad optimizer with a learning rate of 9 × 10−3 , while opti-
mizing a custom loss function made of two contributions:
the mean squared error (MSE) LMSE between labels and
outputs and a loss function Lssim derived from the statis-
tical structural similarity index measure (stat-SSIM) [25].
stat-SSIM for two images � and � is given by the following
equation:

where �i is a shorthand for the image i expected value E[i],
which is computed through a convolution with a 11 × 11
Gaussian kernel of standard deviation 3. All the other
expectation values in the equation are calculated convolut-
ing the argument quantity with the same Gaussian filter. �

�

and �
�
 are two regulators that limit the maximum resolu-

tion at which the fractions in the equations are computed,
respectively, imposing a cutoff on the mean and variance
expected values. In particular, when both the numerator and
the denominator of a fraction reach much smaller values
than the corresponding � , the output gets close to one. In
the experiments, �

�
 and �

�
 are fixed to the square of 0.5.

This choice implies that for the stat-SSIM computation, we
estimate the means and standard deviations of the distribu-
tions at scales larger than half of one ADC value, namely the
granularity of the recorded detector hits. The result is finally
averaged over the entire image containing np pixels and nc
channel dimensions. The quantity in Eq. (2) takes values in
the range [−1, 1] and approaches 1 only if � = � . The associ-
ated loss function is then given by Lssim = 1 − stat- SSIM :
it is a perceptual loss, in the sense that tries to assess the
fidelity of the image focusing on structural information. It

(2)

stat- SSIM(�, �) =
1

npnc

∑

pc

(
2�x�y + �

�

�2
x
+ �2

y
+ �

�

)

pc

×

(
2E

[(
� − �x

)
(� − �y)

]
+ �

�

E
[
(� − �x)

2
]
+ E

[(
� − �y

)2]
+ �

�

)

pc

,

relies on the idea that pixels may have strong correlations,
especially when they are spatially close. In contrast, MSE
evaluates pixels’ absolute differences, without taking into
account any dependence among them. More details on the
interpretation of these quantities can be found in [26]. The
two contributions in the loss function are weighted as fol-
lows: L = � ⋅ LMSE + (1 − �) ⋅ w ⋅ Lssim . We fine tune the
multiplicative parameter w = 10−3 , to balance the gradients
w.r.t. the model’s trainable parameters provided by the two
terms in the sum. The parameter � is fixed to 0.84 as in [27].

In the following, we will refer, with slight abuse of nota-
tion, to a CNN as a GCNN network with Graph Convolu-
tional layers replaced by plain Convolutional ones.

The USCG-Net is relatively simple to train: since no
crops are employed, no sampling method is required.
Although no cropping is needed, since the model fits in a
single 16 GB GPU even with an entire plane view as input,
we prefer to employ a sliding window mechanism as in the
original SCG-Net paper. We split the raw digits array along
the time axis with a 2000 pixel wide window and 1000 pixel
stride and feed each slice to the network. The results are then
combined by averaging predictions on overlapping regions.
The USCG-Net is trained minimizing the MSE function
between model outputs and clear waveforms, with AMSGrad
optimizer and learning rate of 10−3 . In this case, we drop
the stat-SSIM contribution from the loss function, since we
experienced training convergence problems when including
that term during our experiments.

Experiments Results

We employ four different metrics to assess the goodness of
our models and benchmark them against the state-of-the-art
approach. Three of them are the stat-SSIM, peak signal to
noise ratio (PSNR) and MSE on the two-dimensional raw
digits, while the last one is a custom metric called inte-
grated mean absolute error (iMAE) and will be defined in
the following.

PSNR between a noise-free image � and a denoised � one
is given by the following equation:

Note that PSNR and stat-SSIM increase with the recon-
struction quality, while MSE decreases. We observe that
these three quantities are really suited to compare the deep
learning models between themselves, however, they are not
really informative when the baseline approach is considered.
Indeed, the baseline approach aims at fitting Gaussian peaks
in regions marked as interesting, rather than reconstructing
the precise shape of the spike contained in the raw digits.

(3)PSNR(�, �) = 10 ⋅ log10

(
max(�)2

MSE(�, �)

)
.

Computing and Software for Big Science (2022) 6:2 	

1 3

Page 7 of 9  2

Hence, the baseline tool performs inevitably poorly on the
considered metrics and up to our knowledge, there is no
default metric to assess its performance. Nonetheless, we
define a custom quantity that tries to compare the different
approaches, observing that the deconvolution process does
not preserve waveform amplitudes, but their integrals. For
such reason, we decide to evaluate the mean absolute error
on wires integrated charge (iMAE):

where the sum inside the absolute values runs over time for
the whole readout window, while the outer sum averages
the result over the wire dimension. Note that the deconvo-
lution approach does not preserve waveform amplitudes,
because a filtering function is applied to the signal in Fou-
rier space, then results are deconvolved back to the time
domain. Furthermore, the deconvolution outputs are known
up to an overall normalization constant, that we fit on the
datasets to minimize the iMAE quantity. We show that
although we perform this operation on the state-of-the-art
tool outputs for a fair comparison against our models, they

(4)iMAE(�, �) =
1

nw

nw∑

w=1

|||
∑

t

(� − �)wt
|||,

nonetheless achieve a worse iMAE score. Table 2 collects
the metrics values evaluated on v08_24_00 dataset. We
gather v09_10_00 dataset results in Table 3. Note that we
present only evaluations for 2GeV beam energy events, since
we find metrics distributions to be flat in the energy param-
eter. Figures 6 and 7 show samples of labels and denoised
waveforms.

USCG-Net like networks exceed GCNN-like ones in all
the collected metrics. To have a first assessment of the qual-
ity of the neural network generalization power, we train two
versions of the USCG-Net: one on the v08_24_00 dataset
and the other on the v09_10_00 dataset. We decide not to
train the GCNN-like networks on the v09_10_00 dataset
after we observed difficulties in training convergence as well
as long training times on such a big dataset. We evaluate
these networks on both datasets.

Following expectations, the networks trained and applied
on the same dataset lead to better performance. The only
exceptions are given by the iMAE columns, where the
USCG-Net trained on the dataset opposite to the testing
one, achieve the best iMAE score. The stat-SSIM index
score drops significantly for GCNN-like networks. All
the networks, nonetheless, show hints of overall good

Table 2   Test metrics for denoising on v08_24_00 dataset

Results are shown for collection plane and 2GeV beam energy only.
The version, v08 or v09, next to the model name in the first column
refers to which dataset the correspondent model was trained on

Model stat-SSIM PSNR MSE iMAE

Baseline – – – 5391 ± 1622

CNN v08 0.471 ± 0.008 67.3 ± 1.2 0.57 ± 0.03 287 ± 12

GCNN v08 0.512 ± 0.011 70.12 ± 1.4 0.30 ± 0.01 191.4 ± 2.6

USCG v08 �.988 ± 0.005 ��.66 ± 1.54 �.17 ± 0.02 95.5 ± 8.5

USCG v09 0.926 ± 0.007 72.3 ± 1.5 0.18 ± 0.02 ��.3 ± 8.2

Fig. 6   Detail of a raw waveform from dunetpc v08_24_00 dataset: label, traditional algorithm and neural networks outputs. The version,
v08 or v09, next to the model name in the legend refers to which dataset the correspondent model was trained on

Table 3   Test metrics for denoising on v09_10_00 dataset

Results are shown for collection plane and 2GeV beam energy only.
The version, v08 or v09, next to the model name in the first column
refers to which dataset the correspondent model was trained on

Model stat-SSIM PSNR MSE iMAE [×103]

Baseline – – – 5.86 ± 0.52

CNN v08 0.37 ± 0.02 57.3 ± 1.4 5.79 ± 0.88 4.16 ± 0.36

GCNN v08 0.40 ± 0.02 57.7 ± 1.5 5.27 ± 0.69 4.51 ± 0.39

USCG v08 0.65 ± 0.05 61.1 ± 1.6 2.3 ± 0.2 �.18 ± 0.29

USCG v09 �.81 ± 0.07 ��.8 ± 1.7 �.99 ± 0.19 2.25 ± 0.23

	 Computing and Software for Big Science (2022) 6:2

1 3

 2   Page 8 of 9

generalization power when they are applied on datasets not
used for training. This fact is well supported by the PSNR
columns, which show that even the worst model achieves
competitive results. We underline that the USCG-Net is
not trained according to the stat-SSIM quantity: adding an
extra term in the loss function containing such term could
be considered a point of further development of the present
research.

Conclusions

In this paper, we presented deep learning strategies for
denoising raw digits simulated data at ProtoDUNE SP. Our
approach leads to an automated tool that cleans raw inputs
and in the future could be adapted to work on real data. We
investigated the capabilities of Graph Neural Networks, test-
ing approaches alternative to classical Convolutional Neural
Networks on a novel use case. Graph Neural Networks aimed
to exploit long-distance correlations between pixels, in par-
ticular the USCG-Net exemplified this approach, processing
big sized inputs while still fitting GPU memory constraints.
Our trained neural networks were able to outperform the
state-of-the-art traditional reconstruction algorithm on the
custom iMAE metric. All the networks gave hints of inter-
esting generalization power, especially in the PSNR quality
assessment, achieving high performances even on datasets
different to the one they had been trained on. Further work
directions will aim to fully assess the models on larger, more
complete testing datasets.

Acknowledgements  We thank the IBM Company that supported the
realization of this paper, gently providing hardware and intellectual
contribution.

Funding  Open access funding provided by CERN (European Organiza-
tion for Nuclear Research).

Data Availability Statement  This manuscript has associated data in a
data repository. [Authors' comment: No associated data except for code.
The associated code to replicate the studies in this paper can be found
at: https://​zenodo.​org/​record/​58215​22].

Declarations 

Conflict of Interest  The authors declare that they have no conflict of
interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Dominé L, Terao K (2020) Scalable deep convolutional neural
networks for sparse, locally dense liquid argon time projection
chamber data. Phys Rev D 102:012005. https://​doi.​org/​10.​1103/​
PhysR​evD.​102.​012005

	 2.	 Abi B, Acciarri R et al (2020) Neutrino interaction classification
with a convolutional neural network in the DUNE far detector.
Phys Rev D 102:092003. https://​doi.​org/​10.​1103/​PhysR​evD.​102.​
092003

	 3.	 Aurisano A, Radovic A et al (2016) A convolutional neural net-
work neutrino event classifier. J Instrum 11(09):P09001. https://​
doi.​org/​10.​1088/​1748-​0221/​11/​09/​P09001

	 4.	 Kronmueller M, Glauch T (2019) Application of deep neural net-
works to event type classification in icecube, application of deep
neural networks to event type classification in icecube. arXiv:​
1908.​08763

Fig. 7   Detail of a raw waveform from dunetpc v09_10_00 dataset: label, traditional algorithm and neural networks outputs. The version,
v08 or v09, next to the model name in the legend refers to which dataset the correspondent model was trained on

https://zenodo.org/record/5821522
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevD.102.012005
https://doi.org/10.1103/PhysRevD.102.012005
https://doi.org/10.1103/PhysRevD.102.092003
https://doi.org/10.1103/PhysRevD.102.092003
https://doi.org/10.1088/1748-0221/11/09/P09001
https://doi.org/10.1088/1748-0221/11/09/P09001
http://arxiv.org/abs/1908.08763
http://arxiv.org/abs/1908.08763

Computing and Software for Big Science (2022) 6:2 	

1 3

Page 9 of 9  2

	 5.	 Albertsson K, Altoe P et al (2019) Machine learning in high
energy physics community white paper, machine learning in high
energy physics community white paper. arXiv:​2002.​03005

	 6.	 Bourilkov D (2019) Machine and deep learning applications in
particle physics. Int J Modern Phys A 34(35):1930019. https://​doi.​
org/​10.​1142/​S0217​751X1​93001​99

	 7.	 Abi B, Acciarri R et al (2020) Volume I. Introduction to DUNE.
JINST 15(08):T08008. https://​doi.​org/​10.​1088/​1748-​0221/​15/​08/​
T08008

	 8.	 Abi B, Acciarri R et al (2020) Deep underground neutrino experi-
ment (dune), far detector technical design report, volume ii: Dune
physics. arXiv:​2002.​03005

	 9.	 Abi B, Acciarri R et al (2020) Volume III. DUNE far detector
technical coordination. JINST 15(08):T08009. https://​doi.​org/​10.​
1088/​1748-​0221/​15/​08/​T08009

	10.	 Abi B, Acciarri R et al (2020) Volume IV. The DUNE far detector
single-phase technology. JINST 15(08):T08010. https://​doi.​org/​
10.​1088/​1748-​0221/​15/​08/​T08010

	11.	 Abi B, Acciarri R et al (2017) The single-phase protodune techni-
cal design report, the single-phase ProtoDUNE technical design
report. arXiv:​1706.​07081

	12.	 Church ED (2014) LArSoft: a software package for liquid argon
time projection drift chambers, Larsoft: a software package for
liquid argon time projection drift chambers. arXiv:​1311.​6774

	13.	 Acciarri R, Adams C et al (2017) Noise characterization and
filtering in the MicroBooNE liquid argon TPC. J Instrum
12(08):P08003–P08003. https://​doi.​org/​10.​1088/​1748-​0221/​12/​
08/​P08003

	14.	 Adams C, An R et al (2018) Ionization electron signal process-
ing in single phase LArTPCs. Part I. Algorithm description and
quantitative evaluation with MicroBooNE simulation. J Instrum
13(07):P07006. https://​doi.​org/​10.​1088/​1748-​0221/​13/​07/​p07006

	15.	 Valsesia D, Fracastoro G et al (2019) Deep graph-convolutional
image denoising. arXiv:​1907.​08448

	16.	 Valsesia D, Fracastoro G et al (2019) Image denoising with graph-
convolutional neural networks. arXiv:​1905.​12281

	17.	 Simonovsky M, Komodakis N (2017) Dynamic edge-conditioned
filters in convolutional neural networks on graphs. arXiv:​1704.​
02901

	18.	 Xie S, Girshick R, others, Dollár P, Tu Z, He K (2017) Aggregated
residual transformations for deep neural networks. arXiv:​1611.​
05431

	19.	 Liu Q, Kampffmeyer M et al (2020) Scg-net: self-constructing
graph neural networks for semantic segmentation. arXiv:​2009.​
01599

	20.	 Ronneberger O, Fischer P et al (2015) U-net: convolutional net-
works for biomedical image segmentation. arXiv:​1505.​04597

	21.	 Scarselli F, Gori M et al (2009) The graph neural network model.
IEEE Trans Neural Netw 20(1):61. https://​doi.​org/​10.​1109/​TNN.​
2008.​20056​05

	22.	 Xu K, Hu W et al (2019) How powerful are graph neural net-
works? arXiv:​1810.​00826

	23.	 Reddi SJ, Kale S et al (2018) On the convergence of adam and
beyond. In: International conference on learning representations.
https://​openr​eview.​net/​forum?​id=​ryQu7f-​RZ

	24.	 Kingma DP, Ba J (2017) Adam: a method for stochastic optimiza-
tion. arXiv:​1412.​6980

	25.	 Channappayya SS, Bovik AC et al (2008) Rate bounds on SSIM
index of quantized images. IEEE Trans Image Process 17(6):857.
https://​doi.​org/​10.​1109/​TIP.​2008.​921328

	26.	 Wang Z, Bovik AC (2009) Mean squared error: love it or leave it?
A new look at signal fidelity measuresa new look at signal fidelity
measures. EEE Signal Process Mag 26(1):98. https://​doi.​org/​10.​
1109/​MSP.​2008.​930649

	27.	 Zhao H, Gallo O et al (2018) Loss functions for neural networks
for image processing. arXiv:​1511.​08861

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://arxiv.org/abs/2002.03005
https://doi.org/10.1142/S0217751X19300199
https://doi.org/10.1142/S0217751X19300199
https://doi.org/10.1088/1748-0221/15/08/T08008
https://doi.org/10.1088/1748-0221/15/08/T08008
http://arxiv.org/abs/2002.03005
https://doi.org/10.1088/1748-0221/15/08/T08009
https://doi.org/10.1088/1748-0221/15/08/T08009
https://doi.org/10.1088/1748-0221/15/08/T08010
https://doi.org/10.1088/1748-0221/15/08/T08010
https://arxiv.org/abs/1706.07081
http://arxiv.org/abs/1311.6774
https://doi.org/10.1088/1748-0221/12/08/P08003
https://doi.org/10.1088/1748-0221/12/08/P08003
https://doi.org/10.1088/1748-0221/13/07/p07006
http://arxiv.org/abs/1907.08448
http://arxiv.org/abs/1905.12281
http://arxiv.org/abs/1704.02901
http://arxiv.org/abs/1704.02901
http://arxiv.org/abs/1611.05431
http://arxiv.org/abs/1611.05431
http://arxiv.org/abs/2009.01599
http://arxiv.org/abs/2009.01599
http://arxiv.org/abs/1505.04597
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2005605
http://arxiv.org/abs/1810.00826
https://openreview.net/forum?id=ryQu7f-RZ
http://arxiv.org/abs/1412.6980
https://doi.org/10.1109/TIP.2008.921328
https://doi.org/10.1109/MSP.2008.930649
https://doi.org/10.1109/MSP.2008.930649
http://arxiv.org/abs/1511.08861

	Deep Learning Strategies for ProtoDUNE Raw Data Denoising
	Abstract
	Introduction
	Proposed Models
	Graph Convolutional Neural Network
	U-Shaped Self-Constructing Graph Network

	Dataset and Training
	Datsets
	Network Training

	Experiments Results
	Conclusions
	Acknowledgements
	References

