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Abstract
In this work, we investigate different machine learning-based strategies for denoising raw simulation data from the Pro-
toDUNE experiment. The ProtoDUNE detector is hosted by CERN and it aims to test and calibrate the technologies for 
DUNE, a forthcoming experiment in neutrino physics. The reconstruction workchain consists of converting digital detector 
signals into physical high-level quantities. We address the first step in reconstruction, namely raw data denoising, leverag-
ing deep learning algorithms. We design two architectures based on graph neural networks, aiming to enhance the receptive 
field of basic convolutional neural networks. We benchmark this approach against traditional algorithms implemented by 
the DUNE collaboration. We test the capabilities of graph neural network hardware accelerator setups to speed up training 
and inference processes.
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Introduction

Deep learning algorithms achieved outstanding results in 
many research fields in the last few years. The neutrino high 
energy physics community [1–4], and in general the particle 
physics one [5, 6], is making an effort to apply such tech-
nologies to create a new generation of automated tools. In 
general, capable of processing efficiently huge amounts of 
information, these algorithms work with increased perfor-
mance to mine deeper in collected data and discover hidden 
patterns responsible for potential new physics scenarios. 
Event reconstruction algorithms, i.e., reconstruction, the 
process of extraction of useful quantities from detector or 
simulated data, are especially suited to the application of 
this approach.

DUNE [7] is a next-generation experiment in the neu-
trino oscillation research field. The DUNE Far Detector (FD) 
[8–10], based at the Sanford Underground Research Facil-
ity (SURF) in South Dakota, will be the largest monolithic 
Liquid Argon Time Projecting Chamber (LArTPC) detector 

ever built. To test and validate technologies for the construc-
tion of such detector, a prototype, ProtoDUNE Single Phase 
(SP) [11], has been built at the CERN Neutrino Platform.

Particle interactions with the liquid Argon produce ioni-
zation electrons that are drifted, thanks to an electric field, 
towards Anode Plane Assemblies (APAs) made of three 
readout planes that collect the deposited charge through 
time. Each readout plane is a bundle of wires, oriented in a 
specific direction and continuously monitored by the detec-
tor: two planes are called induction planes, while the last one 
is named the collection plane. In particular, the ProtoDUNE 
SP cage envelope is surrounded by 6 different APAs, each 
with two induction planes of 800 wires and a collection one, 
holding together 960 wires. Overall, a total of 15,360 wires 
on the sides of the detector provide a comprehensive and 
detailed picture of events from different points of view.

ProtoDUNE SP measures a digitized value of the induced 
current on each wire (ADC value). Since the detector maxi-
mum sampling rate is 2MHz and the common readout time 
windows at ProtoDUNE SP last 500ns , raw data (or raw dig-
its) form a sequence of 6000 current measurements per wire. 
In this paper, we focus on event reconstruction of Proto-
DUNE SP simulated data. We simulate interactions with the 
help of the LArSoft [12] framework and its dunetpc pack-
age. Figure 4 shows an example of the simulated data from a 
single collection plane: raw digits are cast into a 6000 × 960 
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resolution image plotting the ADC values heat map over 
time versus wire number axes.

Raw digits recorded by detector electronics intrinsi-
cally contain noise that must be filtered out. The traditional 
approach [8], developed by the MicroBooNE experiment 
[13, 14], is based on a 2-dimensional deconvolution and 
consists of two steps: first, a mask is produced to identify 
the Regions Of Interest (ROI) in the raw data containing 
signals; then, in those regions, Gaussian shape peaks are 
fitted to match the inputs, filtering them in Fourier space and 
deconvolving back the results.

The goal of this work is to tackle the denoising prob-
lem, implementing automatic tools at the readout plane 
view level. The nature of the inputs, above all sparsity and 
size, represents a challenging benchmark for Deep Learning 
models. Images indeed contain signals, mainly organized 
in long monodimensional tracks and clusters, divided by 
almost empty extended regions. Then, trying to train clas-
sic deep feed-forward models on sparse inputs might lead 
to sub-optimal results, since gradients would receive a large 
contribution from pixels in those noise-dominated empty 
regions. Moreover, the high image resolution might result 
in a pixel receptive field limited to just local neighborhoods, 
which are small compared to the extension of the meaningful 
spatial features included in the plane views. Finally, han-
dling the size of the inputs requires careful RAM and GPU 
memory management while dealing with complex model 
architectures.

The paper is organized as follows. First, in section“ Pro-
posed Models”, we describe the models and operations used 
to tackle the problem. Then, the section “Dataset and Train-
ing” illustrates the dataset we generated and the methods 
employed to train the networks. The section “Experiments 
Results” is devoted to the presentation of experimental 
results. Finally, in section “Conclusions”, we present our 
conclusion and future development directions.

Proposed Models

Convolutional neural networks (CNN) are based on a stack 
of sliding kernels comprised of multiple filters, that are 
trained according to some optimization method to output a 
feature map. The convolutional kernel generates each feature 
map pixel as a function of a small neighboring portion of 
the input image. Hence, the receptive field of the pixels in 
each layer is constrained by the kernel size, which could be 
enlarged by increasing the depth of the network. The scope 
of the present section is to describe an alternative approach 
to the issue: by enriching the network with alternative opera-
tions we hope to increase the expressiveness of the internal 
representation by exploiting non-local correlations between 

pixel values, alongside the already discussed local neighbor-
hood pixel intensities.

Graph Convolutional Neural Network

We implement a Graph Convolutional Neural Network 
(GraphCNN) inspired by [15, 16] and based on the Edge 
Conditioned Convolution (ECC) operation, first presented 
in [17]. We employ a simplified version of the ECC layer: it 
builds the output representation as a pixel-wise average of 
a common convolution with a 3 × 3 kernel and a Non-Local 
Aggregation (NLA) operation. We wrap such operations into 
a network layer called Graph Convolution (GCONV). Fig-
ure 1 sketches the GCONV layer mechanism.

The NLA connects each pixel to its k closest ones in fea-
ture space, according to the Euclidean distance, and mixes 
the information through a feed-forward layer. If at layer l, 
the i-th of an n-pixel input image is described by the vector 
�l

i
∈ ℝ

dl , then the NLA output �l+1
i

 has the following form:

With Nl
i
 being the neighborhood of pixel i in the Hl

i
 repre-

sentation at layer l; {Θl,Wl} ∈ ℝ
dl+1×dl and �l ∈ ℝ

dl+1 are 
trainable weights and biases shared throughout pixels; � is 
the element-wise sigmoid function.

Note that the operation in Eq. (1) requires building a 
k-NN graph which requires an amount of memory propor-
tional to the area of the input image times the number of 
neighbors per pixel k. Assuming we fix k = 8 , with an input 
image of 960 × 6000 pixels and employing single precision 
floating point numbers, the graph construction operation 
burden is of order O(200 MB) . If the architecture involves 
multiple graph building operations, the GPU memory is eas-
ily saturated. Therefore, we have to limit the model inputs to 
just crops of the actual image as explained in section “Net-
work Training”.
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Fig. 1   GCONV layer. The inner representation vector �l

i
 is updated to 

�l+1
i

 by means of NLA and 2D convolution operations. NLA relies on 
a previously computed KNN graph
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Figure 2 shows our GCNN network architecture. Note the 
final residual connection in the top branch: the usual sum has 
been replaced by a multiplication. This choice is tailor made 
on the input data themselves, which are mainly comprised 
of long tracks separated by empty space. In those regions it 
could be easier to learn how to remove the noise multiplica-
tively rather than additively. The network, in principle, does 
not have to learn to perfectly profile the noise and then sub-
tract it from the input itself, whereas it can employ a mask 
to cut down such uninteresting regions with multiplications 
by small numbers.

U‑Shaped Self‑Constructing Graph Network

As stated in the previous section, the main limitation of the 
GCNN model is the memory consumption burden due to 
the graph operation: graph building scales linearly with the 
size of the inputs, therefore, the model accepts crops rather 
than the full APA image. The cropping workaround prevents 
very long-range correlations between pixels being taken into 
account and leads to inference time performance issues. If 
the user does not have access to a high GPU memory band-
width, only batches of crops can be processed in parallel and 
processing big datasets is not time efficient.

As an alternative approach to the GCNN, we follow the 
idea introduced in [19] with the Self-Constructing Graph 
Network (SCG-Net): a graph neural network that outputs 
results from a low dimensional representation of the high 
resolution image created by a full CNN; the original shape of 
the image is then retrieved interpolating between pixels. In 
the original work, a bilinear interpolation is employed for the 
upsampling. In this way the authors were able to process big 
images containing up to 6000 × 6000 pixels. This seems a 
more natural approach to the problem when the input images 
contain dense features, rather than sparse and localized ones 
as in our case. We believe that the entire pipeline potentially 
washes out the fine grained information contained in the 
input during downscaling, which cannot be recovered by 
means of a simple interpolation.

Therefore, we introduce the U-shaped Self-Constructing 
Graph Network (USCG-Net), where a U-Net [20] like net-
work structure with residual connections carries the informa-
tion from the input node all the way to the outputs. Figure 3 
shows the USCG-Net architecture, with pooling blocks, 
comprised of convolutional and pooling layers, that take 
care of stepwise scaling the inputs. A pretrained ResNeXt-50 
with a 32 × 4 template [18] is used to build an initial fea-
ture map to be fed into the SCG layer. The early-layer 

Fig. 2   GCNN architecture. The model takes noisy input images � 
and outputs denoised ones xDN . The design is organized with low- 
and high-pass filters (LPF and HPF) as in [15]. As explained in sec-
tion “Network Training”, we concatenate a pretrained ROI block with 

preprocessing layers to make the network distinguish between signal 
and background. The ROI block, indeed, performs the binary seg-
mentation

Fig. 3   USCG-Net architecture. The Pooling block has a two 
folded aim thanks to its adaptive pooling layer: on the left branch 
it downscales the input, while on the right one it provides upsam-
pling. According to [18], ResNeXt-50 with 32 × 4 template is 
arranged in 4 main blocks, containing 9, 12, 18 and 9 convolu-

tional layers, respectively. In the chart, we refer to such blocks as 
������� − �� < ����������� > and we insert a residual connec-
tion between the second and the third block. The 1 × 1 convolutions 
in the horizontal links are needed to adapt the number of filters in the 
image to perform the residual recombination operation
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representation of the pretrained network should be generic 
enough to catch the spatial features of the inputs, driving 
the training process during the initial phases of the optimi-
zation. Note the residual recombination operations in the 
right branch: the sum in the residual connections has been 
replaced by a convolution with a 1 × 1 kernel to increase 
the complexity of the network. Finally, for the final residual 
link, we employ again the multiplication trick, as explained 
in section “Graph Convolutional Neural Network”.

The SGC layer is the core of the network: the input image 
is turned into a graph, allowing connections between distant 
pixels. The SCG layer [19] takes in an image � ∈ ℝ

h×w×d 
and through an encoding functions, represented by dense 
layers, maps it into two outputs: an adjacency matrix 
� ∈ ℝ

n×n , describing the graph edges, and a node feature 
vector �̂ ∈ ℝ

n×c . In the above formulas, d and c are the input 
and output channel dimensions, respectively and n, which 
is equal to the input image resolution h × w , is the number 
of extracted nodes. The predicted graph is then analyzed by 
a 1-layer graph neural network, such as GCN [21] or GIN 
[22], to further mix the node features, yielding a final node 
feature vector �̂� ∈ ℝ

n×c� . In our experiments, we exploited 
the GCN layer as default; architecture variants with other 
kinds of graph layers can be addressed in a future work. �̂′ 
can be finally projected back into ℝh×w×c� and upsampled by 
pooling blocks in the right branch of the USCG-Net to the 
original image resolution.

Dataset and Training

Datsets

In this section, we present the datasets used to train and test 
our models. We underline that we present results for simu-
lated data only, testing on detector data is out of the scope of 
the present work. We simulate interactions within the Pro-
toDUNE SP chamber through the LArSoft [12] framework 
and its dunetpc package. We consider events originating 
from a proton beam of various energies, plus cosmic rays, 
interacting with the Argon targets. Our supervised training 
approach is based on simulated raw digits. The simulation 
provides also the associated noise-free charge depositions: 
we employ this information as target outputs for the denois-
ing models.

Table 1 describes the considered datasets. In Figs. 4 
and 5, we show visual examples from v08_24_00 and 
v09_10_00 datasets. We plot raw digit images and hor-
izontal slices, namely single channel waveforms, either 
with (raw waveform) and without noise (clear waveform). 
Noise is mainly comprised of a pedestal value that changes 
across different datasets and a background noise that 

overwhelms small energy depositions and modifies spikes 
amplitudes. We consider the v08_24_00 dataset a sim-
plified dataset since it is smaller and contains easier fea-
tures to denoise and segment than the v09_10_00 one. 
v09_10_00 is more complex due to the detector data 
driven approach upon which the generator software is 
based. Clear waveforms are not simply zero in the empty 
regions, but rather contain small steps. Moreover, low-fre-
quency negative tails after big spikes in clear waveforms 
are clearly visible in Fig. 7.

We hold out from our datasets 10% of images for vali-
dation and 10% for testing. The validation set is used to 
choose the best model, while the test set is employed to 
present the final results given in section “Experiments 
Results”. The criterion chosen to present results is to 
aggregate each performance quantity, over the test or 
validation set, then report it as a symmetric interval with 
the central value and its uncertainty being the arithmetic 
mean and the standard deviation on the mean, respectively. 
This choice also influences the best model selection dur-
ing training, namely, the network checkpoint at epoch end 
that achieves the lowest upper bound of the loss function 
interval.

We remark that, as described in section “Introduction”, 
a single event at ProtoDUNE SP is recorded by 6 different 
APAs, that in turn provide 3 plane views. Therefore, one 
event does not count as one training point for our neural 
networks. In section “Proposed Models”, we anticipated 
that the GCNN network acts independently on small crops: 
if 32 × 32 crops are employed, each event in the dataset 
becomes 9 × 104 crops. The USCG-Net, instead, processes 
entire plane views. The two datasets provide 18 and 126 
plane views to assess the model performance and its asso-
ciated uncertainty. Note that the output image has a dimen-
sionality of the order of millions of pixels and each pixel 
value provides a contribution in the computation of the 
final performance metric.

Table 1   Datasets for training and testing

The two differ in the producer package version, the size and the event 
beam energies. The second dataset contains 10 events for each proton 
energy specified

dunetpc  n events p energy

v08_24_00  10 2 GeV

v09_10_00  70 0.3 GeV , 
0.5 GeV , 
1 GeV , 
2 GeV,

3 GeV , 
6 GeV , 
7 GeV
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Network Training

All networks that we train share the same preprocessing 
procedure, where we take the plane views in a dataset and 
apply a median subtraction to each of them. This step is 
fundamental to estimate and subtract the pedestal value. We 
introduce this operation mimicking the traditional approach 
because it contributes to improve the final performance. 
Furthermore, for network training stability, the inputs are 
rescaled in the unit range according to the min–max nor-
malization technique.

The GCNN network suffers from the memory issue dis-
cussed in section “Graph Convolutional Neural Network”. 
To address this problem, we employ a data parallel approach, 
cropping the inputs into 32 × 32 pixels images and process-
ing every tile independently. However, this solution requires 
some subtleties in the training process due to the nature of 
the inputs.

Since the inputs contain sparse features, it is likely that 
the most of the crops contain little to no signal. It is mean-
ingless to feed the network with multiple empty crops. To 

speed up the training, we decide to train on just a subset of 
the available crops. This choice, in turn, triggers a second 
issue: sampling randomly the subset of crops provides an 
extremely unbalanced dataset, where we are very likely to 
miss crops containing interesting charge depositions. Hence, 
we fix the percentage of crops containing signal to balance 
the signal to background pixel ratio: in our experiments, we 
keep this quantity at 99% . The cropping procedure works 
as follows: we mark as signal all the pixels in clear wave-
forms that have non-zero ADC value count in a plane view; 
we sample randomly the desired number of crop centers, 
complying with the exact ratio of signal to background per-
centage; we finally crop the plane views around the drawn 
centers.

We train the GCNN network in Fig. 2 for both the image 
segmentation task and denoising, managed by the ROI Block 
and the network final outputs, respectively. Image segmen-
tation is a classification task at the pixel level, where the 
labels usually correspond to a finite set of exhaustive and 
mutually exclusive classes: the ROI block, indeed, is trained 
to distinguish between pixels that contain or not electron 
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Fig. 4   Example taken from dunetpc v08_24_00 dataset. Collection plane view with noisy and clear waveforms extracted from the channel 
marked by the horizontal orange dashed line
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Fig. 5   Example taken from dunetpc v09_10_00 dataset. Collection plane view with noisy and clear waveforms extracted from the channel 
marked by the horizontal orange dashed line



	 Computing and Software for Big Science             (2022) 6:2 

1 3

    2   Page 6 of 9

induced current signals. Image denoising, instead, aims at 
subtracting the noise contribution from each pixel intensity 
and is a regression task.

To optimize the two parts of the network, we design an 
ad hoc training strategy as follows. First, we train the ROI 
Block alone on image segmentation for 100 epochs and save 
the best configuration: in this step, the network branch learns 
to distinguish between signal and background, i.e., empty 
pixels. We employ binary cross-entropy as the loss func-
tion, along with the AMSGrad variant [23] of the Adam 
algorithm [24] as the optimizer with a learning rate of 10−3 . 
Second, we freeze and attach the trained ROI block weights 
to the remaining part of the network. Then, we train the 
GCNN on image denoising for a further 50 epochs and save 
the network’s best configuration.

The GCNN denoising model is trained using the AMS-
Grad optimizer with a learning rate of 9 × 10−3 , while opti-
mizing a custom loss function made of two contributions: 
the mean squared error (MSE) LMSE between labels and 
outputs and a loss function Lssim derived from the statis-
tical structural similarity index measure (stat-SSIM) [25]. 
stat-SSIM for two images � and � is given by the following 
equation:

where �i is a shorthand for the image i expected value E[i], 
which is computed through a convolution with a 11 × 11 
Gaussian kernel of standard deviation 3. All the other 
expectation values in the equation are calculated convolut-
ing the argument quantity with the same Gaussian filter. �

�
 

and �
�
 are two regulators that limit the maximum resolu-

tion at which the fractions in the equations are computed, 
respectively, imposing a cutoff on the mean and variance 
expected values. In particular, when both the numerator and 
the denominator of a fraction reach much smaller values 
than the corresponding � , the output gets close to one. In 
the experiments, �

�
 and �

�
 are fixed to the square of 0.5. 

This choice implies that for the stat-SSIM computation, we 
estimate the means and standard deviations of the distribu-
tions at scales larger than half of one ADC value, namely the 
granularity of the recorded detector hits. The result is finally 
averaged over the entire image containing np pixels and nc 
channel dimensions. The quantity in Eq. (2) takes values in 
the range [−1, 1] and approaches 1 only if � = � . The associ-
ated loss function is then given by Lssim = 1 − stat- SSIM : 
it is a perceptual loss, in the sense that tries to assess the 
fidelity of the image focusing on structural information. It 

(2)

stat- SSIM(�, �) =
1

npnc

∑

pc

(
2�x�y + �

�

�2
x
+ �2

y
+ �

�

)

pc

×

(
2E

[(
� − �x

)
(� − �y)

]
+ �

�

E
[
(� − �x)

2
]
+ E

[(
� − �y

)2]
+ �

�

)

pc

,

relies on the idea that pixels may have strong correlations, 
especially when they are spatially close. In contrast, MSE 
evaluates pixels’ absolute differences, without taking into 
account any dependence among them. More details on the 
interpretation of these quantities can be found in [26]. The 
two contributions in the loss function are weighted as fol-
lows: L = � ⋅ LMSE + (1 − �) ⋅ w ⋅ Lssim . We fine tune the 
multiplicative parameter w = 10−3 , to balance the gradients 
w.r.t. the model’s trainable parameters provided by the two 
terms in the sum. The parameter � is fixed to 0.84 as in [27].

In the following, we will refer, with slight abuse of nota-
tion, to a CNN as a GCNN network with Graph Convolu-
tional layers replaced by plain Convolutional ones.

The USCG-Net is relatively simple to train: since no 
crops are employed, no sampling method is required. 
Although no cropping is needed, since the model fits in a 
single 16 GB GPU even with an entire plane view as input, 
we prefer to employ a sliding window mechanism as in the 
original SCG-Net paper. We split the raw digits array along 
the time axis with a 2000 pixel wide window and 1000 pixel 
stride and feed each slice to the network. The results are then 
combined by averaging predictions on overlapping regions. 
The USCG-Net is trained minimizing the MSE function 
between model outputs and clear waveforms, with AMSGrad 
optimizer and learning rate of 10−3 . In this case, we drop 
the stat-SSIM contribution from the loss function, since we 
experienced training convergence problems when including 
that term during our experiments.

Experiments Results

We employ four different metrics to assess the goodness of 
our models and benchmark them against the state-of-the-art 
approach. Three of them are the stat-SSIM, peak signal to 
noise ratio (PSNR) and MSE on the two-dimensional raw 
digits, while the last one is a custom metric called inte-
grated mean absolute error (iMAE) and will be defined in 
the following.

PSNR between a noise-free image � and a denoised � one 
is given by the following equation:

Note that PSNR and stat-SSIM increase with the recon-
struction quality, while MSE decreases. We observe that 
these three quantities are really suited to compare the deep 
learning models between themselves, however, they are not 
really informative when the baseline approach is considered. 
Indeed, the baseline approach aims at fitting Gaussian peaks 
in regions marked as interesting, rather than reconstructing 
the precise shape of the spike contained in the raw digits. 

(3)PSNR(�, �) = 10 ⋅ log10

(
max(�)2

MSE(�, �)

)
.
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Hence, the baseline tool performs inevitably poorly on the 
considered metrics and up to our knowledge, there is no 
default metric to assess its performance. Nonetheless, we 
define a custom quantity that tries to compare the different 
approaches, observing that the deconvolution process does 
not preserve waveform amplitudes, but their integrals. For 
such reason, we decide to evaluate the mean absolute error 
on wires integrated charge (iMAE):

where the sum inside the absolute values runs over time for 
the whole readout window, while the outer sum averages 
the result over the wire dimension. Note that the deconvo-
lution approach does not preserve waveform amplitudes, 
because a filtering function is applied to the signal in Fou-
rier space, then results are deconvolved back to the time 
domain. Furthermore, the deconvolution outputs are known 
up to an overall normalization constant, that we fit on the 
datasets to minimize the iMAE quantity. We show that 
although we perform this operation on the state-of-the-art 
tool outputs for a fair comparison against our models, they 

(4)iMAE(�, �) =
1

nw

nw∑

w=1

|||
∑

t

(� − �)wt
|||,

nonetheless achieve a worse iMAE score. Table 2 collects 
the metrics values evaluated on v08_24_00 dataset. We 
gather v09_10_00 dataset results in Table 3. Note that we 
present only evaluations for 2GeV beam energy events, since 
we find metrics distributions to be flat in the energy param-
eter. Figures 6 and 7 show samples of labels and denoised 
waveforms.

USCG-Net like networks exceed GCNN-like ones in all 
the collected metrics. To have a first assessment of the qual-
ity of the neural network generalization power, we train two 
versions of the USCG-Net: one on the v08_24_00 dataset 
and the other on the v09_10_00 dataset. We decide not to 
train the GCNN-like networks on the v09_10_00 dataset 
after we observed difficulties in training convergence as well 
as long training times on such a big dataset. We evaluate 
these networks on both datasets.

Following expectations, the networks trained and applied 
on the same dataset lead to better performance. The only 
exceptions are given by the iMAE columns, where the 
USCG-Net trained on the dataset opposite to the testing 
one, achieve the best iMAE score. The stat-SSIM index 
score drops significantly for GCNN-like networks. All 
the networks, nonetheless, show hints of overall good 

Table 2   Test metrics for denoising on v08_24_00 dataset

Results are shown for collection plane and 2GeV beam energy only. 
The version, v08 or v09, next to the model name in the first column 
refers to which dataset the correspondent model was trained on

Model stat-SSIM PSNR MSE iMAE

Baseline – – – 5391 ± 1622

CNN v08 0.471 ± 0.008 67.3 ± 1.2 0.57 ± 0.03 287 ± 12

GCNN v08 0.512 ± 0.011 70.12 ± 1.4 0.30 ± 0.01 191.4 ± 2.6

USCG v08 �.988 ± 0.005 ��.66 ± 1.54 �.17 ± 0.02 95.5 ± 8.5

USCG v09 0.926 ± 0.007 72.3 ± 1.5 0.18 ± 0.02 ��.3 ± 8.2

Fig. 6   Detail of a raw waveform from dunetpc v08_24_00 dataset: label, traditional algorithm and neural networks outputs. The version, 
v08 or v09, next to the model name in the legend refers to which dataset the correspondent model was trained on

Table 3   Test metrics for denoising on v09_10_00 dataset

Results are shown for collection plane and 2GeV beam energy only. 
The version, v08 or v09, next to the model name in the first column 
refers to which dataset the correspondent model was trained on

Model stat-SSIM PSNR MSE iMAE [×103]

Baseline – – – 5.86 ± 0.52

CNN v08 0.37 ± 0.02 57.3 ± 1.4 5.79 ± 0.88 4.16 ± 0.36

GCNN v08 0.40 ± 0.02 57.7 ± 1.5 5.27 ± 0.69 4.51 ± 0.39

USCG v08 0.65 ± 0.05 61.1 ± 1.6 2.3 ± 0.2 �.18 ± 0.29

USCG v09 �.81 ± 0.07 ��.8 ± 1.7 �.99 ± 0.19 2.25 ± 0.23
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generalization power when they are applied on datasets not 
used for training. This fact is well supported by the PSNR 
columns, which show that even the worst model achieves 
competitive results. We underline that the USCG-Net is 
not trained according to the stat-SSIM quantity: adding an 
extra term in the loss function containing such term could 
be considered a point of further development of the present 
research.

Conclusions

In this paper, we presented deep learning strategies for 
denoising raw digits simulated data at ProtoDUNE SP. Our 
approach leads to an automated tool that cleans raw inputs 
and in the future could be adapted to work on real data. We 
investigated the capabilities of Graph Neural Networks, test-
ing approaches alternative to classical Convolutional Neural 
Networks on a novel use case. Graph Neural Networks aimed 
to exploit long-distance correlations between pixels, in par-
ticular the USCG-Net exemplified this approach, processing 
big sized inputs while still fitting GPU memory constraints. 
Our trained neural networks were able to outperform the 
state-of-the-art traditional reconstruction algorithm on the 
custom iMAE metric. All the networks gave hints of inter-
esting generalization power, especially in the PSNR quality 
assessment, achieving high performances even on datasets 
different to the one they had been trained on. Further work 
directions will aim to fully assess the models on larger, more 
complete testing datasets.
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