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1. INTRODUCTION

It will be assumed from the outset that the kind of problem we are likely to want to
solve is not accessible to direct (analytic) calculation, since such a calculation, where
it is possible, is nearly aiways far superior to a Monte Carlo determination. As we will
see later, direct integration of most interesting phase-space problems is exceedingly com-
plicated and has been achieved only for a smail class of relatively simple problems. We
therefore will begin directly with a general treatment of Monte Carlo techniques, graduaily
specializing our study by taking as working examples first the one-dimensional integral,

then the multidimensional integral and finally the phase-space integral.

* * *
PART I

THE MONTE CARLO METHOD

2. WHAT IS MONTE CARLO? TWO EXAMPLES

We begin with a very elementary treatment of the problem of defining clearly what we
mean by Monte Carlo since this may avoid some fundamental misunderstandings, which often
arise in discussing details of actual calculations. In particular we start by oversimplify-
ing the question: we define two kinds of problems (which are unfortunately not orthogonal
and in actual practice we encounter problems which can be considered from either point of

view):

Type A - statistical, probabilistic, invclving random fluctuation;

Type B - analytic, exact, classical problems.

As an example of a Type A problem we consider what is the probability of observing a A°

decay after two mean lives, and what fluctuation we might expect.
As an example of a Type B problem, we ask what is the area of a circie of unit radius.

We are accustomed to solving both problems analytically, although it is quickly seen
that they may both be solved using random processes also. These relationships may be

visualized with the following diagram:

Problem Formulation Solution
Probability of direct Type A random Approximate
A decay after ———r e (slowly

. simulation (stat.) numbers )
2 mean lives converging)
&,
s Qaai
33 :'QJ
2 Nume?ical
Qp“¥»o (rapidly
o converging
Type B
Area of circle :
geometry (anglytlc)
Analytic
(exact)

SIS/ jmr-sc/mn



As everyone knows, the area of the unit circle is just = w. This can be considered as
an exactly known number, or as a number which can be determined to any desired degree of
accuracy by a rapidly converging series expression. On the other hand this same problem
could be formulated as a Monte Carlo problem by noticing that the area of the unit circle
is just four times the probability that a point chosen at random within a 2 x 2 square will
also fall within the inscribed circle. This formulation has the unfortunate property that
the solution converges only as N_’z, where N is the number of random points chosen (meaning
that to gain one more significant figure you must generate 100 times as many points). As
we will see, it is possible to reducey}he magnitude of this error by using more sophisticated

techniques, but the convergence as N /% is impossible to avoid as long as we use truly

random numbers,

Now let us look at the Type A (statistical) problem concerning A° decay. It is clear
that the problem can be formulated as a Type B (analytic) problem since the answer is just
the integral of the A-decay curve from two lifetimes to infinity and is equal to e ’. The
expected fluctuations about this number can be calculated using the well-known technique
based on the binomial expansion. So far there seems to be no advantage in going to a Monte
Carlo formulation since we can formulate even statistical problems in such a way as to
obtain precise results by analytic means. But just for fun let us apply Monte Carlo to the
A decay problem. If we divide our time scale into small intervals dt, then the probability

of a decay is just the negative of
dN = -AN dt,

where A is the decay constant (A = %r) and N is the number of A° not yet decayed. Since

this formula is exact only in the limit that N does not change over the time interval con-
sidered, we must choose dt small enough so that AN dt << 1. Then, starting with N, particles
in the first time interval, we choose a random number between 0 and 1. If this number is
larger than AN dt, we say that a decay did not occur in this time interval; if it is
smaller than AN dt, we reduce N by one before going on to the next interval. (This general
Monte Carlo technique is valid because the probability that a random number be smaller than
AN dt is just AN dt: this is what we mean by a random number uniformly distributed between
zero and one.) We then repeat this process for each successive time interval until there

are no more A° left to decay. This method of following the actual physical process in

order to study it is called direct simulation and is the most obvious Monte Carlo technique.

It can be seen that this typical example has two clear disadvantages:

i) We are forced to make a compromise between calculation speed (large dt) and accuracy
(small’at).

ii) Our numerical results will contain inherent statistical fluctuations which will go
away only as VN .

However, things are not so bad as they seem because:

i) The "statistical fluctuations will anyway not be worse than those that we see experi-

mentally, and in fact we may wish to study these fluctuations.

ii) Since we have directly simulated the desired process, we may study many aspects of
it at the same time, whereas an analytic treatment would probably require a separate

calculation for each desired result.
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iii) We may easily introduce complicating effects such as the resolution time of the

counters used, as well as their geometric efficiency, etc.

3. MONTE CARLO AS INTEGRATION

Both of the examples treated above can be regarded as problems of integration:
1

?
area of circle = 4 * j vV(1-x%) ax

o

probability A° decay = /' et airt) .
2

Indeed, it has been noted that all Monte Carlo problems are essentially integrations, for
the following reason. All Monte Carlo calculations involve the determination of a number
or a set of numbers (call these the vector f) using an ensemble of random numbers ry, r,,

T3 eee Tye We have then determined a vector valued function of random numbers:
1-“(1’1 T2 eee rn) y

where n may be of the order of several thousand, for example. This is an unbiased estimator

(albeit a rather bad estimator) of the n-dimensional integral:

1
-
/,/ F(x,,%x,, oo xp,) 4%, dx, ... dx, .

(o] o]

1
r

ol

1
r

/

O.\\.‘

0f course only a mathematician could think of such a far-fetched idea as estimating an
integral over many-dimensional space by evaluating the function at one random point in the
space, But if we think of the inverse--that a more precise evaluation of the integral 1
would be a more precise determination of what we are looking for, ﬁ--it begins to look
like a more reasonable idea. Indeed it is well to emphasize this point now in order to
avoid a confusion which often arises in discussions of phase-space problems. In such
multiple integration problems we will usually perform some of the integration classically
(analytically) to prepare the problem for the application of Monte Carlo method. This

must not be confused with the Monte Carlo itself which constitutes an effective integration
over the remaining variables., The fact that phase-space problems will usually be formulated
as direct simulation should not obscure the nature of the problem which could alternatively

be regarded as an integration over a region of phase space.

We now go on to consider numerical integration in more detail.



NUMERICAL INTEGRATION

The simplest method for numerical integration (223 Monte Carlo) is the trapezoid rule,
which consists of dividing the required interval into n bands and approximating the integral
over each band by the area of the trapezoid inscribed under (or over) the curve. This
reduces to estimating the integral by taking the average value of the function as deter-
mined from n equally-spaced points and multiplying by the total interval. For large n, we
can think of the function as being expressed by a Taylor's series expansion about each of
the n points; then the constant terms and the first derivative terms will be integrated
exactly by the trapezoid rule, and the largest contribution to the error will come from
the second derivative (constant curvature) terms. This error will be proportional to the
sagittas of the curve segments over each band, and these sagittas will each be proportional
to the square of the distance between successive points where the function is evaluated.
Therefore, if the function is evaluated at n equally spaced points, the error on the
integral will be proportional to 1/n® for large n. In fact, if we push the method a little
farther we can obtain even faster convergence. Consider an estimate of an integral found

by using the trapezoid rule at n points:

T =T+ e(n”?) +o(n™*) + .o.

where I is the "true" value of the integral and ¢(n ) means an error of the order of 1/n?,

or this may be considered to be the integral of the third term in the Taylor's series

. expansion mentioned above. Now if we make another estimate based on 2n points, we will

have:
1, - 1, -
T,,=1+ I o(n”?) + 1€ e(n™*) + ... .

We now consider the following linear combination:

4bT,n - Ty

T/ = 3 =I-~ i e(n”™) + ... .

Now the term in 1/n? has dropped out, and we see that this method will converge as 1/n*.
This process can then be extended in an obvious way in order to eliminate the 1/n* term,

etc.

But rather than extend this method to its limit, we can use the fully optimized
formula due to Gauss, which in fact represents the limit of this kind of method in the

sense that,the n-point Gauss formula is exact for all polynomials up to order 2n - 1.

We remind the reader here that Monte Carlo integration using standard random numbers
converges always as V n . The following table may therefore be established comparing the
dependence of errors on number of points for different methods of numerical estimation of

a one-dimensional integral: in order of increasingly fast convergence:

Monte Carlo o~ n-y;
Trapezoid oc~n "
"Second-order rule" o ~ n*
m-point Gauss rule o ~ n 2Mm*
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This makes the Monte Carlo method look pretty bad, even if we notice that it is the only
one of these for which the error estimate does not depend on any assumed "smooth" behaviour

of the function.

However, the future for Monte Carlo looks considerably brighter when we go to multi-
dimensional integration. If we modify the above formulas to hold for integration over
K dimensions, we see that the Monte Carlo expression remains unchanged, whereas for the
others the exponent must be divided by K. This means that Monte Carlo converges faster
than the trapezoid rule in five or more dimensions, and when we go above five dimensions
the non-Monte Carlo methods begin to break down completely because of the outrageous number
of points required. As we have seen, these error formulas are only valid for large n (that
is, small spacing between points) which certainly means at least 10 points per dimension,
for example. But 10 points in 5 dimensions means already 10° points in the whole space,
and this kind of number must be considered as the limit of the possibilities of today's
computers., We remark here that a complete description of an f{-particle final state requires
3¢ - 4 parameters, so that for 4-body phase-space we are already operating in 8 dimensions
(although some of these, such as the azimuthal orientation of the event about the beam

direction, may be of no interest).

It seems at first surprising that choosing points randomly gives better convergence
for multidimensional integrals than choosing the points uniformly or according to some
carefully "optimized" rules. This question is discussed extensively in the literature
(see bibliography) and lies beyond the scope of these lectures. But the situation can be
summarized as follows: if points are chosen intelligently in many dimensions, we can
in fact obtain faster convergence than with Monte Carlo. However, rules which are optimum
in one dimension, when extended straightforwardly to many dimensions are no longer optimal,
and rapidly become worse than Monte Carlo. Some rules are known which are nearly optimal
for certain dimensionalities, bu% the general problem is far from being solved. Probably
the best progress to data has come from the discovery of a class of rules (discussed below
in Section 8.3 and called quasi-random numbers) which can be shown to have better asymptotic

properties than truly random numbers in any number of dimensions,

VARIANCE -REDUCING TECHNIQUES

Having justified the use of Monte Carlo and having introduced the main features of
this method, we are ready to develop these ideas more precisely and more systematically by
considering optimization of Monte Carlo calculations. This always means reducing the
statistical error inherent in this method. JSince this error is proportional to a quantity
known in mathematics jargon as the variance, optimization is called variance-reducing. We
have already seen an example of optimization when we considered the n-point trapezoidal
rule for numerical integration. In that case we found that a certain linear combination
of the n-point and 2n-point estimates was better than the 2n-point estimate alone. A large
and growing number of similar techniques exists also for reducing the error in Monte Carlo
calculations. Rather than to mention all of these techniques, I will discuss only those

which I have found to be useful in Monte Carlo phase-space programmes.



5.1 Definition of statistical terms

Before considering the reduction of variance, we should clearly define what we mean

by variance, since some confusion concerning notation exists in the literature.

We define the expectation of a function g(y) as

Eely) =/ys(y) dy ,

this is true if the y are a priori uniformly distributed, or have equal probabilities of

occurring. If they are not uniformly distributed then,

£e(y) = / g(y) @ (y)

where F is the a priori distribution function of the y. The expectation of g is also known

as the mean of g. We define the variance of g as:

var {g(y)} = Ellely) - ¥e() )2} .

The variance is a measure of the dispersion of g about its mean. The standard deviation ¢

is defined as the square root of the variance. If we denote the mean by «, we have:

e
o = Vvarlg(y)} =[f(yg(y)- u)? dy] .

When we put a bar over a symbol, that will denote an estimate (for example, a Monte Carlo
estimate) of the quantity. Suppose that an estimate 4 of 4 exists. Then we define its
standard error & such that the probability

P(h -8 <u<i+d) =68,

In fact, an unbiased estimator 4 of 4 is Jjust the (unweighted) average of n random observa-

tions of the function g(y), that is, with the different Y3 chosen at random according to
their a priori distribution.
-1 vie(y;) .
' n i®Wi

The stamdard error on this estimate can be found by using the Central Limit Theorem.
This theorem states that if a large number of random variables r; are drawn from any dis-
tributions having means & and standard deviations Gi, then the sum Ziri is distributed
normally with a mean equal to zgi and standard deviation equal to 20;. This powerful

theorem gives us immediately the standard error on 4 which is
6 =0/Vn .

This expression is exact, but since O involves an integration over y, which is even more

complicated than the integration necessary to find x4, we will usually have to settle for
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an estimate of & also. An unbiased estimator of the variance of g is

2 It
— (2, & (y;) - )
var (g) = — .

The square root of this variance is normally taken as the estimate of the standard devia-
tion &, even though this is now not an unbiased estimate (a function of an unbiased estimate
is not in general an unbiased estimate of the function). This then allows us an estimate

of the standard error 8:

Since o is a constant, & and & diminish only as the square root of n, a result quoted
earlier. Before going on, we will need one more result from probability theory. Suppose
that our function g is a step-function, that is it takes on only the values O or 1. This
is then the function of interest when considering hit-or-miss Monte Carlo as in our example
earlier of the area of the circle. Then an unbiased estimator of g is the ratio of the

number of successful trials (g = 1) to the total number
/:':ni/n'

The standard error of this estimate is

§ =.’ A(1-#)/n .

Since the following will concern only Monte Carlo integration (that is, estimates of

the means of functions ;) we are primarily concerned with reducing the error
6:0’/\/—1‘!— .

If we use truly random or pseudo-random numbers, there is nothing we can do about the vn .
(We will discuss later the possibility of using so-called "quasi-random" or "uniformly-
distributed" numbers to improve the convergence) and we can only work on reducing the

variance o of our sample.

5.2 Hit-or-miss Monte Carlo

It was this most primitive kind of Monte Carlo which was widely used in the early days
of computers and which led to the wide discredit of random-sampling methods as grossly
inefficient and unsophisticated. In our hit-or-miss calculation of the area of the circle,

we were actually evaluating the two-dimensional integral

1 1
I=//€(1-x2-y2)dxdy
c o

where the function € is defined as:



c(g) =0 for g< 0
€(g) =1 for g> 0 .

The variance for this method, by straightforward application of the formula given above, is

m Ty ~ D
MURSURE T
We have stated, in Section 5.1, the error formula for hit-or-miss Monte Carlo integra-

tion as
Y PICE)
n

where 4 = n, /n is the probability of a "hit". It can be seen that this error becomes
vanishingly small under two conditions: either as u » 1 (all hits) or as y + 0 (all misses).
If 4 is close to one, this really means that the error is small, but if x4 is very small,

it is more meaningful to look at the percentage error:

S I
Hn n

Since 4 is small, the first term in the radical on the second line above is much larger

than the second term, and it approaches infinity as 4 » 0, with the final error depending
essentially only on the number of "hits". In fact we may state a general principle that
in hit-or-miss Monte Carlo, the (relative) error is minimized if the probability of a hit
is maximized. Moreover, if the probability of a hit is very small, additional errors may

result from certain unfortunate properties of pseudo-random numbers [see Section 8.2 (ii)].

5.3 Crude Monte Carlo

If we perform one of the integrations in the above problem analytically, we turn it

into a one dimensional integral:

1
I=/V1-x2dx.
o

In doing this, we have passed from hit-or-miss Monte Carlo to crude Monte Carlo because we
have replaced a Monte Carlo estimate of a function by its known value. Clearly we must

have- reduced the variance by this technique. In fact the variance is now:

I m\2 o1
[(Jr-7 1) ==a
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Translated into phase-space terms, this usually means that it is advantageous to use

weighted events rather than to get rid of the weights by using a Monte Carlo technique.

54 Stratified sampling

It seems intuitively obvious that the random fluctuations in our Monte Carlo integra-
tions would be reduced if we could somehow assure that points were more evenly distributed
over the space. One clear way of doing this is to divide the space up into equal cells and
to choose an equal number of points randomly within each cell. Indeed this usually will
improve the variance, but in actual practice the situation is somewhat complicated by the

following considerations:

i) If we are working in many dimensions the division of the space into equal hypercubes
becomes unwieldy since the minimum number of such cubes is 2k for a k-dimensional

space,

ii) If we write down the expression for the variance in the case of stratified sampling
(it is simply a complicated sum of squares of integrals and integrals of squares) we
see that the amount gained-- or in fact whether we gain at all--depends on the
behaviour of the function, on the way we choose the cells, and on the way we distribute
points among the different cells.

iii) Rather than choosing equal-sized cells, a better way is to choose them so that the
variation of the function is about the same in each cell. Indeed we will gain if the
differences between mean values of the function in the different cells are greater

than the variations within the cells.

iv) Given the division into cells, one should choose the number of points in each cell in

the following way: in the jth cell choose

- 2
nz. xi:Aj /‘gz(i)di - {/g(x)d;} :|
. A,
AJ J
where A'j represents the volume of the jth cell in the k-dimensional space.

v) If nothing is known a priori about the function the only natural way to choose the
cells is to divide the space equally. It can be shown that if we do this, and if we
choose equal numbers of points for each cell, we cannot lose by such a stratification
(that is, the variance cannot be larger than for the unstratified estimate). In the
worst case, where the mean value of the function within each cell is the same, the
variance is not changed by the stratification. The next question is how many cells
should we choose. Since we have seen that we cannot lose by subdividing a cell, we
should choose as many cells as possible. However, if there is only one point per cell,
we no longer have a reliable error estimate since we have no estimate of the variance
within a cell. But we have an upper limit on the error, namely the error calculated

as though the space had not been stratified.
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55 Importance sampling

Another intuitive idea which comes to anyone who has done much Monte Carlo work is
that it is a waste of time to play around in regions of the space where the contributions
to the integral are small-- we should choose more points in regions where the contributions
(function values) are larger. In phase-space terms, suppose we are integrating a matrix
element which strongly favours low momentum transfers to the proton. Then all the time
spent outside this low momentum transfer region may be lost if when we get a low transfer
event it gives a contribution many times larger than all the rest tcgether. In such a case
it can be seen that the final error will essentially depend only on the number of points
chosen within the important region. An obvious corollary to this principle is that we
should spend no time in regions where the function is strictly zero (corresponding to
momentum transfer cut-offs, for example). In actual practice the exclusion of such regions
may be difficult because they are awkwardly shaped or disconnected.

We can make these ideas more precise by considering a simple integration
I= / sin ¢ d¢ .

In Monte Carlo terms, this means we choose random #, evenly distributed over the desired

interval, and take the sum of the corresponding sines. But we could rewrite this as

_ . sin ¢ 43¢ . d cos ¢
I-= snxt?'m: Slnﬁ’—s—i—n—-ﬂ—-.

What we have done in Monte Carlo terms is to decide to choose randomly cos ¢ instead of 48,
which means that we must then weight the corresponding function values by 1/sin ¢, which
is the inverse of the Jacobian of the transformation from cos ¢ » #. When we do this, we
se¢ that the weighted function value, sin 9/sin ¢ is now constent, hence the variance of
our estimate will be zero: no error. This is of course because we have already done the
integration analytically in recognizing that sin ¢ 48 = d cos .

In actual practice, of course, we cannot integrate these functions analytically, or
else we would not need Monte Carlo. But it is already a great help in reducing the variance
if we can find some integrable function which is similar in form to the desired function.
Then applications of the above rule will lead to a nearly constant weighted function, and

hence a small variance. This is called importance sampling since it corresponds to choosing

a density of points such that more points are chosen in regions where the original (unweighted)

function is larger. This is developed further in Section 11.3 below.

LIMITS OF INTEGRATION

One of the fundamental advantages of the Monte Carlo method is that it can handle
easily problems in which the limits of integration are awkward and interdependent. However,

we must be careful about how these limits are chosen, as the following example illustrates:

I=//g<x,y)ayax.

X=0 y=o
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It is tempting to solve this problem in the following way:
a) choose a random number (x;) between 0 and 1,
b) choose another random number (yi) between 0 and X; s
¢) take the sum of g(xi,yi), repeating (a) and (b).

A simple graphical representation of what we have done here shows that it gives the wrong

answers:

While it is true that this procedure would yield points only in the allowed region (the
lower triangle), it would give the same number of points along each vertical line. This
gives a much higher density of points on the left-hand side than the right-hand side.

A correct way to integrate the above problem is:

a) choose a random number (x;) between 0 and 1;

b) choose another random number (yi) between 0 and 1;
c) if y; > x;, reject the point;

d) take the sum of g(xi,yi) over the remaining points.

This method, although correct, has the disadvantage of using only half the points
generated. That is, it is equivalent to integrating over the whole square, but considering
the function value is equal to zero in the upper triangle. A better way to handle this
problem is the following:

a) choose two independent random numbers, ry,r;
b) set x; = larger of ri,rz;
c) set y; = smaller of ri,r2;
d) sum uwp g(xi,yi) as before.

Graphically, this is equivalent to choosing points randomly over the square, then
folding the square about the diagonal so that all points fall into the lower triangle. It

is clear that this now results in a constant density of points without rcjecting any points.

6.1 Rejecting points

If a function is zero over a certain region, this always results in an increase of
its variance, as can be seen in the following way: consider the standard deviation (square
root of the variance) of the function calculated only over the non-zero region, Oz and
the standard deviation calculated over the whole space, ctot' Then the error in the Monte

Carlo integral of the function can be considered as

:q
S

§ =

8
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where ny is the number of hits (non-zero function values). The same error could also be
calculated by
(3
5 = to

ot

3}

where n now includes both hits and misses. Setting the two errors equal, we have

nz

In the example of Section 6 above (integration over a triangle) a particular trick was pre-
sented, which would reduce the error by a factor of V2 since it would result in twice as
many useful points. However, if we think of the calculation on a large computer, we see
that if all points in the upper triangle were rejected, this would amount to very little
extra time if the time required for the test (is x; greater than yi?) is short compared
with the time necessary to evaluate the function. That is, we are still wasting our time
in the upper triangle, but we may only be wasting a negligible amount of time, even though
we are throwing away half the points.

INTEGRATING DELTA FUNCTIONS

Most well=behaved functions can be integrated in a satisfactory manner by straight-

- forwardly applying the Monte Carlo method and using standard variance-reducing techniques.

There is however one class of functions which occurs in many physical problems and especially
in the phase-space expression, which stubbornly resists all variance-reducing techniques:
namely the delta function, which is everywhere zero except for one infinitely sharp peak.

We first calculate the variance of such a function. Consider a variable width Gaussian
function

where x is considered as the independent variable and a is a constant parameter which gives
the sharpness of the peak. It has been normalized so that

-]

/ G(ayx)dx = 1 for all a .

- oo

In the limit as a > =, this function G takes on the properties of a delta function. We may
therefore calculate the variance of G as a function of a, then take the limit of this
variance as a - «e The mean value of the function is clearly zero since its integral is
unity over an infinite interval. (If one takes a finite interval one gets the same result

for the variance in the limit a » »). One then has for the variance
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o

var {G(a,x)} = /Gz(a,x) dx

Therefore we can say that the variance of a Gaussian is proportional to the sharpness of

the peaking, as expressed by the parameter «, and in the limit of a delta function this
variance is infinite. The rule can easily be extended to Breit-Wigner functions, which have
somewhat diffeerent shapes but are generally single peaks and will also have variances which
become very large as the peak becomes very narrow. Since the functions we will integrate

in phase-space problems will very of'ten be Breit-Wigner shapes, we must recognize the trouble

they will give in the case of very narrow resonances.

Returning now to the delta function, there is a simpler way of seeing that its variance
is infinite. As we have seen before, when a function is zero over a certain region, the
error on its integral can be considered to depend only on the number of non-zero points
chosen. But since the probability of making a "hit" on a delta function is zero, we will
always have an infinite error. (See Section 5.2).

Historically, the delta function has been handled by approximating it by a narrow peak
of non-zero width. This means introducing an approximation into the theory which is essen-
tially different from the approximation resulting from the statistical fluctuations of Monte
Carlo results. The "“wide delta-function" approximation can lead to completely unphysical
answers unless the results are interpreted carefully. For example, this approximation in
phase-space calculations means allowing momentum and energy conservation to be violated by

a small amount in each event.

But a much more satisfactory way of dealing with delta functions is to get rid of them
analytically. Delta functions are usually defined by their properties under integration,
and in fact their integration is trivial if the variables of integration are separable.

For example, we have

//f‘(x,y)f»(y- yo) dx dy = [f(x,¥0) dx

(where & is the delta function and should not be confused with our earlier use of this
symbol to denote the error on a Monte Carlo estimate.) We see that the effect of the delta
function is to reduce the dimension of the space by one. In this case it changes an integral

over the (x,y) plane into an integral along the line y = yo.
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Now consider a problem in which the variables are not separated.

c

I =/ / £(x,y) 6(R®-x*-y*) dx dy.

By inspection we see that this is just the integral of f£(x,y) over a cirole of radius R

centred at the origin. We therefore transform to polar coordinates:

X =r cos ¢
y =r sin ¢
d

x -—
dx dy = SyEMy ar 49 = r dr a9

where the variables are now separable:

o 2T
I= / f(r cos 9, r sin 8) 8(R®- r’)r dr ad
I'=-wm =0
2w

=J f(R cos #, R sin 8) R 48 .
=0

8. RANDOM NUMBERS
We will distinguish three different types of sequences of random numbers, namely:

i) truly random numbers are those which are chosen in such a way that at any given point
in the sequence all numbers are equally probable and independent of the preceding
numbers.

ii) pseudo-rendom numbers are those which are generated according to an arithmetic pre-

scription so that each number depends on the preceding one, but in such a way that
any finite sequence (up to a certain maximum length) satisfies (nearly) the same

statistical tests as a truly random sequence.

iii) gquasi-random numbers are generated according to an arithmetic prescription which

results in certain strong correlations between the numbers in any short sequence, but
in such a way that certain asymptotic properties of the distributions are more ad-

vantageous than the corresponding properties of truly random or pseudo-random sequences.

We have seen that any Monte Carlo calculation involves the use of a sequence of
"random" numbers; in fact this may be considered as the definition of a Monte Carlo cal-
culation. The choice of a proper sequence of "random" numbers is therefore central to the
method, and, in spite of great progress in the field, this choice is unfortunately not at

all triviale We shall discuss in more detail the three main classes of "random" sequences;
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8.1 Truly random numbers

A sequence of truly random numbers is unpredictable and unreproducible. Such a sequence
can only be generated by a random physical process, for example beta decay. Although such
a process yields, in principle, the most random numbers possible, the technical problems
involved in eliminating biases in detection equipment turn out to be very great. In addition
it is hard to generate truly random numbers fast enough and with great enough accuracy to be
of use in modern computers. Faced with these difficulties, people have largely abandoned
trying to generate truly random numbers and the technology has not advanced significantly in
recent yearse

8.2 Pseudo-random numbers

It is in the field of pseudo-random numbers that recent progress has been the greatest,
but the situation is still far from ideal. The great advantage with pseudo-random numbers
is that calculations may be checked or compared by regenerating the identical sequence.
Also, the pseudo-random sequences used for large computers are very fast and require very
little storage and no special hardware (a slight exception is the generators which can be
initialized by the computer's internal clock, thereby allowing "random" entry points if
independent sequences are desired). However, pseudo-random generators are plagued by certain
fundamental problems:

i) Since each number is generated from the preceding one, the recurrence of one number
results in the recurrence of an entire sequence. Each generator is therefore charac-
terized by a certain period and most of the progress in finding better generators
consists in finding generators with longer periods. Nowadays one can generally achieve
the maximum period (limited by the word length in the computer) but for machines like
the CDC 6600 or 6400 this period is so long that there is no point in going to the limit.

ii) Again since each rumber is generated from the preceding number by a fixed formula, if
any number {-;J. is arbitrarily close to some preceding number E’i’ then Ej“ will be
arbitrarily close to €i+' o Exactly what is meant by arbitrarily close depends on the
generator and some are better than others in this respect, but in general this means
that it is difficult to avoid having some serial correlation in a pseudo-random genera-
tore Such a correlation is exceedingly dangerous in the case of a sharply peaked
weighting function (discussed in Sections 5.2 and 7) since this essentially imposes
the condition that the corresponding pseudo-random number must be in a very narrow
range in order to get a good event. If the following number is then correlated with

it, spurious results will be produced.

iii) In order to show that a particular pseudo-random generator is acceptable, it must be
submitted to an infinite number of statistical tests, which is clearly impossible.
In practice the generators are submitted to increasingly more complicated tests until
one finds the lowest order correlation existing (i.e. the simplest test which is failed)
at which time it is said that the principal correlations (unrandomness) are understood.
It is generally agreed that it is better to use a generator whose correlations are
understood than an unknown one which may be better. Generally good pseudo-random
generators exist in the libraries of all large computer centres, but they are not

always suitable for all Monte Carlo problems.
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8.3 Quasi-random generators

The principle of quasi-random generators is that certain correlations are harmless
(depending of course on the problem) and indeed they can sometimes be helpful. In fact
the development of suitable quasi-random generators probably constitutes the most important
recent progress il"l phase-space integration, since it is only in this way that one can
improve on the n convergence of Monte Carlo estimates.

For an integration in k dimensions we require sets of k random numbers, each set giving
rise to a point in the space. The k numbers within each set must be uncorrelated, for if
any number in a given set depends on another number in the same set, this restricts the
possible combinations, making certain regions of the space inaccessible. However, certain
correlations between successive sets of numbers do not bother us. For example, if each
point is chosen close to the preceding point (an obvious non-randomness), this does not
matter as long as the final sample is evenly distributed over the space. This is equivalent
to saying that the order in which the points are chosen is of no importance since this does
not normally enter into such calculations.

This leads us to study uniformly-distributed numbers, a subset of quasi-random numbers
which have the property that the density of points is more uniform than that of truly

random numbers. There is a very strong serial correlation between successive numbers pro-
duced by the same generator, so we need in general k different generators for an integration
in k dimensions. A point in phase space is then chosen by taking one "random" number from
each of the k generators.

Two different types of quasi-random generators have been studied in detail and seem
well-suited to Monte Carlo integration problems. Each type has as many different genera-
tors as there are prime numbers. Integrals calculated with these generators converge

faster than 1/n, a considerable improvement over pseudo-random numbers.

i) The Richtmyer formula gives, for the ith "random" number of the jm generator:

ri,j =1 SJ., modulo 1.

where SJ. is the square root of the jth prime number. This means that the difference
between successive numbers of the same generator is always Sj or Sj- 1. This also
leads unfortunately to strong short-term correlations (i.e. correlations which go
away as n - =) between corresponding numbers produced by different generators, which

makes this method a dangerous one in practice.

ii) The Van der Corput formula consists of expressing the integers in a system of base P,
then reversing the digits, preceding them by a point, and interpreting the resulting
numbers as fractions in a system of base P. P is any prime number. For example, in
the binary system (P = 2):
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dectmal | by | 2| RO
n=1 1 0.1 0.5

2 10 0.01 0.25

3 11 0.11 0.75

L 100 0.001 0.125

5 101 0.101 04625

6 110 0.011 04375

7 111 0.111 0.875

8 1000 0.0001 | 0.0625

J

Generators of this form can be made fast, and in general seem to produce much less
serious correlations than those of the Richtmyer generators, but with similarly good con-

vergence properties.
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PART II

MONTE CARLO APPLIED TO THE PHASE-SPACE INTEGRAL

9. THE PHASE-SPACE INTEGRAL

We define the n-body phase space integral as:

f-f o (e- ) o)) o0t - (51
J=t dim

where

P is the total four-vector of the n-body system
p; are the four-vectors of the individual particles

m, are the masses of the particles.

If we then consider any kinematic parameter (a momentum, angle, etc.) of the system, its
spectrum will be given by

£(a) = £ (lwE.|®* « &) (9.2)

where M(E. is the matrix element describing the interactions between the particles. If

there is no interaction between the outgoing particles, M.E. = 1, and we say that all spectra
are given by phase-space alone. Of course, if the expression for Rn is wrong, we can always
fix things up by adjusting M.E. to fit the data, but this whole analysis has meaning only

if Rn describes the major features of the spectra correctly. In particular it is supposed
to describe exactly the features determined by statistical and kinematic factors, which

means:

i) statistical factor is the density of states: one expects a higher probability of
finding an event in a "region" where there are more available states, that is, there
is more phase space. This comes into the expression in the product of d‘pi, which,
with the energy conservation delta function, can be expressed in spherical polar

coordinates as
2

25
6(p§ - o) d“pi = E: dp, d cos 9, dg; (9.3)

(for derivation, see Hagedom’), pages 89 and 45) where B is the absolute value of
the three-momentum. The above equation expresses the fact that when the momentum
of a particle is greater, there are more ways for it to arrange itself: more avail-

able statese
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ii) kinematical factor is expressed by the delta functions which assure that momentum
and energy are conserved. .The correlations between particle momenta which follow
from four-momentum conservation are considered as fundamentally different from
those which arise from the particles' interactions (M.E.).

It has been remarked that if we wish really to include all statistical and kinematic
factors into Rn’ then ﬁe should put in delta functions expressing all the known conserva-
tion laws, such as (for the strong interactions) conservation of leptons, baryons, isotopic
spin, parity, and angular momentum. Most of these we take account of implicitly because
we do not calculate phase space for unallowed reactions. However, angular momentum poses
a special problem because it leads to truly kinematic effects, which are difficult to
handle for the following reasons:

i) one does not generally know what angular momentum states are present in the initial
state;

ii) it is not generally possible to find variables in which to express both linear and

angular momentum in a separable way.

The general problem of determining kinematic effects due to angular momentum conserva-

tion is not solved. It is customary to treat the problem in the following way:

i) for two-body (elastic scattering) problems, the conservation of linear momentum is
trivial and one can concentrate on expressing the angular momentum states directly;
this is usually accomplished by a development in spherical harmonics which are eigen-

states of the angular momentum operator;

ii) for three-body problems the complications increase enormously, but this has recently

been solved by Zemach® H

iii) for n-body problems, n > 3, the possibility of an exact solution appears hopeless,

and one usually either neglects angular momentum conservation or considers that the

effects are to be included not in phase space (Rn) but in the matrix element (M.E.).

For further details on the physical justification of the use of the phase space integral,
we refer the reader to the excellent review article by Kretschmar » and we concentrate here

on the various methods which have been used to calculate this integral.

9.1 The first ideas. Fermi (1950)

In his original paper‘), Fermi bases his theory on an analogy with classical thermo-
dynamics and considers that the particles are in a short-lived state of thermodynamic
equilibriume By assuming a certain interaction volume, the theory predicts particle multi-
plicities and cross-sections as a function of incident energy. Nowadays,however, this is
considered to be the least reliable part of the theory, and it is mostly used to find
momentum spectra and correlations within a given reaction. (However, it should be mentioned
that in testing SUs predictions of cross-section ratios, the phase space factor is often
important.) Fermi realized that the evaluation of Rn would pose calculation problems and
proposed the following approximations:

i) nucleons are non-relativistic: E = p?/2m

ii) pions are ultra-relativistic: E = p.
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By getting rid of the square root in the delta function, this allowed some calculations,
but the approximation is really too crude. This is a general problem of kinematics in
the region 100 MeV to 5 GeV: we are forced to carry out the full relativistic treatment

because our particles are neither non-relativistic nor ultra-relativistic.

9.2 Possibilities of exact calculation. Block (1956)

Blocks) has done a systematic treatment of the phase-space integral from the point of
view of exact analytic integration, and his paper indicates at what point (four particles)
the calculations become prohibitively complex. This is of course done with a constant

matrix element.

9.3 The Monte Carlo idea. Kopylov (1958)

Although Monte Carlo was already in wide use for nuclear physics problems, especially
in connection with shielding and nuclear bomb development, it was probablvaopylovs) who
first formally proposed Monte Carlo as a means of solving the Fermi phase space problem.
Having no computers at his disposal he nevertheless was able to produce by hand a set of
two hundred random events (which he called a list of stars) from which he formed desired
distributions. However, efficient Monte Carlo methods had to await further analytic sim-

plification.

9.4 The recurrcnce relation. Srivastava and Sudarshan (1958)

A fundamental difficulty with the original Fermi formulation (which we have not
written here) is the fact that it was not written in a Lorentz invariant way (three-momenta
were used instead of four-momenta). It was Srivastava and Sudarshan7 who produced the
covariant formulation given above [Eq. (9.1)] which allows one to express R in any frame
of references This in turn allows one to express the (n+ 1)-body phase space in terms of
the n-body phase space, each one being calculated in its own centre of mass. We write, as
in Eq. (9.1):

n

N (}n: b - B)[] 563 ) oy, (9.1)

i=1

where we have written explicitly the quantities upon which Rn depends. Actually it depends
only on the length of the four-vector P (i.es the total energy in the centre of mass, or
invariant rest mass) from Lorentz invariance. If we rewrite the argument of the first delta
function and split off the last factor in the indicated product, we obtain:

R(P; my o.om) = /{/5‘ <§ p, - (P~ Pn))ﬁ 8(p% - %) d‘pj} 6(py - m) a'p .
i=1 j=t

(9.5)

It is seen by inspection that the factor in curly brackets is just R _, (P-p; m «.om_,).
Now using Eqe (9.3), we have the important relation
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Jpn

d
Rn(P; Dy eesm) = /Rn_.1 (P - pps my eeem ) -Z—En— . (9.6)

At first glance, this looks similar to the expressions used by Blocks) and Cerulus and
Hagedome); however, one must realize that the R _  in Eq. (9.6) is Lorentz-invariant,
which means that the integration indicated is only over one parameter, and that if repeated
use is made of this relation, each R1 may be the same algebraic function since it may be
evaluated in its own rest frame. In other work up to 1958, each R; had to be evaluated
separately in the over—all centre of mass.

9.5 The T-generator programs

Equation (9.6) can be used as a basis for a class of Monte Carlo event generators which
I will call the T-generators (T for kinetic energy). They were the first reasonably efficient
generators to be used and we mention them here because they are still in widespread use, but
we do not go into great detail since they are not the best generators for general problems.
Most of the early work was published only in internal reports, so it is not clear who is
the originator of this method, but descriptions of it can be found in the works of Lynchg)
and of Goldhaber et al.’o).

Equation (9.3) is applied to Eqe (9.1) to get rid of the mass delta functions, and the
result is:

-
. /-d’p‘ &®p, oo @py 8 (£5p3) 8(E, - Z;E;)
-

. (9.7)
E\E, ece Ep

Let us see what happens if we try to apply Monte Carlo immediately using this expression.

We would first cal-ulate the minimum and maximum kinematically allowed values for each com—
ponent of each momentum and choose them all randomly between these two limits, except for
the last four components, which are "determined" by the integrations over the delta functions.
That is, we see if there are four numbers which, when added to the 3n-4 values already
chosen, will conserve energy and momentum. If no such set exists (which will usually be

the case) we choose another set of 3n-4 random momentum components. When we find a set which
lands in the physical region, we use it, and give it a weight equal to the inverse of the
product of .the particle energies [the denominator of Eq. (9.7)]. In practice such a method
would be extremely inefficient because, in cnoosing the momentum components at random
between “Ppax and Pray? Ve would of'ten get momenta whose absolute values were greater than
Ppax? meaning that the event would automatically fail the conservation laws. One therefore
transforms Eq. (9.7) into a hybrid polar coordinate system, where each set of angles

(cos @ and @) is chosen in a different rest frame, corresponding to repeated applications

of the recurrence relation Eq. (9.6). (These angles arc the same as those of Section 9.6
which will be discussed in more detail.) A further transformation from momentum to kinetic

energy is usually made (using p dp = T dT) and one arrives at an expression of the form
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PyP, ++s Pn-,

- dT, 4T, ... aT,_, dp, dp, ... d9pp., x 4 cos 9, d cos ¥, ... d cos Ps s
) o
iz (9'8)

where the remaining four variables (Tp, ¢, c0s Oy, cos O,) are chosen (if possible) in

an obvious way to balance energy and momentum.

For the three-body case, this method can be visualized quite easily. Choosing T:1 and
T> corresponds to choosing a random point on the Dalitz plot of the three-body deeay, for
which the physical region looks something like the figure below:

/

T2

——————— allowed
region

/

Ty

Although the exact shape of the Dalitz plot boundary depends on the total energy and on the
three particle masses, it generally covers a little more than half of the circumscribed
rectangle within which the points are chosen, so that something less than half of the points
must be rejected. The three remaining coordinates are ¢1, ¢z, and cos ¢, which correspond
to a complete orientation of the plane of the event. We could, for example, have chosen

instead the Buler angles familiar to all students of rigid body mechanicse.

Unfortunately for the T-generators, the efficiency goes down drastically with increas-
ing numbers of particles in the final state, and it becomes quite impossible to use this

method for more than five or six particlese

9.6 The M-generator programs

The recurrence relation (9.6) which was used as a starting point to get to the
T-generators, can be used also to find a more efficient method, which I will call the
M-generator method since it works essentially with invariant masses as kinematic coordi-
nates. Again it is not clear who was the discoverer of this technique, but it seems to
have been developed independently by Kopylov‘i) in the Soviet Union and by Raubold and
Lynch (unpublished) at CERN. Lynch incorporated this method into his phase space program
OWL for the CERN 7090 library. The same generator is used for the program FOWL (CERN
Program Library).

A different form of recurrence relation can be derived, starting from the original
expression (9.1), in which we take full advantage of the Lorentz invariance of the expres-

sion. We first express the four-momentum conservation delta function as an integral over
two delta functions.
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6“< i P - ) =/5‘<P -2, - i pj> 6‘(Pt - i p£> a‘p, . (9.9)
j=r J=ta 3=t

The above relation can be seen to be true since it is of the form

8(x - y) =/6[(y- o) - z] 8[z - (x - ¢)] dz
(9.10)
=8[(x-¢)-(y-2o)].
Applying Eqe (9.9) to Eqe (9.1) we obtain:
j=t+t J=t+t
(9.11)
t& L
x /6‘ (P - pt) H S(pg - mg) d"pJ d‘Pt .
j=t J=1

While Pt was introduced in Eq. (9.9) as a dummy integration variable, we see that it is
beginning to take on the role implied by its name: the four momentum of the {-body sub-
system within the n-body system. However, the integral is not yet divided into exactly
corresponding factors, since there is one delta function missing in the d‘PL integration,

1
namely G(Pi - M;). Following Hagedorn ), we introduce the factor 1 of the form

1= [ o - ) o, (9.12)

o

which gives us the desired expression:

R (P my vovm) = /m{ / 8* <P - P, - ipj> ﬁ 5(p3 - %)
° L4t L4+
x 6(F, - M) a'p, a'p, /5‘<'Pt - i pj> (9.13)

1

L
8(p% - m3) d*p. 2
BIECEE RN

1
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which can be rewritten as the important "splitting" relation

4

R (P m, cov m) =/ R_pue (P Mpmy,, eeom) R(Pps m, ouomy) @F . (9.12)

[¢]

From Eq. (9.12) we see that Mzt is the square of the four momentum of the ! particles,

which is just their invariant rest mass. The limits of integration for Mi are:

(Lo sz (o 2o -

i=t i=l+1

Repeated applications of the splitting relation (9.14), starting with ¢ = 2, lead us to the

recurrence relation:

n-t
- 2 2 .
Rn = /dMn_‘ oo /dmz ﬂ R.z(Mi*", mi,mi“) (9.16)
i=1

where the limits of integration of Eq. (9.16) are discussed below. Here R., the invariant

1
two-body phase space factor, is

2 2 2
R (M 5 Mi,mi“) =3 JM1+1 +< T ) 2(}42i + mi“) . (9.17)
1+ 1+

Transforming from dM® to 2M dM and rearranging, we get the final form used by the M-generators:

n—1
;
R - m_‘// ﬂ {2 M, Ry (L5 Mi,mi“)} B, e, (9.18)
i=1

There remain two principal problems to solve before this formula can be used for Monte

Carlo. These are:
i) What are the limits of integration on M? Can they be chosen in an efficient way?

ii) We should have 3n-4 variables of integration, but we have only n-2. What happened
to the other 2n-2?

The answer to these two problems can be seen more easily if we represent pictorially
the splitting of the n-body problem into (n-2) two-body cases.
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(9.19)

Equation (9.18) tells us that the problem can be treated as though it were the sequen-
tial decay shown in Eq. (9.19). Namely, we need apply only the two-body phase-space factor
at the first vertex (A), but this must be integrated over all possible masses Mn— ¢+ Then
we apply the two-body factor at B, integrating now over all possible uua,sses»l{n_2 and all
possible Mn-a’ since the "initial state energy" at B is now variable also. Similarly for
the other "vertices".

Now the physical "limits of integration" of the M in Eq. (9.18) are just the limits
- which will make each two~body vertex exothermic. That is, for each Mj we must have

uj_1 +my < mj < MJ“ - my, (9.20)

and at first glance we seem to be back in the position we were in with the T-generators,
since the limits of the jth integral are not constant but depend on the other integrals.

We have seen in Section 6 with integration over a triangle that we cannot choose the limits
of one integral to be dependent on the choice of variable for the preceding integral in such
a situatione. The Mj must be chosen independently, which means they must be chosen to satisfy
only the less restrictive condition:

J n
Z m < M, < M- Z m, (9.21)
i=1 i=j+1

where Mn is the total energy of the system in its rest frame, so that only constants enter
into the choice of Mj' But we know that the event will be non-physical unless the ldj also
satisfy the more restrictive condition (9.20). The usefulness of the method lies in the
fact that this can be assured in a simple way. Consider the invariant masses l(j chosen
according to the weaker conditions (9.21):
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where rj is a random number between zero and one. Then it happens that the necessary and
sufficient condition that the M j chosen in this way will also satisfy the more restrictive
limits (9.20) is just:

0<r, < .. NS ST X <r_, <1,

that is, the random numbers must be in ascending order. Just as in the case of the triangle
integration of Section 6, our random numbers may be ordered without biasing the result, as
long as they were originally chosen independently. Or else we may simply throw away each
set which is not ordered. By ordering the random numbers we finally achieve what .we have
been looking for: an unbiased event generator with every event falling in the physical

region.

There is still the problem of the missing variables, but this is easily solved by again
considering the process of diagram (9.19). At each two-body vertex we have the energy
variation but nothing else. There clearly remain two angular variables in order to complete
the description of each vertex. If we take each pair of angles to be defined in the rest
frame of that vertex, then we need only choose them isotropic in cos ¢ and ¢ as we know that

two-body phase space is isotropic in angular space. However, since this is only true for a
two-body decay in its centre of mass, we need the Lorentz invariance of R, (Mj s mj, mj_i)
which is a function only of invariant quantities. To obtain a final description of the event
in the over—all centre of mass, we must successively Lorentz-transform each momentum into the

rest frame of the group of particles preceding it.

PHASE SPACE SPECTRA AND MATRIX ELEMENTS

We have seen in Section 9 how points may be chosen randomly in phase space. The
question of what to do with these points is rather obvious, and this was discussed briefly
earlier. But it is perhaps useful here to state more fully the ways in which these points

or events may be used since this really demonstrates the power of the Monte Carlo method.

10.1 Integration versus direct simulation

Let us return for a minute to the analytic (non-Monte Carlo) statement of the phase-
space problem. We are usually looking for one of two types of answers:
i) The absolute value of a phase-space integral: this allows us to calculate, for
example
I(pp > mmm) - Rs(1.876; w,w,m)
I'(pp » momw)  Ra(1.876; w,m,m,7)

This says that if antiproton annihilations at rest follow pure phase space, the ratio
of 3w events to 47 events will be given by the above expression. This is just the
ratio of two integrals, and we have seen how Rn can be evaluated by Monte Carlo inte-
gration. (In fact, the expressions of Section 9 are not complete for this purpose

since we have dropped some constants. See Section 12.1).
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ii) The spectrum, or distribution of events with respect to some kinematic parameter.
This we have given as Eq. (9.2) which has a misleadingly simple form. To imply
the complexity of calculation involved, we should rather express it as:

£(a) = ff(a,ﬁ) g = %/IM.E.IZ aR_ (10.1)

where a is one kinematic parameter among the whole set necessary to describe an
event, and the E are the rest of the parameters, all orthogonal to ae Analytically
then, the problem would be not only to calculate Rn but also to express it in such
a system, of variables that the integration and differentiation can be performed.
The matrix element must of course be expressible in the same variables, and for
nearly all interesting problems, this is impossible. With Monte Carlo, however, we
have not to express the integrand in any special way; we need only know its value
at each point. The integration is then straightforward. However we have not yet

seen how to do a differentiation. In fact we do it approximately by noting that:

‘m - « = £a) . 10.2
Jin g [0t = £ (10.2)
A

xQ

That is, we will divide the total range of a into bins and calculate the integral
of f£(a) over each bin. An "event" contributes to the integral if it has a value
of « in the desired range. If the bins are small enough, the value of the integral
over each bin will approach the function value by Eq. (10.2). Even if the bins are
not small, we still have something we can compare directly with experiment since
this is in fact how experimental spectra are obtained from individual observations.

It should therefore be clear that the end result of all our phase space calculations
is the value of an integral or a set of integrals. However, we do this by generating
points in phase space, "or events", and so we may alternatively consider that we are
directly simulating an experiment. The only problem is that our events are not all equal,
but come with intrinsic weights. However, if this bothers us, the weights can be eliminated
(see Section 11.2).

10.2 Jacobian of the transformation to mass space

If our Monte Carlo calculation is considered as direct simulation, it is proper to
ask what is the meaning of the weight of the event in this context. From Section 9, we
have made a transformation from momentum space to mass space in order to gain efficiency
and avoid delta functions. Since the density of points is not the same in these two spaces,
we must weight the events inversely as the Jacobian from momentum space to mass space.
Since & Jacobian is the determinant of a derivative matrix, it would seem that we could
have avoided all the derivation of Eq. (9.6) simply by calculating some derivatives. The
answer is that because of the delta functions we do not have a proper Jacobian here, but

something equivalent in the sense that if

j £(2) a2 = / £@@R) 3(B) & , (10.3)
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then J is the Jacobian

2@
')

However we have had to make use of the integral relation (10.3) since the derivatives of

delta functions do not exist and since the dimensionality of our integration has changed

(see Section 7).

10.3 Digtortions due to experimental procedure

It is now clear that M.E. can be any finite-valued function which is defined everywhere.
It can be as complicated as we please, it can be discontinuous, and it can be expressed in
any variables. Then if M.E. expresses correctly the particle interactions in nature, we can
calculate the resulting spectra. However, the observed spectra are not always the same as
the spectra occurring in nature because of experimental difficulties and inobservabilities.
But these problems can easily be solved in a Monte Carlo calculation sinmply by applying the
same biases and selection criteria to the artificial events as were applied to the real ones.
For example it of'ten occurs that there are two or more indistinguishable particles in a
reaction, but that they play different r8les in the interaction mechanism. Such a case would
be the reaction ﬂ+p - ﬂ+pﬂ+ﬂ- where one m may form a vector meson with the 7 where the
other might form a nucleon isobar with the proton. Experimentally of course there is no
way of knowing, in a given case, which is which, and the physicist is obliged to put each
event into his histograms twice, once for each 77e This results in a 77 invariant mass
spectrum which shows the 77 interaction highly distorted by the presence of the "wrong" at
in half the combinations. On the other hand, if the physicist tries to guess which at
interacted more strongly with the L by using his knowledge of the mass dependence of the
interaction, he will sometimes be wrong and will therefore distort the spectrum in another
way. But all hope is not lost, for although he can never obtain the "pure" spectrum that
he wants, he can always evaluate the distortion he has caused with his treatment of the data
by applying the same distortion to the Monte Carlo events (where he knows which 7t inter-

acts with the m because he wrote the matrix element himself).

ERRORS AND VARIANCE-REDUCING

Now that we have a general method of attacking phase-space problems of the greatest
complexity, it is well to look at the practical side of the calculation, for we often find
functions which, although in principle integrable, have in fact so large a variance that
one never converges on a sensible answer. This happens in fact for an unfortunately large
class of problems including highly peripheral collisions, narrow resonances, multiple
resonances, and some beta decays. Before considering these cases in detail, we obtain an

expression for the statistical error on our calculated spectra.

11.1 Error on the integral over a bin

Let LA be the weight for the ith event if the event falls in the bin under considera-
tion, and zero if the event is outside the bin. Then, from Section 5.1, our estimate for

the integral over the bin is
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1
W= -ﬁz LA (11.1)

where we drop the factor corresponding to the bin width since we will take bins of equal
width and we are only interested in the relative height in each bin. The estimate for the

error on W is

= \/mh E’('i)z - %.@'02] . (11.2)

But since most of the w; are zero (they fall in another bin), the second term in square

brackets in Ege (11.2) is much smaller than the first and can be neglected. (It makes the
. error slightly smaller and represents the constraint due to normalization). If in addition
we say that N° >> N, we have a common factor 1/N in both W and § which is the same for all
bins and therefore represents only another common scale factor which does not interest us.
Thus we end up with the final contents of one bin as

w=zwi: /Z L7 (11.3)

This is an important formula and some of its properties should be stressed. First of all
we notice that the relative error is minimized when all the weights are equal. (This gives
the well-known Poisson error = V'N . ) A related property is that if one weight is much
larger than all the rest, the error on W is 100%.

11.2 Weigt;ted versus unweighted events

In order for the Monte Carlo method to work, all weights must be finite. [In some
formulations, singular weighting functions may occur. These must be avoided by using the
importance sampling technique. See Section 11.3.] There must then exist a maximum weight
that an event can take on. If this maximum is known (call it Wm) then unweighted events
may be generated from weighted events by the following technique: for each event, choose
a random number r between zero and Wm. If the weight of the event is smaller than r, reject
the event; otherwise keep the event and give it a weight of one. This means that the
probability of keeping an event will be equal to its weight. In this way we produce events
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which all have the same weight, which we know minimizes the error for a given sample size,
but in doing so we have decreased the sample size. The net effect, of course, is to

increase the relative error since it corresponds to going from crude Monte Carlo (Section 5.3)
to hit-or-miss Monte Carlo (Section 5.2). However, this technique may be useful on long
calculations where the event generator time is short compared with the time to complete the
treatment of the event. In such a case one does not want to waste calculating time on an
event which will not be worth much in the histograms, so it is better to go back and generate

a better one.

This brings us again to the problem of finding the maximum weight. This has been solved

in closed form for the T-generators in the case of four, five, and six bodies.

For the M-generator, the weight of an event, from Section 9, is proportional to

n=1
vrr(nn,mk) =ﬂ {minz A Mi,mi“)} R,(M,; m,,m,) . (11.%)

i=2

The factors within the products may be regrouped as follows:

n

1 .
WP = W H {MiR?(Mi“, Mi,mi“)} (11.5)

i=1

n-1

H {MiﬁRz(Mi-M; Mi’“’iu)} . (11.6)

i=1

Z|A

For a given reaction with a given centre of mass energy, each of these factors with the

product sign takes on its maximum value for

n.
maximum M, =M -Z m.
141 n J
J=i+2
(11.7)
i.
and minimum M, = Z m, e«
1 J

This gives therefore a method for calculating the maximum weight. However, it is not very
efficient because in reality the maximum weight is smaller than this since we really have
the constraint that for each factor in Eq. (11.6) the M;,, must be equal to the M; of the

next factor, which would not be true under conditions (11.7). It is therefore suggested



- 32 -

that for short runs one could use conditions (11.7) to calculate the maximum weight, but
for longer runs it is preferable to loock at the distribution of weights directly in order
to determine the maximum value for a particular configuration.

11.3 Variance-reducing by importance sampling

In Section 5.5 we have seen a rather trivial example of importance sampling. In fact
this technique is so important as to merit rather detailed study. We start by defining

three classes of functions for which importance sampling is useful (if not necessary):

i) functions which are null over a large region of phase space; this is usually due
to geometrical detection efficiency or simply a decision to study only a certain

class of events;

ii) functions with sharp peaks (highly peripheral events or narrow resonances, for
instance);

iii) functions with singularities; we have seen in Section 7 that there are functions
which have finite integrals but are not integrable by Monte Carlo since they have
infinite variances.

Each of the above cases is normally handled differently, but there is a general tech-
nique which may help to diagnose the sampling problem for all cases. This consists essen-
tially in seeing how the random numbers were used. Since each n-body event requires 3n - 4
random numbers for its specification, We can make 3n-L4 distributions, or histograms,
showing the random numbers that were used. Of course, since each random number is drawn
evenly between zero and one, we will find that each distribution is flat. But if we weight
the distributions in the same way that the phase space spectra were weighted, we will find
which ranges of random numbers give the most important contributions to the phase-space
integral. If our formulation of the problem was an efficient one, then all the 3n-4 dis-
tributions will be nearly flat even after weighting. If, however, one of the above three
conditions holds, this probably will show up in a very uneven weighted random number distri-
bution. Although this is a very easy method, it is not always efficient because the trouble
may be due not to just the behaviour of one variable but to a particular combination of
variables which does not show up in our distributions. This latter case is much more

serious since it necessitates a complete reformulation of the problem (see Section 11.6).

If the trouble can be seen directly from the weighted random number distributions, it

can bé solved according to the case as follows:

i) For the function which is zero over a large interval, we simply do not choose random
numbers in that interval. This is easy once the interval has been found by the above
technique.

ii) For the function which is everywhere non-zero and finite, but is simply unevenly dis-
tributed, an integrable function g must be found which has the same general features
as the observed distribution f so that f(r)/g(r) = 1 for all r. Then a transformation
is made:

dG(r

f(r) dr » £(r) G

’
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r
where G(r) = £ g(r’) dr’. For example, we could have approximated the circle of

Section 5.3 by one loop of a cosine curve

v1-xzzcos<7—12—x> for 0 < x< 1,

thereby transforming our integral:

2
b 4 a(2 sin )
f\/1—xzdx=/V1-xz ——
cos 35—
o 0 2

The procedure is then the following. We choose an r between 0 and 2/m. We then
calculate

For each x that we find in this way, we take the function value

cos (mx/2)

which, as we have seen, has a small variance. The error on the integral is thus

reduced.

iii) For functions which actually become infinite the technique is the same as the preced-
ing one, except that now we must be sure that our approximate function removes the
singularity, which usually means that we must know something about the behaviour of
the functions.

11,4 Importance sampling for resonances

One common problem which can be solved very efficiently is that of the production of
a narrow resonance. As we have seen in Section 7, this would give rise to a large error

if we did not apply a variance-reducing technique.

By a resonance I mean any Breit-Wigner function of an invariant mass. Since the
M-generator chooses invariant masses directly, this technique is a natural one for this
generator. However, not all invariant masses are specified explicitly as basic variables,

8o care must be taken in the ordering of particles. In particular, random number one corres-
ponds to My2, two corresponds to Mj23, etc. The nice feature of this method is that the
simplest Breit-Wigner function is exactly integrable:

[ o e (155

This method will then be 100% efficient if a simple Breit-Wigner is used, and only slightly

less efficient if it is desired to reweight the event by a more complicated form, the random
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number selection still being done by use of the simple integrable Breit-Wigner. One word
of caution: if importance sampling is used on the random numbers corresponding to invariant
masses, we can no longer use the trick of ordering the numbers in order to fall always in
the physical region (see the end of Section 9) since the different numbers are not all

drawn from the same distribution. In general, however, not much time is wasted in throw-

ing away the combinations which are not in order.

11.5 Importance sampling for peripheral collisions

For the M-generator for n bodies, the first n-2 random numbers correspond to effective
masses.s The next two numbers correspond to the cos ¢ and ¢ of particle 1 in the rest
system of particles 1 and 2. The next two random numbers correspond to the cos & and the
¢ of particles 1 and 2 in the rest system of particles 1, 2 and 3. And so forth. There-
fore, for example, if one is going to select on momentum transfer to a given particle, that
particle should be arranged last since there will then be two random numbers which corres-
pond to the ceme.s cos ¢ and ¢ of all the other particles with respect to that one.

11.6 More difficult cases requiring reformulation

As we have seen, the nonrumiformity’of our weighting function may not show up in the
variables we have used to express the phase-space problem. If this function has a very
large variance, it will necessitate the use of a different generator in order to apply
variance-reducing techniques. This in fact happens for some weak decays (for example Ke3

decay) where the matrix element or form factor, which is well know, is very non-uniform

. and is usually expressed in variables different from the ones we have been using in this

course. However, since Kes decay is only a three-body process, it can be reformulated in
many ways with very little effort.

THE ABSOLUTE VALUE OF R,

In Sections 9, 10, and 11 we have been concerned principally with getting phase space
spectra without worrying about the normalization. An exception was Section 10.1 where we
saw that Rh could be used to predict branching ratios or relative decay rates or cross-
sections. It is understood that the relevant matrix elements must be included in the
evaluation of the integrals, as well as any Clebsch-Gordan coefficients from SUs, isotopic
spin conservation, etc. It is often true, however, that the dominant factor in such deter-
minaéiona is that coming from pure phase-space considerations. Three different cases may

be considered:

i) The ratio of the total rates for two interactions involving the same number of
particles. In this case the formulation of Section 9 is sufficient since all constants
which have been neglected will be anyway the same for both rates. There is, however,

an extra factor to be calculated, corresponding to the interval size in M-space.

ii) The ratio of the total rates for two interactions involving different numbers of
particles. This case is more delicate since it depends on a choice for the inter-
action volume which is essentially a free parameter in the theory but which should
be of the order of Ln, where L is a pion Compton wavelength. This constant can in
principle be determined experimentally for one ratio and then be used to predict

others.
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iii) The calculation of absolute cross-sections. This case requires the determination of
still another constant parameter of the theory, in addition to the one mentioned

above.

The treatment of the various parameters of the Fermi theory as absolute constants
independent of the reactions is not considered entirely reliable, which makes the deter—
mination of absolute numbers a rather risky affair. The situation is discussed at length
in the literature (see for example Kretschmar's reviews)).

12,1 Cross-sections and energy variation

If we consider the phase space available for any given reaction as a function of the
total initial energy, it is clear that the number of possible states will increase rapidly
with increasing energy, especially for many-particle final states. The pure phase-space
prediction for the behaviour of cross-sections with energy is therefore a monotonic increas-
ing function, with rapidly increasing slope for many-particle states since there are many
ways for the extra energy to be distributed among the outgoing particles. In fact the
observed behaviour of cross-sections is not very different from this prediction if the
energy is near the reaction threshold. But far from threshold, experiments show that the
available states are not evenly filled and a better approximation is to consider the cross-
section to be constant with energy, with the largest variations coming from resonance pro-

duction and peripheral or Regge-pole dominance.

The formulation of Section 9 can be used directly in the case where the initial energy
Hn is variable (for example, the beam momentum may not be well determined), but this will
give generally larger weights to events with higher beam momentum in accordance with the
Fermi theory. If it is desired that this energy-dependence be suppressed in order to obtain
constant cross-sections, each weight should be divided by Wﬁ(Mn), which is the maximum
weight possible for the total energy of the event (see Section 11.2). This is in fact the
standard procedure followed in the CERN programs OWL and FOWL, with the approximation of

Section 11.2 being used for the maximum weight.

12.2 The deuterium problem I

It often occurs that the target particle in an experiment is not a simple hydrogen
nucleus (proton) but is a more complicated nucleus, of which we take deuterium as the
simplest example. In this case, when the beam energy is large compared with the binding
energy of the nucleus (a hundred MeV is sufficient) the interaction can be considered to
take place on one of the nucleons alone, leaving the rest of the nucleus (called the specta-
tor) untouched. However, the situation is complicated by the fact that the nucleons are
not at rest inside the nucleus, but have e certain momentum distribution, known as the Fermi
momentum, which for the case of deuterium is given by the Hulthén wave function. The problem

of finding the resulting phase-space distributions can be solved in two different ways:

i) The target can be considered as a single nucleon moving with Fermi momentum distri-

bution in random directions with respect to the beam.

ii) The target can be considered as the entire nucleus, at rest in the laboratory, with

the spectator recoil being given by the Fermi momentum distribution.



130

- 36 -

The second method will be discussed in Section 13.1. The first method is generally
more efficient and can be applied in a straightforward manner without special variance-
reducing techniques. For each event a target nucleon momentum is chosen according to the
known momentum distribution at random angles with respect to the beam direction and the
new centre-of-mass total energy is calculated. (The full relativistic treatment must be
used since a small Fermi momentum can give rise to a large difference in total energy.)

The resultant momentum vector of the centre of mass with respect to the laboratory should

be stored so that the event, after being generated in the centre of mass, may be transformed
properly into the laboratory system if desired. If the spectator recoil momentum is re-
quired, it is simply equal and opposite to the target nucleon momentum in the laboratory,

and is independent of all other features of the event.

IMPOSING KNOWN SPECTRA

There sometimes arise problems which cannot be expressed in the general framework of
Eq. (9+2). This usually happens because the knowledge we have about the reaction is not
the knowledge of a matrix element or particle interaction, but is rather ad hoc experimental
knowledge of certain features of the reaction which already include the phase-space factor
in an unknown manner. In these cases, the formalism of Eq. (9.2) can be used only if the
separation of our knowledge can be made into "phase-space part" and "interaction part",

because if we simply put in the experimentally found spectrum as a matrix element, we will

get out this spectrum altered by the phase space density. So in general the phase-space

density must be determined beforehand in a calculation without matrix element, then a matrix
element must be constructed which is the desired distribution divided by the phase-space
distribution, in order that the final result after weighting by phase space will be the
desired distribution. This then assures us of having a matrix element which reproduces at
least one spectrum correctly and we can investigate the behaviour of other spectra under the
assumption that this matrix element is the only important one. The theoretical justifica-
tion for such a procedure will depend on the particular case and will in general be diffi-
cult to establish, so that one must be careful about the conclusions which are to be drawn
from such an analysis. But considering the current state of understanding of strong inter-

actions, such a procedure is probebly as valid as any other.

13.1 The deuterium problem II

One case in which the above method can be well justified is in imposing on deuterium
interactions the known spectator momentum distribution as described above in Section 12,2 (ii).
The essen%ial problem here is a practical one, namely that this method produces spectator
momenta according to phase space, then reweights them in order to impose the known spectator
distribution, which is a very inefficient process because of the small amount of phase space
occupied by the desired spectator distribution. In order to render this method efficient,

careful use must be made of variance-reducing techniques (Section 11.3).
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