CERN 68-5
Data Handling Division
23 February 1968

ORGANISATION EUROPEENNE POUR LA RECHERCHE NUCLEAIRE

CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

PROGRAMMIKNG TECHNIQUES

D. Ball, T. Bloch, He von Eicken, G.A. Erskine,
Je. Garratt, R. Keyser, A. Maver and G.C. Sheppey

Lectures given in the Academic

Training Programme of CERN

GENEVA
1968

© Copyright CERN, Gendve, 1968

Propriété littéraire et scientifique réservée pour
tous les pays du monde. Ce document ne peut
étre reproduit ou traduit en tout ou en partie
sans l’autorisation écrite-du Directeur général
du CERN, titulaire du droit d’auteur. Dans
les cas appropriés, et s’il s’agit d’utiliser le
document a des fins non commerciales, cette
autorisation sera volontiers accordée.

Le CERN ne revendique pas la propriété des
inventions brevetables et dessins ou mo ‘¢les
susceptibles de dépot qui pourraient étre décrits
dans le présent document; ceux-ci peuvent étre
librement utilisés par les instituts de recherche,
les industriels et autres intéressés. Cependant,
le CERN se réserve le droit de s’opposer a
toute revendication qu’un usager pourrait faire
de la propriété scientifique ou industrielle de
toute invention et tout dessin ou modele dé-
crits dans le présent document.

Literary and scientific copyrights reserved in
all countries of the world. This report, or
any part of it, may not be reprinted or trans-
lated without written permission of the
copyright holder, the Director-General of
CERN. However, permission will be freely
granted for appropriate non-commercial use.

If any patentable invention or registrable
design is described in the report, CERN makes
no claim to property rights in it but offers it
for the free use of research institutions, manu-
facturers and others. CERN, however, may
oppose any attempt by a user to claim any
proprietary or patent rights in such inventions
or designs as may be described in the present
document.

Gendve - Service d'Information scientifique - H/306 - 2000 - avril 1968

CONTENTS

PART I

THE CDC 6600 COMPUTER AND ITS OPERATING SYSTEMS-—

GENERAL FORTRAN PROGRAMMING TECHNICUES

- "The CDC 6600 Computer" by T. Bloch

~ "STPROS-- Simultancous Processing and Operating System" by D. Ball

- "Magnetic Tape Handling" by He von Eicken

~ "FORTRAN Compilers" by J. Garratt

-~ "PORTRAN Input-gutput Statement and Error Recovery Procedures" by J. Garratt

- "C0S-=- Chippewa Operating System" by A. Maver

PART II

MATHEMATICAL TCPICS

- "Minimization and Curve Fitting" by G.C. Sheppey
- "Matrix Menipulation Techniques" by GeAe Erskine

- "Monte Carlo Methods™ by Re. Keyser

*) See number in square brackets at the foot of the page.

PART I

THE CDC 6600 COMPUTER AND ITS OPERATING SYSTEBS- =

GENERAL FORTRAN PROGRAMMING TECHNIQUES

THE CDC 6600 COMPUTER

by

Te Bloch

This series of lectures is meant to give an idea of the operation of the CDC 6600
computer. The aim of the first lecture is to cover the organization of the machine s in
order to give the background necessary to the understanding of the later lectures on the
SIPROS and SCOPE operating systems.

The organization of the CDC 6600 computer is best shown on a drawing where the
input/output devices (I/#), the peripheral processors (PP's), and the central processor (CP)
are set apart (see attached figure). The present lecture is an attempt to describe the

communication between these basic parts of the computer.

The central processor has access to central memory (CM) only. The processor executes
instruction after instruction of the programs which have been loaded into the memory.
In the figure we see three of a series of registers which, for a program in execution,
contain the beginning address (RA), the program length (FL), and the address in execution (P).
Jumps inside a program can be made, but jumps outside of the region of a certain program
(given by RA and RA + FL) are impossible since there is a special hardware protection
against these jumps. As we will see later, a peripheral processor can switch the CP between
programs in central memory by changing the contents of the registers in the CP by a special
instruction.

The programs must be entered into the central memory by a peripheral processor.
Any PP cen read from or write on any I/ff device; it also has access (read or write) to the
whole of the central memory. Thus, the hardware protection which makes sure that one CP
program does not overwrite areas outside its allocated memory has no counterpart for PP
programs.

Certain of the rules to be obeyed by every PP program ensure that a correct PP program
never writes into wrong areas in the CM. Protection against faulty PP programs is not

possible -- they are likely to hang up the system.

One peripheral processor is used as organizational head of the system (MANAGER).
It keeps track and directs the work of the other peripheral processors, it supervises the
central processor continuously, and it tries to use the CP efficiently, i.e. not letting
it wait for I/¢. MANAGER (normally situated in PPO) switches the central processor from
one program to another in case the present program is finished or is waiting for an I/¢
task to be completed. This switch instruction is called an exchange jump and works as
follows: the registers in the CP (including RA, FL, and P) are changed to values defining

another program in CM which is then executed next.

MANAGER also assigns I/d tasks generated by CP programs to peripheral processors which
are idle. When the I/¥ operation is completed, the PP assigned to it tells MANAGER, and
MANAGER knows that the PP is again idle and that it can switch (exchange—jump) the central
processor back to the CP program which put up the I/ff request (and was perhaps exchange=-
Jumped out of the central processor for precisely this reason).

Of course, a lot of information is channelled through to MANAGER from all the system
components in order to make it possible for MANAGER to decide which CP programs to run and

when to run them. Examples of this type of information are, as we have seen:

(5]

S1S/kw/gs

i) the CP works on a program that needs an I/¥ operation to be performed (CP);
ii) an I/f operation for a CP program has been completed (PP);

iii) a PP wants its central processor program to get control (PP). This happens, for
instance, when a PP transmits data directly from Luciole to tape and that tape is
full,

We have seen how MANAGER communicates to the CP -~ namely, by the exchange=-jump
instruction. There is no similar hardware interrupt available to a CP program which wants

to communicate something to MANAGER -~ all such communication is built up around conventions.

Such conventions rely on the two weys in which a PP can investigate the situation in
the CP:

i) the PP can read the value of P;
ii) the PP can read any central memory word.
A working scheme of communication (from SCOPE) is outlined in the following:

The program address register P is periodically read by MANAGER., Normally P contains

a value above n, the first n locations =- let us call it the communication area —--
not being used for program instructions (for instance, n = 64 in the SCOPE~-system).
When something goes wrong hardwarewise (e.g. illegal Jjump or illegal instruction
appears), a jump is made to P = 0 and the central processor stops. MANAGER sees

this next time it reads P, and it takes the necessary steps to terminate the program.
MANAGER also reads periodically the contents of location 1 of the central processor
program running. This location normally contains O, but when the CP program wants an
I/¢¥ operation done by a PP it places information sbout the operation in location 1.
This is seen by MANAGER next time it reads location 1, and it will fimd an idle PP to
do the I/¥ task and clear location 1, thus telling the CP program that its I/ request
has commenced.

MANAGER might, of course, remove the CP from the program and give it to another progrem
in CM (exchange-jump) but this is not unavoidable (BUFFER IN, BUFFER SUT in FORTRAN
for example).

Peripheral processors can hardwarewise exchange information via a chamel or via
centrel memory. In both SCOPE and SIPROS only central memory is used -- the channels on
the CDC 6600 all being tied up with I/@ devices.

Apart from this choice there is the question of whether PP's are allowed to communicate
freely or whether it all has to be channelled through MANAGER. Again, both systems have
communication only between a "normal" PP on one side and MANAGER on the other side. The
complications are very big indeed in the decentralized scheme, and there is no reason why

it should be more efficient.

A typical example of difficulties which can be encountered in PP operation and can be
solved by MANAGER communication is the following:

A CP program asks for an output (by setting location 1). MANAGER notes this, assigns
the job to PP2, and switches the CP over to another program in CM. This program also asks
for an output and this job is assigned to PP6. Although the outputs are on different tepes,

(el

-3 -

these may be on the same chammel and as they are more or less at the same time the outputs
might interfere. Therefore, PP2 must reserve the chammel before using it, and PP6 has to
wailt until PP2 releases the chennel again.

Thus the flow of -action for one unbuffered I/¥f request is as follows:

The CP program puts up an I/¥ request in location 1. MANAGER assigns the output job
to PP2 end takes the control away from the CP program. PP2 checks and reserves the
channel, writes onto the tape, and releases the channel. PP2 informs MANAGER that the
I/¥ operation is terminated by setting a central memory word. MANAGER gives back
control to the CP program.

This is only one example from an area which is quite extensive. PP's must handle
system tables to which no two FP's may have access simultaneously; they discover errors
which reguire termination of the CP program; they arrive at situations where operator
communication is indispensable; they provide accounting information, and so on. To cover

all this would mean designing the operating system, and I am sure that the time will not
aellow this.

An operating system for the CDC 6600 is the set of programs needed to control the job
flow through the computer, service the I/f requests, and provide the user CP programs with
those facilities which are needed in order to achieve efficient execution both from a
programming and a throughput point of view.

Such a system is constrained by the communication facilities available in the hardware,
and I have tried to describe these as well as some of their effects on the operating systems
in use at CERN.

It is hoped that the two lectures devoted to the SCOPE and the SIPROS systems will
give a clearer picture of the situation than do these rather scattered examples of

communication inside a CDC 6600 operating system.

(71

Central
processor
(cp)

RA : reference address

FL, : field length

P : program register
DCA : data channel adapter
MUX

cr : card reader

cp : card punch

LP : 1line printer

RA

FL

P

Other registers
and

arithmetical
L unit

Memory
131072 words
(60 bits)

NN

Program 1

NN

\\\\\\
Program 2
AN

Peripheral Processor

registers

PP

—| PPO

—1 PP2

— PP7

—1 PP8

l

f9l

muiltiplexor (tape lights, calcomp plotter, TTY)

disk O

disk 1

DCA
(HPD)

Luciole

r tapes

display
console

tapes

cr
cp.

LP1
Lp2
LP3

SIPROS--SIMULTANEOUS PROCESSING AND OPERATING SYSTEM

by

D, Ball

SIS /kw/eg

This paper describes the CERN version of SIPROS, not the CDC one, However, the general
philosophy of both is very similar,

To give an idea of the operation of the system, the passage through it of a typical
job will be described. To do this, it is first necessary to explain the major constituents
of the system and how the parts communicate with each other, The system is kept on tape
and loaded from any one-inch tape drive onto one of the two disks, and from there into the
central and peripheral processor memories. If it is necessary to reload the system later,
it can be loaded directly from disk, which is considerably faster, After this loading pro-

cess, the programs in the peripheral processors are:

PPO EXECUTIVE

PP1 DISK EXECUTIVE plus a small display program
PP2 PRIMARY DISK SLAVE

PP3 SECONDARY DISK SLAVE

PPL MULTIPLEXOR program

PP5-118 PP RESIDENT

The function of these programs will become clear later,

Into the low part of the central memory ("low" is used to denote that part containing
addresses from 000008) are loaded tables and copies of some frequently used PP programs,
Following these is a copy of the CERN FORTRAN compiler, starting usually around 33,0008.
The central processor is "executing" a program with a completely zero exchange-jump package

-- called the "idle program”,

The EXECUTIVE program, which controls the whole system, is monitoring the card reader,
waiting for it to be ready, signifying there are cards to be read, Associated with each

PP is an area in CM consisting of eight CM words, These areas consist of:

INPUT REGISTER (1 word)
@UTPUT REGISTER (1 word)
MESSAGE BUFFER (6 words).

Since one CM word is 60 bits, and one PP word is 12 bits, it is customary to talk of
a CM word consisting of 5 bytes, each of 12 bits. The bits of the CM word are numbered
0-59 from the right, and the bytes 1-5 from the right.

Fach PP RESIDENT is monitoring the 5th byte of its input register, waiting for it to
be set to 1 (they are set to zero initially)., The PP Resident is a small program occupy-

ing the higher core locations of the PP in which it is stored.

The DISK EXECUTIVE is monitoring a table into which disk requests are placed, the two
DISK SLAVES are monitoring a table by which the Disk Executive passes work on to them, and
the MULTIPLEXOR is monitoring a table into which its requests are placed.

When the card reader becomes ready, the BExecutive instructs one of PP's 5-118 (the
so-called POOL PP's since each of them can perform one of several jobs, and is allocated
to the task if it happens to be free) to load the BATCH L@ADER and to read the cards for
one job, A job is defined as the deck of cards starting with an *JOB card and terminating
with an SFINISH card (if an gFINISH card is not found before the next *J@B card, the next

[13]

-2 -

J@B card is routed to the secondary stack of the card reader and the reader stops waiting
for the operator to insert an SFINISH card), The instruction is carried out by setting the

PP's input register to

1 0 0 0 1#8

The 1 signifies to the PP Resident that there is work to do, and 148 is the address of
a CM word which points to a table containing details of the request, Each request is three
CM (= 15 PP) words long. One item in it is the internal job number, This unique (at any
one time) number is used throughout to identify the job, rather than the external program-

mers' name and account number which may not be unique,

The PP Resident examines the request, discovers it must be processed by the Batch
Loader, and using tables in the lower part of CM finds out whether it is stored on the disk
or in CM and loads it, In fact the Batch Loader is stored on the disk, so the loading pro-
cess involves the Disk Executive and Slaves, as all disk transfers are handled by these
packages to optimize disk transfers, This is necessary since the time taken to reposition
the disk heads is very long compared to the time needed to actually transfer the data, By
placing all requests for disk transfer under one program it is possible to optimize disk
activity, in that before repositioning the heads all requests from various programs which

need to read or write from the present track can be processed,

The PP Resident requests disk transfers by placing a three-CM word request in its mes=
sage buffer and setting the top byte of its output register to 7 (a non-zero value in this
byte informs the Executive that it must take some action; the particular one depending on
its precise value), The request is passed to the Disk Executive by the Executive which
places it in the table which the Disk Executive is periodically scanning, One other piece
of information in the three-word request is the address of a CM status response word, This
word is used for communication between the program initiating the request and the program
processing the request. In this case, the PP Resident will be told by the Disk Executive
when the transfer of information from the disk to CM (via the memories of the slaves) has

been completed,

After the Batch Loader has been read into the PP memory, the Resident transfers control
to it, by jumping to location 1008 with the A register containing the address of the 15 PP

word request, which the PP Resident had transferred from CM to its own area in the PP,

The Batch Loader needs the card reader and its associated channel to read cards, Other
packages also require equipment and channels; in some cases two different packages, or two
copies of the same package in different PP's, require the same equipment, There is no hard-
ware protection to prevent two PP's attempting to use the same equipment simultaneously, so
it must be done by software, With each piece of equipment is associated a CM location which
indicates whether the equipment is down (not working), in use by a PP, or available, amongst
other informetion, For each channel is similarly associated a word saying whether it is

reserved for use by a particular PP or is free,

The Batch Loader checks the words for the card reader and channel, then changes them
to indicate it is using them, It also reserves two buffers of 1000g CM words each, from
a pool of such buffers available to all PP programs,

[12]

Assume the cards for a job are:

*JgB, SEMEBEDY, 00001k4/CEM
*LIMITS, 2
*TAPE 5 CEMMEN
*DUMP, 4000, 6000
*BINARY
*FULL
FORTRAN source routine 1
*BINARY
FORTRAN source routine 2
FORTRAN source routine 3
Binary cards
*DATA
Data cards
8

S!
9FINI H

The Batch Loader reads cards and transfers them to one of its two CM buffers (one card
is stored as 16 CM words), From the system control cards it builds up the job table entry
for this job, which contains such information as the equipment the job needs, what terminal
dump, if any, it requires, etc, This prevents continual scanning of the control cards by
many programs., (The control cards such as *BINARY, *OPTIMIZE, are compiler, as opposed to
system, control cards, since they instruct the compiler how to process the next source deck;
these cards are not processed by the Batch Loader, they are simply copied into the buffer.)
When one of the CM buffers is full, the Batch Loader requests, via its PP Resident, that it
be written onto disk, While this buffer is being transferred, the Batch Loader continues to
read cards into the other buffer, During the reading of binary cards a serialization check
is carried out, as this can be a useful aid in finding incorrectly made-up binary decks.
When the *DATA control card is found (or the gFT_NISH card, if the job has no data) an End-
of-File indicator is placed in the buffer, and the buffer written onto disk, Any data is
placed in a separate file on the disk, The starting addresses of the files for the job are
placed in the job table entry, the status of the job is set to "waiting to be compiled",
and the entry written into CM. The status of a job is determined by a word in its JTE which
reflects which stage the job has reached, and is used by the Executive in its scheduling of

work,

After the Batch Loader has read the cards for one job it returns control to the PP
Resident which scans its input register to see if any further work has been scheduled for
this PP, If the card reader is still ready, it is probable that another Batch Loader re-
quest is waiting since, in order to avoid unnecessary loading of programs, tasks of a
similar nature are sent to the same PP as far as possible, However, switching becomes
necessary at some stage, as there are more different tasks than there are PP's, (To avoid
complicating the description, the fact that, for efficiency, the Batch Loader program is
combined with the Card Punch program since the reader and punch are on the same channel,

has been ignored.)

Since this is the first job in, the compiler is loaded and available, so the Executive

(15]

-l -

will exchange-jump the central processor to FORTRAN 1 (it is possible to have two copies of
the compiler loaded at the same time, so they are called FORTRAN 1 and FORTRAN 2, to dis-
tinguish them), With the compiler is a copy of a program called the CENTRAL RESIDENT which
occupies 10008 CM words starting at relative location zero, Following this are 4 buffers,
each of 10008 words, These are:

starting at 10008 Print buffer
20008 Punch buffer
30008 Job Stack buffer

l«-OOO8 Card Read buffer

The compiler proper therefore starts at 50008 relative, The Executive plants informa-
tion in cells in the Resident pertinent to the particular job being compiled, The Resident
acts as a standard interface between the compiler and the Executive, Since central proces-
sor programs cannot perform I/@ directly, there must be a software communication between the
running CP program and the Executive, The latter is periodically looking at location 1 of
the running program., When the CM Resident wishes to pass on I/ff requests, it builds up a
request in locations 2-8 and then sets in location 1 information concerning the type of
request, Whenever location 1 becomes non-zero, the Executive extracts the information in
locations 41-8 and builds a three-CM word request from it, of the same form as those built
by PP programs, Control is then normally switched to another central program, In the
present example the first I/@ request from the compiler to the resident is to read a card,
The resident does not wish to ask the Executive for every single card, instead it asks for
its Card Read buffer to be filled, The Executive builds a three-word request for the Disk
Executive to read the next 512 buffer from the source file of the job and place it into the
Card Read buffer of the compiler, While this is in process, the compiler can do nothing, so
control is passed to another program (probably the idle program in this case, until other
jobs have been read in), The Executive sets the status of the compiler to "waiting on I/@"
(the job itself has the status "being compiled" until compilation is complete), For all
such jobs, the Executive scans the status word associated with the three-word request to
know when the operation is complete, It then sets the status of that CM program to "waiting
in CM", Periodically the Executive looks at jobs whose status is "waiting in CM", and if
one of them has a priority higher than the currently running job, control is switched by
exchange-jumping the two prograums, (Priority of a job has not been discussed. It is suf-
ficient to mention here that every job and every request has a priority level, and that
resources, be they the central processor, a PP or whatever, are used to satisfy the highest

priority request first,)

The Central Resident is now in a position to satisfy up to 32 Card Read requests with-
out further requests to the Executive, During the compilation there will be binary card
images produced, and information to be printed., These are packed by the Resident into the
appropriate buffer, and complete buffers written onto the disk as necessary, The punch
buffer file contains the binary card images of any routines which were preceded by a com-
piler control card *BINARY, The job stack file contains binary card images for all routines
in the job deck, whether they were binary or source. (The compiler streams binary cards

from the deck, straight into the job stack; this mechanism allows source and binary routines

[16]

-5-

to be mixed in any order.) When the compiler reaches the end-of -file of the source file,

it sets a flag for the Executive to say Wwhether any fatal compilation errors were encountered,
and then executes a stop instruction, Another of the functions of the Executive is to check
if the running job has stopped. To do this it has to read regularly the P counter and exam-
ine the instructions at that location, if it appears P is not changing. (One of the major
design shortcomings of the CDC 6600 is that it is extremely cumbersome and time-consuming

to detect if a progrem in central memory has stopped,) The Executive will exchange-jump

the central processor to another job and set the status of the job to "waiting on disk",

Jobs with this status are checked periodically and the equipment requirements for the one
with highest priority examined, The only requirement for our job is cne 1" tape which will
be available, The Executive will allocate one particular tape drive to this job and build
two three-word requests; one which will go to the Multiplexor package to flash the tape dis-
play lights, and the other for the MAGNETIC TAPE package to check the tape label., The lat-
ter request will go to a pool PP which will load the Tape package into its memory and then
transfer control to it. When a common tape has been loaded and its label checked by the tape
package, the Executive will build another three-word request for the multiplexor package to
blank the display lights, The Executive will now check that there is sufficient CM space

for the job to be loaded, reserve space, and build a three-word request for the JOB LOADER
(the space allocated for a job is either derived from the *MEMORY control card, or a standard
value assumed as in this example). The three-word request is passed to a pool PP which will
load the Job Loader into its memory and transfer control to it, The Job Loader will use the
Disk Executive to read the Job Stack file, a buffer at a time, The program will undoubtedly
require routines from the library file on the disk, and the Job Loader uses a central library
directory which is stored in CM to locate these, It is possible that during the loading
phase it is discovered that the job requires more space than has been allocated to it, At
this stage it is not possible to exceed the 1limit, as probably the extra space needed is
occupied by another job. Instead, the Job Loader changes to a pseudo-load process, It con-
tinues to build up tables, etc,, as before, but does not store anything else in CM, By this
process it is possible to compute the exact amount of storage required for this job, At the
completion of its task, the Job Loader informs the Executive whether it was a successful load
or not, whether it was rescheduled for another time and, if it was loaded, how much space if
any is left over. Any space not used is returned to the pool of available space, (A table
is retained for each 512 word block of CM, the entry for each block signifying whether it is
in use or not.) If the job was rescheduled, the Executive builds another Job Loader request

when sufficient space becomes available,

For this job, the first 40008 locations comprise:

0000—07778 Control Resident
1000-17778 Print buffer
2000-27778 Punch buffer
3000—37778 Card Read buffer,

(Extra buffers would be allocated to a job with extra print or punch files.)

The Central Resident is identical to the one used with the compiler and serves the
same purpose -- all I/¢ is carried out via this interface. The status of the job will be

(17]

-6 -

"waiting in CM", Control will be switched to this job when its priority determines, The
job runs until the Resident informs the Executive that it requires some I/¢ carried out, a
job of higher priority pre-emps, it exceeds its time limit of 2 minutes central processor

time, or it stops,.

When the central processor part of the job has finished, the Executive builds a three-
word TERMINATION request, The termination package puts any dumps required in the print file
of the job, and finishes the print file for the job with the accounting information which
appears at the end of every job, It then writes any partial buffers in the appropriate file,
It builds a printing and, if required, a punching request for the job, and places each in
turn in the message buffer of the PP and signals to the Executive by setting the FP output
register, These requests are sent by the Executive to pool PP's for printing and punchinge.
Only when termination has signalled to the Executive that it has finished its task will the

CM space occupied by the job be released and marked as not used,

After the printing and punching packages signal they have finished their tasks, the
Executive builds an ACCOUNTING request for the job, The ACCOUNTING package writes a record
of information containing pertinent statistics for the job onto the accounting tape, releases
the job table entry for the job, and requests the Disk Executive to release all disk space
used by the job. Now SIPROS is purged of that job and will reallocate the internal job num~
ber to another job entering the system,

(18]

MAGNETIC TAPE HANDLING

by

He von Eicken

PREFACE

The purpose of this note is to give information about the handling of magnetic
tapes from different aspects:

a)
b)
c)
Y
e)

Physical properties of tapes and their transports.

Logical layout of information recorded on tapes.

CERN's tape labelling scheme.

A programming example for efficient tape use on the CDC 6600.

BUFFER IN and BUFFER OUT statements on the CDC 3800.

All information given is based on the hardware available and operating systems used

at CERN's central computer installation at the end of 1966. Publication of this

lecture note has been made possible through permission granted by Control Data

Corporation to reproduce parts of its Magnetic Tape Transport Reference Manual;

Chapter I and its figures are largely derived from this source; other chapters
contain some CDC material.

SIS/kw/mn

[21]

Part I : PHYSICAL PROPERTIES OF TAPES AND THEIR TRANSPORTS

1.
2.
3.
L.
5.
6.
7.
8.
9.

CONTENTS

CONSTRUCTION OF A TAPE

TAPE PATH THROUGH TAPE UNIT

HEAD ASSEMBLY

NON-RETURN-T0-ZERO RECORDING

7 AND 14 TRACK TAPES

TAPE MARKERS

FILE PROTECTION

SUMMARY

TAPE CONTROLLERS OR SYNCHRONIZERS

Part II: LOGICAL LAYOUT OF INFORMATION RECORDED ON TAPES

1.
2.
3.
L.
5.
7.
8.
9.
10.

WRITE (I) LIST
WRITE (I,100) LIST
READ (I) LIST
READ (I,100) LIST
REWIND I

END FILE I
BACKSPACE I

CALL WIND (I)

CALL BACKZF (I)
ERROR HANDLING

10.1 Write parity
10.2 Read parity

Part III: CERN'S TAPE LABELLING SCHEME

1.
2.
3.

Part IV: A PROGRAMMING EXAMPLE FOR EFFICIENT TAPE USAGE ON THE CDC 6600

Part V: BUFFER IN AND BUFFER OUT STATEMENTS ON THE CDC 3800

1'

2.

3.

4.
Table 1
Table 2
APPENDIX I
APPENDIX II
APPENDIX IIT
APPENDIX IV

INTRODUCTION
INFORMATION REQUIRED IN THE LABEL

FLOW DIAGRAM AND CRITICAL PART OF LABEL CHECKING

LAYOUT OF CDC 3800 INSTALLATION AT CERN

HOW TO USE GIVEN HARDWARE FACILITIES IN FORTRAN

A TYPICAL EXAMPLE FOR USE OF BUFFER IN/ZUT
COLLZV AND DISTZV USING BUFFER IN/gUT

PROGRAMMING EXAMPLE I
PROGRAMMING EXAMPLE II
PROGRAMMING EXAMPLE IIT
PROGRAMMING EXAMPLE IV

[22]

=

O OOV F W NS

10
10
10
10
11
11
11
11
11

11
12

12

12
13
14

15

17

17
18
20
21

23
2l

1.

I. PHYSICAL PROPERTIES OF TAPES AND THEIR TRANSPORTS

CONSTRUCTION OF A TAPE

The tape has a mylar base and is coated on one side with minute particles of iron oxide
mixed with a binding agent. It is upon this coating that information is recorded. To give
an idea, each of these particles is less than one micron in length (1/1000 of a millimetre
or 0.000039 inch) and in the form of a cigar. The thickness of the coating is 0.00045 inch
and must be uniform and smooth along the whole tape.

TAPE PATH THROUGH TAPE UNIT

The information is read (detected) or written (stored) by passing the oxide side of
the tape over read/write heads contained in the tape transport. Figure 1 illustrates the
tape path through a tape unit (CDC 607 or 626 tape transport). During a read/write opera-
tion the tape is moved from the supply reel, pastthe read/write heads, to the take-up reel.
The tape motion is provided by two fluted capstans, which rotate continuously in opposite
directions. Tape is drawn against the drive capstan by vacuum and floated over the non-
driving capstan by air pressure. If the tape is moving from the supply reel to the take-up
reel (forward motion), the left capstan drives the tape and vice versa if it is moved in
reverse direction. Tape motion is stopped by means of a pneumatic brake port. Tape is
drawn to and firmly held against the brake port by means of vacuum. Because pressure is

applied to both capstans during this period, neither capstan contacts (drives) the tape.

—
FORWARD

O

TAKE-UP

—a
FORWARD

REEL DRIVE

READ HEADS
R WRITE HEADS ()=—IDLER

O,
Py TAPE CLEANER! |ERASE HEAD
8 CAPSTAN | | '}

BRAKE PORT I
PRE

SSURE

PAD
END OF
TAPE
SENSOR

PHOTOSENSE INDICATORS

LR ——=()

TACHOMETER — -

PHOTOSENSE INDICATORS
/

?’,,

VACUM
l-—— STORAGE ——— —
COLUMNS
Fig. 1 Tape path through a CDC 607 or 626 tape transport

(23]

3.

L.

HEAD ASSEMBLY

The head assembly consists of individual read and write heads, an erase head, tape
cleaners, and pneumatic pad. Each of the read/write heads has two magnetic gaps. One gap
is used for writing; the other for reading. The gaps are arranged so that during a write
operation the tape first passes under the write gap to record the data and then under the
read gap to check the writing. This allows each frame of information to be examined and
verified immediately after it is written on the tape. Thus if any discrepancy occurs
during the write operation, it is detected at the read head. The broad band erase head
removes any information recorded on the tape before new information is recorded by the write
heads. The two tape cleaners, located on either side of the heads, pneumatically remove
foreign particles on the tape surface during a read or write operation. The pneumatic pad
maintains a precise contact pressure between the tape and the head gaps. This is provided
by means of air pressure which minimizes read and tape wear by blowing the tape against the
heads. The tape transport can accelerate tape to high speed within 2.5 (* 0.5) msec. Con-
versely, tape motion is completely stopped within 2.25 (£ 0.5) msec. Vacuum loops in the
storage columns minimize the tape mass that must be accelerated or stopped within this

period by separating the heavy tape reels from the portion of tape under the heads.

NON-RETURN-TO-ZERO RECORDING

During a read or write operation, several recording heads, one head per recorded track,
are placed vertically across the tape. As many bits as heads may, therefore, be simultaneously
recorded, one bit per track. A non-return-to-zero scheme is used for recording (change on
mq1g"), In this system, magnetic particles on the tape are aligned in either the positive or
negative direction. A binary "1" bit is recorded by reversing the aligrment (polarity); no
polarity reversed results in a "0" bit (Fig. 2). Thus each track of the tape is fully mag-

netized and the polarity is reversed as each "1" bit is recorded.

e Qe mgr e e e e g

+1

0

-1 L

WRITE CURRENT
N NC N\ N
—— NIN SI1S+=NIN——SIS ——=OXIDE
BASE
FLUX PATTERN ON TAPE
READ SIGNAL FIG. 2

(24]

5'

7 AND 14 TRACK TAPES

On our CDC 6600 we have two types of tapes which differ by width. The 626 tape trans-

port records on 1-inch tape, the 607 tape transport on v@-inch tapes.

On 1-inch tapes the information is recorded with 14 tracks -- 12 data and 2 parity
tracks (Fig. 3). A frame of data thus consists of two 6-bit binary data characters and one
parity (check) bit for each character. Tracks O through 5 and 7 through 12 specify the
characters, while tracks 6 and 13 hold the parity bits. The upper and lower characters in
each frame correspond to one data word from the Peripheral Processor Unit (PPU). The parity
bits are added by the tape controller. The data is recorded in binary format (just as they
are represented in memory). The parity bit is chosen, so that the total number of "1" bits
for each character in a frame is odd (odd or binary parity). The total number of "1" bits

per frame is therefore even.

The information on tape is recorded in groups called records and files. A minimum of
one frame of information constitutes a record. Adjacent records are separated by a 1-inch
unrecorded area (inter-record gap). A longitudinal parity frame is recorded at the end of
each record so that the total number of ™1's" in each record track is made even. (This
frame is not parity checked for vertical parity). During input/output operations the tape
controller checks each character for correct vertical parity and each record for proper
longitudinal parity. If a parity error occurs, a parity error status bit is set, which can
be tested by the PPU.

A file consists of a group of records. Adjacent files are separated by recording an
end-of-file mark at least 6 inches from the last record in the file. The file mark consists
of an octal 17 and its longitudinal check character (also an octal 17) in the four lower
order bit positions. The upper bits are all zero (including the parity bits). Thus reading/

writing an EZF mark always causes a parity error for vertical parity.

—BINARY TRACK BCD TRACK
NOTATION . NOTATION
TAPE MOTION \

GO e [ETRRRIRITRIN
INEREIRRRINEN] [EERTRTRITEIN)
IRETEIRRUIRE] ' IXERIERIE
IR ERECRRRTINEY ' |x,|||u
TR] ' ||u||||\
o s
e v
yotb i 7
it 8
[RERTIRRRTINR]
H|l|y||||||"

g
IRERRCRRNTRN| ll

IR)

DETAIL
—RECORD-LRECORD CAP:l CORD -’

LONGITUDIN AL
.005 CHECK CHAR.CAP

K
o
T
T

vt

800 bpi=00125

(READ).022

FI1G.3

[25]

-4 -

Half-inch tapes are recorded with seven tracks (Fig. 4). Tracks O through 5 specify
the characters, while track 6 holds the parity bits. Two frames, 6 bits each, correspond
to one data word from the PPU. Data is recorded in either binary or BCD format (as repre-
sented in memory). There is no conversion carried out by the controller for BCD recording.
The only difference between these two formats is: binary is recorded in odd, BCD in even

vertical parity.

The inter-record gap for '4-inch tape is %, inch, and the file mark gap is at least
6 inches for v;—inch tapes. But there is a major difference between the two tape transports,
the 607 for '/-inch and the 626 for 1-inch tapes. The 626 tape transport always records
information with a density of 800 bits per inch (bpi) on sach track, and it can only write
tapes in odd parity. The 607 tape transport can record with 200 bpi, 556 bpi, and 800 bpi,
and will write tapes in either BCD or binary mode.

Some other details about transfer time, start/stop time, etc., are given in Table 1.

BINARY TRACK

NOTATION
800 BPI = 0.00125
556 BPI = 0.0018 (0.0036) BCD TRACK
200 BPI = 0.005(0.01) —_— NOTATION
TAPE MOTION
r TR TR fl:llii:)
i 1]
L — Wi 2 (R LRI TRTRR R TATIT AT R A
I | | I I i 3 by e 8
ot 4 o A
3 TN U o)
(READ) 0.032 TRACK 0048 [N o fuanag
DETAIL

1.0XIDE SIDE UP ON DIAGRAM. RECORDING LONGITUDINAL
HEAD ON SAME SIDE AS OXIDE. CHECK CHAR GAP
200 BPI=0.02(0.04)

556 BPI =0.0074(0.0148)
600 BPI =0.01

—RECORD-L—RECORD GAP: RECORD—-.‘
NOTE:

FIG.4

TAPE MARKERS

Reflective spots are placed on the tape to enable the tape unit to sense the beginning
and the end of the usable portion of the magnetic tape. The reflective spots are plastiec,
1 inch long by % ¢ inch wide, coated on one side with adhesive strips and on the other with
vaporized aluminium. They are placed on the base or uncoated side of the tape where they
can be detected by photo-sensing circuits. Tapes at CERN have two loadpoints; in between
them, a label to identify the tape has been written, and one end of tape marker. The re-
flective marker placement can be deduced from Fig. 5, which contains only one loadpoint.
Figures 6 and 7 show the different layout for the two kinds of tapes used at CERN. The
distance between first and second loadpoints is 4.5 to 5.0 m for 1-inch and 0.3 m for

'/, ~inch tapes.

[26]

Take -up Reel

25 (+5,-0) ft. ——t

f—————

15t L) ————-

FORWARD

FI1G.5

Supply Reel

END OF TAPE REFLECTIVE SPOT

LOAD POINT REFLECTIVE SPOT

\

10-2 In DIA REEL

N

TAKE - UP | supPLY
REEL PEEL
(LEFT) / (RIGHT)
FORWARD DIREC TIOPI/ \
PHYSICAL 50 ft PORTION OF 18 ft PHYSICAL
BEGINNING OF TAPE| MINIMUM MAG TAPE MINIMUM END OF TAPE
2400 ft. MAX.
FIG. 6

TAKEUP
REEL
(LEFT)

LOAD POINT
REFLECTIVE SPOT

FORWARD DIRECTION /* gpoT

10 1/2" DIA REEL ——

END OF TAPE
REFLECTIVE

SUPPLY
REEL
(RIGHT)

PHYSICAL

BEGINNING —*
OF TAPE

2400" MAXIMUM

FIG.7

[27]

USABEL PORTION PHYSICAL
P—IO MINIMUM OF MAG. TAPE 18" MINIMUM —ste— END OF
TAPE

8.

FILE PROTECTION

The back of the tape has a slot near the hub which accepts a plastic file protection
ring. Writing on tape is possible only when the reel contains the file protection ring.
If an attempt is made by the program to write on a tape not containing the file protection
ring, an error status is returned and the program normally is terminated. The tape may be
read with or without ring. Presence of a write ring on a reel is signalled by the overhead
lights in the tape transport, which come on immediately after the tape load process is
executed, The ring should be removed from the tape reel after the run is completed to

avoid loss of valuable records through accidental rewriting.

SUMMARY
The following example illustrates the information given so far.

Memory cell ALPHA is assumed to contain:

63654 314:320614.34.77061
CELL ALPHA

How would this information look on 1-inch and '4-inch tape? What would be the difference

between binary and BCD write request?

a) 5 fremes longitudinal
information P check character
—a~~/
0 11111 1
1 01010 O
2 (10010 0
3 5;; 00000 O
4 2: 10101 1
5 11111 1
P ..."5.6'6‘;.6...6.......'........
;;.;.6.;.6...;................
8 11010 1
9 00000 O
10 00001 1
11 10101 1
12 11011 ©
3;.6.6.6.6...;................

R N R RN NN Y NRY]

The dotted lines show the parity tracks. Information is stored beginning with track 12
through 0. So, beginning with track 12, the first frame contains 6365.

(28]

b) 10 frames longitudinal

information gap heck character
r———ﬁ/*"\/-c

0 1111011101 0

1 1011001100 1

2 0100000100 0

3 0000000010 1

4 1100110011 0

5 1111011111 1

‘ "'iiéééééiéé""'%"""'""""

0000000000000 0000000000000000000 00

The dotted lines show the parity track. Information is stored beginning with track 5
through 0. (First frame: 63).

Both figures show how the information would look after execution of the binary write
request. If the same memory cell had been written with a format specification of A10, the
1-inch tape would look the same, but the parity bits in track 6 of the '4-inch tape would
be complemented. Figure 8 shows how the information is actually recorded on tape; it shows

a developed tape.

RECORD FILE MARK
/ A\

FILE MARK GAP ‘

RECORD GAP

FIG.8

[29]

6914

¥3Qv3aY 3dVL ¥3dVd O— L
431107d dWODTVD O—9—

W3LSAS AVIdSIA ¥3EWNN 1334 3dVL O— S —
IL AdH O—%—

NN VIVG O—E—

$3dALT13L < 3010NM1 O—C

10dH O—1

310SN0) O—0 —

S1ANNVHIENS JOX3ATdINNW

=D x

—
—{8}
—{i1H
3

fs} W2
e [P
—{eH 0099
-
1+
o

4
37010N1 7| sndd

13NVd
14vlS avaad

D ST13INNVHD 0/1

[30]

9‘

TAPE CONTROLLERS OR SYNCHRONIZERS

As pointed out by Mr. T. Bloch in his notes, all input/output handling on the 6600 is
carried out by ten Peripheral Processor Units (PPU's) using the twelve I/¢ data channels
available. BEach data channel is bidirectional, not buffered, and can transmit a 12-bit
data word every usec, or major cycle, in either of both directions. Several peripheral
devices may be physicaliy attached to each data channel. TFigure 9 illustrates the layout
for CERN's 6600. Although there are several peripheral devices attached to one data
channel, only one device may communicate with the PPU at one time. To accommodate this
feature, each device has a unique function select code to comnect it to the data channel.
The code is contained in the upper three bits of the 12-bit function code sent out on the
specific data channel by the function instruction of the PPU. Only the selected device

responds to this code.

As Fig. 9 shows, the twelve 1-inch and four bé—inch tape transports available are
attached to four different channels. They are not directly comnected to the data channel
but controlled by two different types of tape controllers or synchronizers: the 6622
synchronizer, which has one read/write control to control from one to four 626 1-inch tape
transports, and the 607-B synchronizer, which also has one read/write control to control
from one to four 607 ‘4 -inch tape transports. Each tape unit belonging to a synchronizer
is uniquely defined by a unit number between O and 3, which can be dialled on the tape

transport.

Table 2 contains the different function and status codes for both types of controllers.
As already stated, the 6622 synchronizer allows binary write and read only. Compared with
other types of controllers, used for instance on the CDC 3800 at CERN, these two types of

controllers are pretty poor. They do not have functions for

Search Forward EgF

Search Backward EZF

Skip bad spot

Select 200, 556 or 800 bpi

to mention some of the major deficiencies. But they have undoubtedly a big advantage --
they are much cheaper. It might be worth while to note that all adding and checking of
parity bits is carried out by the controller and not by the tape transport.

II. LOGICAL LAYOUT OF INFORMATION RECORDED ON TAPES

The logical layout of information recorded on tapes is determined by the operating
system used. This chapter will explain the actions taken by the SIPROS operating system
for the various FORTRAN tape handling statements.

WRITE (I) LIST

The list items of a binary write request constitute a logical record, which may be of
any length. If it is larger than 512 words, the system will split it up into as many
physical records of 512 words each and a last physical record of £ 512 words.

[31]

- 10 -

All physical records, except the last of a logical record, will be written on tape

followed by a 12-bit trailer, containing the position number of that physical record within

the logical record.

WRITE (5) (A(I), I = 1,1524)

will result in the following record picture on tape (1-inch tape assumed):

1st physical 2nd physical

3rd physical

I 4] [2]

-\'V %J

512x 5 frames record 1 frame trailer

I

500x 5 frames

containing posi- record. Last
tion within logi- physical of
cal record. logical, no
trailer.
J/

A\

1 logical record

2. WRITE (I,100) LIST

All BCD or formatted I/ is done in the form of so-called unit records.

card handling is the card image always containing 80 characters.
the line, always having 136 print positions.
tape handling is 140 characters.
long. The logical record structure given by the list
no way of telling from tape what belongs together.

physical tape record and always consistsof 140 characters.

WRITE (5,100) A, B, C
100 FERMAT (A10, //2A10)

is not maintained at all.

The unit for

The unit for printing is
Deduced from here the I/0 buffer for formatted

Therefore each physical record is exactly 140 characters

There is

Each logical record is equal to a

will result in 3 physical records on tape, 140 characters each, where the first 10 characters

of the first record represent the information in A, converted with format A10, followed by
all blanks, the second record consists of 140 characters, all blanks, and the third record

contains in its first 20 characters the information stored in B and C converted with format

2A10, followed by all blanks.

3., READ (I) LIST

4. READ (I,100) LIST

As opposite to the above.

5. REWIND I

Causes the PPU to issue a function code to bring the tape specified back to the load-

point (2nd at CERN).
[32]

6.

9.

10.

- 11 -

END FILE I

Causes the PPU to issue a "WRITE FILE MARK" request.
BACKSPACE I

Expects to position the tape to the beginning of the previous logical record on tape.
As the BACKSPACE request issued by the PPU to the tape only goes back to the beginning of
the previous physical record, some more action by software is necessary.

1st action: backspace two physical records

2nd action: read one physical record

3rd action: was it longer than 512 words? (if no, tape positioned)

4th action: execute as many physical backspaces as specified by the contents of

the trailer.
1 indicates the position of the read/write head on tape.
I KN AN) o AN 1 i NN) o o

start position T
action 1 T
action 2 T
action 4 t 1 I 1
CALL WIND (I)

As there exists no function code to Search for a file mark, the PPU will read physical
record by physical record and always check after each record whether an EgF-mark has been

encountered or not.

CALL BACKZF (1)

As there exists no function code to search for a file mark, the PPU will start by back-
spacing a physical record and reading it, check for EgF, and if not found, then continue by

backspacing two, read one, check, until it finds an EgF.
ERROR HANDLING

10.1 Write parity
Let us assume the PPU found that it got a write parity indication back from the

synchronizer when it was writing the nth physical record of a logical record. The PPU will
then backspace to the beginning of the bad physical record and write a file mark, which

erases 6 inches of tape. It will then backspace over the file mark and try again to write

[33]

- 12 -

the 1>cord. It will repeat this procedure up to five times, and if it still fails with
parity error, it will give up. The tape therefore is positioned after the last bad copy of
this physical record.

Note: Backspace over a file mark positions the tape in front of the actual file mark and

not in the inter-record gap following the last record!

L 3] L Bfe
\ v — T S verore
FILE MARK GAP T

(\ BACKSPACE
af'ter

10.2 Read parity

The PPU, when getting read parity for a physical record, will backspace and read again.
If after 20 times it is still failing, it will give up, transmit the contents read with the

last trial, and leave the tape positioned after the bad physical record.

III. CERN'S TAPE LABELLING SCHEME

INTRODUCTION

At an installation such as CERN, with many thousands of tapes in constant use, it is
very important to guard against the accidental erasure of information through a wrong tape
being loaded. With a single job processing system as on the IBM 7090 or CDC 3800, the
chance of this happening was reduced by having a tape label as well as a reel number for
each tape, and the operator checking both of these against the operating form before mount-
ing the tape. Under time-sharing or multiprocessing systems, the operator usually does not
know which job requiring tapes is going to be executed next, and the system must give the

operator the information which he previously found from the operating form.

This is done at CERN by program-controlled display boxes suspended above each tape unit.
These can display a 6-digit reel number, density required (for '%2-inch tapes), and the
protect status. In principle, these could have incorporated a tape label as well. However,
the rate of tape loading and unloading will increase considerably because of the increased
throughput of the system (particularly for tape jobs, many of which use very little CP
time). The operators cannot, as previously, find and check the tapes before they are needed
by the system. Thus the tendency to check only the reel number (since they are stored by
reel number) would increase under these circumstances, and errors would probably occur.

Since the computer has to tell the operator which tapes to load, a better method is to
allow the computer to check that the tape mounted tallies with the one requested. This

(3]

- 13 =

means having a record on the tape containing the relevant information (one installation is
considering the possibility of hardware to "read" numbers punched at the beginning of the
tape, but to our knowledge no such mechanism exists at present). Any installation which
introduces a scheme using the first record of a tape for this purpose has a major problem
to face:

what to do about existing tapes containing information still required. To copy

all of these probably requires an exorbitant amount of machine time and manpower. Unlabelled
tapes from other installations also present difficulties; similarly, the use of its tapes

on other machines.

The scheme adopted at CERN overcomes these problems by adding a second loadpoint before
the programmers loadpoint, the space between the two being used to hold, and protect, the
label. The presence of the two loadpoints does not affect tape loading, as CDC tape trans-
ports search forward for the loadpoint when the "load" button is pressed, the tape having
been positioned by the operator at the beginning of the leader. To use a magnetic tape
with two loadpoints on another computer requires only that the tape be loaded at the second,

instead of the first, loadpoint.

INFORMATION REQUIRED IN THE LABEL

The CERN tape label is a 100-character record, which contains the following fields:

Field Name No.BCD Example Comments
Chars.

Heading 10 CERN LABEL Invariable.

Reel No. 6 013127 Checked by System.

Sequence No. Order of the reel in a
multi-reel file, for
eventual reel changing.
Not used at present and
left blank.

File Name 20 LIBRARY EXPT-70 Checked by System.

Subheading 20 GRIND OUTPUT For programmer's use.

]

Programmer's 10 BARDOT.B From J¢? card, for

name accounting purposes.

Date label

written 6 641231 Year, month, day.

Retention L 0013 In weeks.

Spare 20 For extensions.

The sequence of operations performed by the §ystem when tapes are loaded is:

i) set the reel number, protect status and density on the display box above the

appropriate tape drive;

ii) as each tape drive becomes ready, check protect status and density ('/o-inch tapes

only); if incorrect, unload the tape and reset its number in the display box (once

only); otherwise

if still incorrect abandon the job;

[35]

- 14 -

iii) compare the tape label against the reel number and file name given on the equipment

control card and check the file protect status;

iv) if both the reel number and the file name are correct, position the tape at the second

loadpoint and clear the display box;

v) if the reel number is incorrect unload the tape and reset its number in the display

box;
vi) if the reel number is incorrect twice, the job is abandoned with a message WRONG
TAPE(S) LOADED;
vii) if the file name indicates that the tape is not allocated, or the file name is in-

correct, but the tape is expired, a new label is written and the tape accepted;

viii) if the file name is incorrect and the tape is unexpired, the job is abandoned with a

message.

If the tape is accepted and information is present on the equipment card in the fields
subheading and/or retention, then the label is rewritten with the appropriate information
added. The subheading field allows programmers to change the use of a tape without chang-

ing the file name.

FLOW DIAGRAM AND CRITICAL PART OF LABEL CHECKING

The attached flow diagram (Fig. 10) illustrates the execution of that part of the
system that checks the tape label. It also contains the error messages printed out by the
system. The most critical part from the user's point of view is surrounded by dotted lines.

The file name is checked there.

Let us assume Mr. X wants to run his program and write information on his tape. Careful
as he is, he renews at that point the retention period for his tape and gives a new subhead-

ing. He wants to use tape 3001 L1547, but by error he punches on the equipment card:

//* TAPE 5 5001 L4547 Mr. X HIS TAPE D 12
l__T_—_——-—l —

subheading retention
period

The System will display the reel number 5001 above a free tape unit and the operator loads
the tape, which might belong to Mr. Y, as‘specified with a write ring. The System will then
find correct protect status and reel number but a different file name, since the file name
of Mr. Y's tape 5001 is L1620. If Mr. Y is now careful, the retention period of that tape
will not yet expire, and the job will be abandoned with file name error. If, however, the
tape has expired, it will be accepted, a new label containing the new file name will be

written, the tape will be allocated for the next 12 weeks, and the contents will be destroyed

[36]

TAPE LABEL

Reel nurhber
density
file status

i

:
§
b

¥
H

Read first
Record in
BCD

ad) No 'set a flag to)
ite lobel
Yes.
. aflag to
retention No ag
Sield

clear display, print iabel
No __fposition tape cor- with

FAG.10
FLOW DIAGRAM OF CERN's TAPE LABELLING SCHEME

[37]

-15_

if Mr, X's job starts writing. What can Mr. Y do now? TFirst of all he has lost his infor-
mation on the tape due partly to his own fault. He forgot to check his tape from time to
time, and to give a new retention period when the old one had expired. On the other hand,
he cannot use his tape any longer, as it is now allocated by Mr. X for 12 weeks. Next time
he uses the tape, his job will be abandoned with file name error, but by the subheading he
might find out that Mr. X used the tape. These two gentlemen might now come to an agreement
on how to use the tape further on. From System's point of view the old label can be re-

written in one additional run, using the following small program:

*J¢B,Y,000000/CoM
*TAPE 5 5001L1547 D 00
*TAPE 5 5001L1620 MR Y D 15
PROGRAM RELAB
CALL EXCHZL(5)
STEP
END
s FINISH

The System will ask for loading of tape 5001, rewrite the label with a retention period of
zero weeks, and the job starts execution. The call to the library routine EXCHZL causes
that tape to be unloaded, and the continuation tape specified on the second tape control
card (which is physically the same reel) to be loaded. Due to the different file name, the
System will check the allocation of the tape, find if expired, and rewrite the tape label
with the new file name L1620 and allocate it for 15 weeks.

IV. A PROGRAMMING EXAMPLE FOR EFFICIENT TAPE USAGE ON THE CDC 6600

As outlined by C.R. Symons in the Appendix "Economics of Magnetic Tapes", it is pos-
sible to use the storage capacity of a magnetic tape to 76% if one writes logical records
of about 512 words in length, and there is not much benefit if one writes logical records
of more than 512 words, since in any case they are broken up into physical records of 512
words maximum by the SIPROS system. Many programs are, however, coded in such a way that
they write much shorter records onto tape, and thus do not only waste tape storage capacity
but also, as the following programming example will show, a considerable amount of central

processor time. (See Programming Example I, App. I.)

The intention of this programming example is not to show a very sophisticated and
‘fajl-safe' way of tape handling, but to prove that it is easy to change already existing
programs with the minimum effort, so that they make better use of tape storage and are less

time-consuming not only for peripheral processor time but also for central processor time.

[39]

- 16 -

The tape used was a 300-ft ‘4 -inch tape. In the first part of the program, the sub-
routine SUB1, this tape will be written in a continuous loop using a FORTRAN WRITE statement
until the End-of-Tape condition is detected by use of the error procedure SETTZL. The total
time necessary will be measured with routine TIMEZB, and the total number of words trans-
mitted will be counted. In order to simulate the conditions found out by Symons, the record
length will vary between 1 and 400 items. The tape is then rewound and the information is

read back., Again the time is measured.

In the second part, now in the main program itself, the same process is repeated but
the WRITE/READ statements are replaced by CALL statements to two subroutines, COLLZV and
DISTZV. The routine COLLZV contains a 512-word buffer, and will collect the data to be
written until the buffer is completely filled and then write it out on tape. The entry
ENDZV allows the last buffer to be written on tape and the pointer to be reset for the
buffer,

The other routine, DISTZV, contains also a 512-word buffer into which a record is
read from tape and distributed to the calling routine, I-words at a time. The entry INITZV

initializes the first read and sets the pointer for the buffer.

The effect of this simple, although at first sight lengthy effort, is surprising

with respect to the timing:

Words written Write time R?ad tinme

in msec in msec
READ/WRITE 202305 13560 14220
COLLZV/DISTZV 24,0645 4920 4740

The gain in speed by using COLLZV/DISTZV is considerable, and due to the fact that
512 words are written/read at once, using the short-list form of a WRITE/READ statement.
Also the storage capacity of the tape is increased by one-third. Please note that the
length of records written in the first part varied equally between 1 and LOO list items per
record. The gain would have been considerably higher if much shorter records had been
written. (the average binary tape record is 80 words long, as shown by the statistics on the
CDC 6600). This test was also carried out, using the same 300-ft, '/, -inch tape, on the
CDC 3800. There, of course, the length of the buffer in the two routines DISTZV and COLLZV
had to be reduced to 255 words, since this is the maximum length of a physical record for
FORTRAN binary I/6. The test gave a similar gain for tape storage, but a completely dif-
ferent result for the timing:

(0]

17

Words written W?ite time R§ad time
in msec in msec
READ/WRITE 190951 36283 26952
DISTZV/COLLZV 246351 43588 33795

The most obvious thing is the much faster reading than writing in both cases. This is due
to the fact that the 3800 SCOPE system is always reading a physical record in advance,
e.g. when the program at the beginning asks for the first record to be read, the second
record is read into a system buffer immediately following. In most cases it is therefore
already in memory when the program asks for the next record. This set-up is possible due
to the fact that the 110 channels on the 3800 can be operated simultaneously with the CPU.
The reason for the lower efficiency of the routines COLLZV/DISTZV is twofold:

a) in the SCOPE system there is not much difference between handling of the short-list
form of I/¢ and the long-list form, and

b) the system does a considerable amount of overhead work when a subroutine is called in,

before the first statement of that routine is executed.

Please note that a word of the CDC 3800 is 48 bits long, and therefore results in eight
frames on tape, whilst a CDC 6600 word is 60 bits long and therefore needs ten frames to

be written ('4-inch tape assumed). At the end of the next chapter, dealing with BUFFER IN
and BUFFER OUT statements on the CDC 3800, there will be a programming example, which also
allows the speeding-up of data transfer from and to tape on the CDC 3800.

V. BUFFER IN AND BUFFER OUT STATEMENTS ON THE CDC 3800

1. LAYOUT OF CDC 3800 INSTALLATION AT CERN

CERN has installed the following configuration of a CDC 3800:

[41]

2.

- 18 -

Console Computation module 6LK storage (4 modules of 16K each)
3801 3804 3609 3609
3609 3609
3802 Communication
0 2 module
[! |
2 3806 3806 3806 3 Channels
7 0 0 5 3
3446 3423 3256 307 Controllers
415 501 405 Peripheral equipment
Card punch Eight Y/2-Inch tapes Line printer Card reader

HOW TO USE GIVEN HARDWARE FACILITIES IN FORTRAN

The part that interests us is that of the eight '/fo-inch tapes. They are controlled by
a tape controller having two independent read/write controls and can control up to eight
magnetic tapes ('4-inch). This controller is hooked up onto two channels, channels 0 and 1,
which can be operated simultaneously with each other and with the computational module.
To each of these channels is connected other peripheral equipment, namely the card-punch
controller to channel O and the line printer to channel 1. If neither of these two is
operating, up to two magnetic tapes can be used for read/write operations at the same time.
If the card punch is going, channel 0 is locked out for tape operation, and vice versa.
The same is true for the line printer and channel 1. How can this hardware possibility
now be used in order to speed up FORTRAN programs with tape handling. Let us first con-
sider programs using READ/WRITE statements and look at the format of a binary tape.

The maximum length of a physical record, written with a FORTRAN WRITE request, is
256 words, L8 bits each, where the first word is a leader word generated by the system and
the following 1 to 255 words may contain the information generated by the program. A
logical record of more than 255 words will therefore be broken up into as many physical

records as necessary.
Example:
WRITE (5) (A(I), I = 1,520)

will result in three physical records with the following layout:

[42]

< 255 < 255

] 1 [2 E

< 10

| Iv

which means that the last physical within a logical record always contains in the header an
integer number that tells the system how many physical records belong to that logical record;
all the other physical records contain a O in the header. (Note: If a logical record is
equal or less than a physical record in size, the header will be 1.) In case of several

write requests following each other, e.g.

WRITE (5) A,B,C
WRITE (6) D,E,F

the control will not be returned back to the program before each write request has been
completed, including the tape operation. Therefore, there is no gain from that two-channel

concept,
In case of reading, the system will take the following action:

When the first read request is issued from a program for a tape, the system will ful-
f£il this request, and before returning control to the next following statement within that
program the system will initialize the read of the next following physical record on that
tape into a systems buffer but not wait for completion and return control. If the program
now asks for that record when next it executes a read statement to that tape unit, the
1st physical record is already in core and can be transmitted directly without tape opera-
tion. In other words, the system is always reading one physical record in advance. In
this way, as seen from the following examples, a considerable gain in time is possible.
When now two successive reads to two different units are issued, it is theoretically pos-

sible that they will overlap for some time, depending on the housekeeping done.

Generally speaking, it is true that there is no way for a pure FORTRAN program to
utilize a multiple channel concept on a machine unless new statements, as for the CDC 3800

SCOPE system, are invented. These are:

BUFFER IN (i,p) (A,B)
BUFFER gUT (i,p) (4,B)

TF (UNIT, i) us, Uz, Us, Ua
X = LENGTHF (i)

and, especially for the system in use at CERN, the

CALL E@STAT (i, IFLAG)

They are explained in full detail in the 34,00/3600/3800 FORTRAN manual, page 10-6 and
following pages, and the CERN 3800 manual, page 2.

The BUFFER IN/GUT statement initiates a direct data transfer from/to the peripheral
medium to/from the programmers own data area in core storage. There is no internal data
transfer between systems and programmers area as for the FORTRAN READ/WRITE statement,
before the data are transmitted via a data channel to the peripheral medium. As soon as

the data transfer is initiated, control is given back to the program while the data transfer

[43]

3.

- 20 -

is still in progress. This allows the programmer to perform other calculations which do
not need a data transfer and do not use the data currently in progress. The IF (uNIT, 1)
statement now provides a means of telling the program whether or not a data transfer has

been successfully terminated.

On the other hand, as the data transfer is done directly from programmers area to
peripheral medium, the physical record size of records on tape is exactly equal to the
length of the specified buffer area (A,B). They are therefore non-standard records and can
only be read via the BUFFER IN statement. As experience shows, this is unfortunately the
wider application of these statements. Of course, the advantage of writing gapless records
of maximum core size allows very economical tape usage, and as long as people are aware of
associated problems we will have nothing to say against this. But this is not the only
advantage they offer. The main intention, as outlined before, was to provide the programmer
with an instrument by which he could now code himself in FORTRAN operations (which were
previously a domain of certain people capable of coding in machine language) in order to
make his program more efficient by overlapping, as far as possible, input, output, and

calculations.

A TYPICAL EXAMPLE FOR USE OF BUFFER IN/UT

Let us assume that there is Mr. ABC who has to process data on tape, record by record,
with almost the same calculation procedure and who has then to write out the results onto a
second tape. (I should think this is also a valid assumption for CERN.) He now can code
the classical way, use FORTRAN READ or WRITE statements to perform the I/f transfers, or he
might use BUFFER IN/@UT statements, the more adequate way for the 3800 to perform his task.
Such an application has now been coded, once using READ/WRITE statements and the other time
using BUFFER IN/GUT statements. The actual computation carried out was a matrix inversion,
and the order of the inversion was varied to find a maximum, so that the time for total
data transfer for BUFFER IN/GUT was just about the time for computation. The program first
prepares 7500 random numbers and writes them in logical blocks of 2500 words each onto tape,
15 records totally. As the known maximum length of the input data is now 2500 words per
record, a total data area of 7500 words, array A, is used in core to handle the data in the

following way:

A(2499) A(4999) A(7500)
Block Block Block
I II III

A(1) A(2500) A(5000)

Pointers are kept so that these three buffers can be used circularly with the following

steps:
1) f£ill block I with first set of data from tape 5;

2) £ill block II from tape 5 and start calculation in block I;

(4]

L.

- 21 -

3) empty block I on tape 6, f£ill block III from tape 5 and calculate in block II;

4) continue the same process circular as in (3) until input data are exhausted (next step
would have been: fill I, empty II and perform calculations in III);

5) continue calculation and writing, until all records are handled.

The coding of this concept is given in Programming Examples II and III, App. IT and III. The
measured times are:

Order of Time for Time for
matrix READ/WRITE BUFFER IN/BUT
10 10.52 sec 5.15 sec
12 10.91 sec 4.38 sec
14 11.61 sec 4,38 sec
16 12.48 sec 4.38 sec
18 13.57 sec 4.98 sec
20 14.92 sec 6.33 sec

The maximum achieved is a ratio of = 3:1 for matrices of order 16 and 18. This is an
optimum, where the calculation time is Jjust about the data transfer time. If the calcula-
tion is governing, gain will be less in per cent. If the calculation time is less, then
most of the time is spent in idling on an IF (UNIT,i) statement, to check for completion of
the buffer operation. (See Programming Examples IT and ITII, App. IT and III.)

COLLZV AND DISTZV USING BUFFER IN/gUT

In Chapter IV it was mentioned that the concept of the two routines, COLLZV and DISTZV,
did give some gain in the storage capacity of a tape on the CDC 3800, but the time used was
considerably larger than with normal READ/WRITE statements. In the following programming
example it is now being attempted, although not yet completely checked out, to use the
buffer statements in order to speed up these routines. It is obvious that a simple exchange
of the READ/WRITE statements with the BUFFER IN/@UT statements would not gain very much:
the program would always have to wait for completion of the buffered operation. As a result

of this, a so-called "double buffer system" was used:

COLLZV: while collecting data into the first buffer, the second buffer is written onto
tape.

DISTZV: while distributing data from the first buffer, the second buffer is filled from
tape.

[45]

- 224

The same test as that described in Chapter IV was carried out for these new routines. The
0ld results and the new ones are given in the following table:

Words written Write time Read time
in msec in msec
READ/WRITE 190951 36283 26952
old COLLZV/DISTZV 246351 43588 33795
new COLLZV/DISTZV 242970 24333 24005

This shows that the basic concept of collecting data into a buffer of adequate size before
writing them on a peripheral medium and reading them into a buffer before distributing them
into the appropriate memory locations, pays not only in storage capacity of the tape but
also in speed obtained., It is, of course, necessary to use the adequate forms: the short-
1list form of the WRITE/READ statement in the CDC 6600 SIPROS system, and the double buffer
concept, together with BUFFER IN and BUFFER gUT statements in the CDC 3800 SCOPE system.
(See Programming Example IV, App. IV.)

In order to take care of various I/f error conditions, the two routines COLLZV and
DISTZV became larger and more complex. They have been used in the way explained in
Chapter IV in order to find their effectiveness. However, they have never been checked out
completely for all error conditions. It is therefore not advisable to use them as they
stand, without checking.

[46]

- 2% -

‘ut g

(3F 00¢ ‘33 0021)
3 00%2

oesr /°9}
9
.=H *\n
oesul g

oesu ¢

298 /°UT (0G¢ JI9A0

208 /°UT 0G|

og.m W

(33 00¢ ‘33 002})
313 0042

oesr 4z

o08UW g

oesuW ¢

0es/°UT (G JI8A0

998 /°UT 0G}

*ut 9

(33 00¢ ‘33 0024)
33 0o%e

oesr) °99
9
‘ut Q\n
09SW g

ossmw ¢

288/°UT (G¢ JI8A0

%68 /*UT 0G|

‘ut 9

(34 0024)
1J 00%2

o8s8r ¢°Q

42
‘ut |
o9sW G2°2

oesu G°Z

008 /°UT (Qg¢ J9A0

ses/°ut 06}

ded a1ty Jo puyg

Teea xad adey
3Tq 21/03BI 04}
sure1l/831q BIBQ

de8 paoosa-asjur
euty dogg
swt} 3Je3s

pBOTUN PUB PUTMSI
J10J peeds admy,

LLTEN/QVEL
J0J paeds ede],

L L L W s3108ay,
1dq 008 tdq 946 1dq 002 tdq 008 £318U8(Q
‘ut ¥, ‘ut 2 ‘Ut 24 ‘ut |} ez1s odey,

L09 929

sjaodsuea; edey 9g9 pue /09 8U3 JI0J suot3BeoTJT09dg

| ®1qey,

(47]

- 24 -

Table 2

Function and status codes for the 6622 and
607-B tape controllers (synchronizers) used.

Type of tape controller (synchronizer)

Functions 6622 (1 in. tapes) 607-B (Y, in. tapes)
Select 300U 200U
Write Binary 3010 201U
Read Binary 3020 202U
Backspace 303U 2030
Rewind 306U 206U
Rewind Unload 3070 2070
Request status 310U 210U
Write BCD - 221U
Read BCD - 222U
Write File Mark 361U 261U
Status request 6622 (1 in. tapes) 607-B (%, in. tapes)
Ready XXX0 XDX0
Not Ready XXXA XDX1
Parity Error XXx2 XDX2
Load Point X XDXU
End of Tape XX1X XD1X
File Mark xxex XD2X
Write Lockout XX XDuX

U=

D = density D =
D=
D=

0,
1,
2,

800 bpi
556 bpi
200 bpi

(48]

unit number of a specific tape transport (o-7)

X means unused, no value to be
assumed

PROGRAMMING EXAMPLE I

[0SPED #arsza®uwadues NATE 10/10/67 ##wsa®s® VERSION 046 w*wwwsxs PAGE

PROGRAM 10sPED
COMMON /TAPEIN/ JTAPE
COMMON /TAPOUT/ 1TAPE
DIMENSION 1A(4p0)s18¢4pU)
COMMON TEOT
EXTERNAL [EOT1
CALL SETTZL(435,1E0T1,433,1E0T1)
CALL sSUB1
JTAPE=5
ITAPE:S
REWIND 5
DO 1 I=1,400
1 TACD) =1
CALlL TIMEzZB(ITIMEL)
1E0T=D
ICOUNT=0
2 CONTINUE
po 3 [=1,400
CALL COLLZV(IA,D)
ICOUNT=ICOUNT#]
IF(IEQT) 4,3,4
3 CONTINUE
GO TO 2
¢ CALL TIMEZB(ITIME2)
REWIND 5
READ(5) C
BACKSPACE S
CALL TIMEZB(ITIMES)
1E0T=C
CALL INITZv(1B,1)
1C=10
5 CONTINUE
DO 9 1=1,400
CALL DIsTZv(1B, D)
1C=IC+1
IF(IEDT)Y 1009,10
% CONTINUE
GO TO 5
10 CALL TIMEZB(ITIMEA4)
REWIND 5
READ(5) C
BACKSPACE 5
ITIMEL=(ITIME2=1TIMEL) #00
ITIME3=(ITIME4=-ITIME3) 200
PRINT 170, 31TIMEL 2 1CGOUNTLITIMES,IC
sToP
100 FORMAT(LH1,'AL| READ/WRITE QPERATIONS ARE PERFORMED IN BUFFERE
1D MODE ',/,4M0,'WITHIN ',110,' MSEC IT WROTE ',110,' WORDS BEFORE
2REACHING EOT ',//4H0,'WITHIN ',140,' MSEC IT READ BACK',140,' WORD
3s')
END

I-1

(19]

SUBL #erssp®ynavess DJATE 10/10/67 weatasdos VERSJON 046 e®ruwrnasx PAQGE

SUBROJTINE SuBjg
DIMENSJON 1A(400),18¢400)
COMMON IEOT
EXTERNAL IEOT1
CALL SETTZL(435,1E0T14,438,1E0T1)
REWIND 5
DO 1 I=1,400
t IA(D)=1
CALL TIMEZB(ITIMEYLD)
IE0T=0
ICOUNT=0
CONTINUE
DO 3 I=1,400
WRITE(S)(IACY) ,Jul,)
ICOUNT=ICQUNT+]
1IF(IEQT) 4,3,4
3 CONTINUE
GO TO0 2
¢ CALL TIMEZB(ITIMER2)
REWIND 5
READ(3) C
BACKSPACE 8
CALL TIMEZB(ITIMEI)
1EQT=¢
IC={
5 CONTINUE
DO 9 I=1,400
READ(3) (IB(J)sJ=1s1)
IC=1C+1]
IFC(IEQT) 10+9,10
? CONTINUE
GO TO 5
10 CALL TIMEZB(ITIME4)
ITIMEL=(ITIME2-1TIMEL)#00
ITIME3=(ITIME4=ITIME3) 060
PRINT 100,ITIMEL 2ICAUNT,LITIMES,IC
RETURN
100 FORMAT(1H1,'ALL REAU/WRITE QPERATIONS ARE PERFORMED IN NON BUFFERE
1D MODE ',//1HO,'WITHIN ',I40,' MSEC IT WROTE ',]10,' WORDS BEFORE
2REACHING EOT ', //3WU,"WITHIN ',140," MSEC IT READ BACK',140,' WORD
3s')
END

"~

[50]

COLLZV s # =spwwhrws DATE 23/05/87 won roeh VERSION 041 sw#w:c #w PAGE

SUBROJTINE JOLLZV(A,I)
THIS 2WITINZ JILL CILLECT WIRDS FR0% 4,RRAVY A, 1 AORDS AT A TIME
I7 WI.L PIT THEM INTO A BUFFER QJF 512 WORJB AND WRITE ONTO TAPE
CaMMON IEOQT
COMMQl 7 TAQ0JT/ITA®E
DIMENSION ACI),BUFFER(512)
DATACIPOINT =03
I1=1
nd 2 J=1i,I1
IPOINT=IPOINT+1
BUFFERCIPOINT) =ACd)
IFCIPOINT 512> 2,1,°2
1 WRITE ITAPE) 3UFFER
IPOINT="
DID W3 REACH END OF 7APE
IFCIEDTY 4,2,4
SET 1307 EQJAL TO LAST ELEMINT =MPTIEn
4 [EO0T=J
RETURN
2 CONTINUE
RETUR
ENTRY ENDZV
IPOINT=0
W2ITE (ITAPZ) BUFFER
IFCIEJDT EQ.1; IEOT=-1
RETURY
END

[51]

cacQaaQ

Q

«Q

DISTZV rw-a#vnwrxunwnsz DATE 23/05/67 awu xexh VERSION 041 ##ws«.ax PAGE

SUSROJTINE JISTZVC(A, D)

THIS 0JTINS A4ILL READ # REZORD OF 31, WORDS FROM TAPE AND DISTRI-
3JTE IT ON JALL INTD ARPAY A, I WOIRUS AT & TIME,

Al INITIALISATION IS NECESSARY AHEN=VeR A NEW TAPE IS STARTED, OR
WHENEVER A 3AJKSPACE OR REWIND 4AS SE£N DINE ELSEWHERE TO THAT
TAPE,

¢OMMON IEOT

CUMMOY /TAPIIN/ JTARE

DIMENIIJON A(L),BUFFER(512)

Ii=1

DN o2 J=1,I1

JPOINT=JPOINT +1

A‘Ji=3UFFER(JPDINT)

IFCJPOINT 512172,3,2

JPOINT =

READ(JTAPS) BJFFER

DID WS REACH S=ND OF TAPE

IF 1307) 4,2.4

SET 130T EQJAL TO L8ST ELEMENT TILLZ=D

1EQT=J

RETUR

CONTI HUE

RETUR Y

INITIALIZATION 0VUTINE

ENTRY I417ZY

JPOIN =

READ(JTAPE) BJFFER

RETUR !

EilD

[52]

TEOTL - west -wzusnsspsns DATE 23/05/97 wwagnexh VERSION 044 sweu: #n PAGE

SUBROJTINE IEJT1
coiMMod I[EOT
IEOT=1

RETUR

ExD

[53]

PAGE NO.

PROGRAMMING EXAMPLE II
FTN 5.3 0>r25767/

PROGRAM ROWRIT
DIMENSION A(750¢), INDEX(6), INDEX1(50,2)

C
C PREPARE LATA IN CM
DO % I=1,75C0%
1 ACIY=RANF(-2)

C SET INDEX(J) TO LIMITS OF EACH DATA BLOCK OF 2500 WORDS
I=C
Do 2 J=1,6,2
I=1+1
INDEX(J) =1
I=1+2499
2 INDEX(J+1)=1
G
C TRANSFEP DATA FROM CM TO TAPE 5
DO 3 I=1,5
DO 3 IP1=41,6,2
K1=ThDEXC(IPL)
K2=1nDEX(IP1+1)
WRITE(S)Y (A(J),J=K1,K2)
3 CONTIMUE
EMDFILE 5
REWIND 5
REWIND 6
C
C START PRCCESSING
DO 1220 WNB=:11,23,2
READ(R), [Pz
BACKSPACE 5
CALL TIHMEZZ(IP4)
IPg==1
[P2==3
IP3==<%
I00UNT=Y
5 [P1=]PL+2
1P2=1P2+2
IP3=1P3+2
IFr (1P1,GT,5) IPi=1
IF (1P2.G7.5) Ip2=1
IF ([P3.G7.5) IP3=1
IF ¢1P1.L™.2) GO TO 38
L1=TADEX(TPL)
L2=INDEX(IPI+1)
C
¢ TRAMSFER MEXT BLOCK OF DATA FROM TAPE 5 TO CM
READ(S)Y (ACD),I=L1,L2)
g8 IF (!P3.LT.2) GO TO 11
ICOUNT=ICOUNT+1
K4=INDEX(IPI)
K2=TNDEX(IP3+1)

C WRITE RZTSULTS OF LAST CALCULATION QN TAPE 6
WRITE(S) (A(J),J=K1,K2)

11 IF ¢ICOUNT.EQ.0) GO TO 3G
IF (1P2,L7.2) GO 70 13

II -1

{55]

FTN

5.3

C

Ki=INDEX(IP2)

C PROCESS TATA
CALL MATIN1(A(K1),50,NS,50,0, INDEX1,NERROR, DETERM)

IF(RCF,5) 18,17
IF (TCCHECK,5) 91,5

ICOUNTa-1

1P3=1P3+2

Go TC 8

CALL TIMEZZ(IP5)

TIME=[P5=1P4

TIME=TIME 1900,

PRINT 131,NS, TIME

RENIND 5

REWIND 6

CONTINUE

sTOP

WRITE(61,103)

sTno

FORYMAT(+ MATRIX OF ORDERw,I3, =

3 FORMAT(*PARITY ON READ =)

END

II - 2

[56]

PAGE NO.

TIME TAKEN

072576/

SEC*,t10.3)

PAGE NO.

PROGRAMMING EXAMPLE III
FTN 5.3 0272576/

PROGRAM BUFFER
DIMENSION A(7500), INDEX(6), INDEX1(50,2)

C

C PREPARE CATA IN CM
Do 1'1=1,7535C
AC1)=RANF (-1

1
C
C SET INDEX(J) TO LIMITS OF EACH DATA BLOCK OF 2500 WORDS
[=0
DO 2 J=14+6,2
[=1+1
INDEX(J)=]
1=1+2499
2 INDTX(J+1)=1
C
C TRANSFED DATA FROM CM TO TAPE 5
Do 3 1=1,5
DO 3 1P1=1,6,2
K1=IADEX(IPZ)
K2=TNDEX(IP1+1)
BUFFER QUT (5,13 (A(K1),A(K2))
23 IF (LHIT,8) 23,3
3 CONTINUE
ENDFILE 5
REWTIND 5
REWIND 6
C
G START POCCESSING
DO 1020 NS=1:s,20,2
READ(5), TPi
BACKSPACE 5
CALL TIMEZZ(IP4)
[Plzel
[P2=s3
1P3=s5
ICOUANT=1
5 1P1=1P1+2
I1P2=1P2+2
IP3=1P3+2
IF (1P1.GT,5) IP1=1
IF ¢1pP2,.GT,5) Ip2=1
IF (IP3.GT.5) Ip3=1
IF ¢!P1.LT.C) GO TO 8
L1 =INDEX(IPL)
L2=INDEX(TIPL+1)
C
C TRANSFE2 MEXT BLOCK OF DATA FROM TAPE 5 TO CM
BUFFER IN (5,1) (A(L1L)Y,A(L2))
g IF ¢1P3.LT,/2) GO TO 11
ICOJNT=ICOUNT+1
K1=TNDEX(IP3)
K2=INDEX(IP3+1)
C
C WRITE RESULTS OF LAST CALCULATION ON TAPE 6
BUFFER QUT (6,1) (A(K1),A(K2))
141 IF (ICOUNT.EQ.0) GO TO 30

(57

FTN 5.3

C

PAGE NO.

IF (1pP2.LT.0) Go TO 13
Ki=INDEX(IP2)

C PROCESS TATA

13
14

15
30

[y
[a5)
[en]
[en]

O
o

CALL MATIN1(A(K1),50,NS,50,0, INDEX1,NERROR,DETERM)
IF (UNIT,5) 13,15,14,9:

ICOUNTs-1

[P2=%5

IP1=25

IF (ULNIT,6) 15,5

CALL TIMEZZ(IPS5)

TIME=IP5=1P4

TIME=TIME/Z1C.20.

PRINT 1231,NS,TIME

REWIAD &

REWIND 6

CONTINUE

STOP

WRITE(61,102)

STNP

FORMAT(* MATRIX OF ORDERw,I3,* TIME TAKEN
FORMAT(» PARITY ON BUFFER IN w)

END

IIT - 2

(58]

0572576/

SEC*,F1¢

.3)

FIN 5.3

OO0

Q

PAGE NO. 1
PROGRAMMING EXAMPLE IV
0>/2576/

SUBRCUTINE COLLZV(A,I)

THIS ROUTINE WILL COLLECT DATA FROM ARRAY A, 1 WOPDS AT A TIME,
INTO A DOUBLE BUFFER SYSTEM AND WRITE THEM QOUT ON TAPE AS THE BUF
FER GETS FILLED,

THE MEANING OF THE FLAG WORDS IN BLOCK /C0L1ZV/ IS

JERR 5 NO ERROR IND = 1 BUFOU1+2 , = 3 BUFQUL ONLY
JFRR 1 END OF TAPE IND = 2 BUFOU2+1 , = 4 BUFQU2 ONLY
DIMENSION ACD)
INTSCER OQUTAP
COMMCN/COL1ZV/ JERR, OUTAP, JEMPT, IND
COMMCMN sCOL2ZV/ JPOINT,BUFOUL(255),BUFCU2(255)
I1=1
JEMPT=C
L=2
BUFFER TWN HAS BEEN FILLED. SWITCH TO BUFFER ONE.
L=J=MPT+1
JPOINT=D
CHZCK THE PREVIOUS BUFFER 0OUT OPERATION BEFORE ISSUING THE NEXT
IND=1
IF(UNIT,OUTAP)Y 2,3
CALL EOSTAT(OUTAF,JERR)
DID WE REACH END OF TAPE
IFCJERR)Y 13,4,13
ISSUE RBUFFER OUT FOR BUFFER TWO
BUFFFP OUT (OUTAP, 1) (BUFOU2(1),BUFOU2(255))
ASSIGN 5 TO JuMpi
COLLECT DATA FROM ARRAY A INTO BUFFER ONE.
DO 6 JEMPT=L,I1
JPOINT=JPAINT+1
BUFALLCJPQINT)=A(JEMPT)
Ir (\.DOINT'ZSS) 6'7’6
CONTINUE
RETURN
BUFFEP ONF HAS REEN FILLED. SWITCH TO BUFFER TWO
L=JFNVMPT+1
JPOINT=C
CHENK PREVIQUS BUFFER OUT OPERATION BEFORE ISSUING NEXT.
IND=2
IF (LNIT,QUTAP) 8,9
CALL EOSTAT (OUTAP,JERR)
DID WE REACH END OF TAPE
IF(JERR) 13,10,13
1SS!E RUFFER QUT FOR BUFFER ONE
BUFFER 0OUT (OUTAP,1) (BUFOUL(1),BUFO0UL1(255))
ASSICGN 11 TO JUMP1
COLLECT DATA FROM ARRAY A INTO BUFFER TWO,
Do 12 JEMPT=L,I1
JPOINT=JPOINT+1
BUFQL2(JPOINT)=A(JEMPT)
1S BLFFER FILLED
IF(JFOINT=-255) 12,1,12
COMTINUE
RETURN

unou

[59]

FTN 5.3

o ReoRe] aa lvNoReoNe]

O NP ES]

O

(@]

aQ

13

14

100

20
21

22

PAGE NO. 2

05725767/

ERROR HANDLING

END CF TAPE SENSED
JER2=1

ASSIGN 14 TO JUMP1
BACKSPACE OUTAP
ENDTILE OUTAP
RETURM

EQCT ERROR HAS NOT BEEN HANDLED BY CALLING ROUTINE, IERMINATE

PRINT 13L,0UTAP

STCP

FCPMAT(x1MO CARE WAS TAKEN OF THE END OF TAPE CONDIIION INDICATED
1BY -COLLZV- FOR UNIT *,I4,* RUN TERMINATED,*)

INITIATE POINTERS ON FIRST CALL

ENT2Y INOUZY
ASSIGM 5 TO JUMPL
JPOTAT=0

IERR=?

RETURMN

WRTITE LLAS™ BUFFER ON TAPE, PUT AN END OF FILE AND RETURN

ENTRY ENDZV

IND==1HND+T

ASSIGN 5 TO JUMP1L
JPDINT=G

CHECK LAST BUFFER OPERATION
IFCUNIT,OUTAP)Y 15,16
CALL ECSTAT(OUTAP, JERR)
DID kF REACH END OF TAPE
IFCJERR) 13,17,13

WHICF IS THE LAST BUFFER
GO TC (19,18),IND

OuUT?”LT FROM ONE

BUFFERP OUT (OUTAP,1) (BUFOU1(1),BUFCUL1(255))
IND = 2
GO TC 2¢

OQUTPLT FROM TWO

BUFFER QU™ (QUTAP,1) (BUFOU2(1),BUFQU2(255))
IND=4

CHECK THE LAST BUFFER OPERATION IS COMPLETED
IFCUNTIT,OUTAP)Y 20,21

CALL ECSTAT(OUTAP, JERR)

DID WE REACH END OF TAPE

IFCJERR) 13,22,13

ENDSILE QUTAP

RETURN

HANDLING NF EOT CASE, ASSUMING A MEW TAPE WAS BEEN MOUNIEU

ENTRY EQTZV

[60]

FTN 5.3

30

320

32

34
35

36
37

PAGE NO.

go/2576/

ARE THERE TWO BUFFERS LEFT, OR JUST ONE.

GO TC (30,33,30,33),IND

BUFFER QUT (OUTAP,1) (BUFOUL(1),BUFOUL(255))
IFCUNIT,OUTAP) 31,320

CALIL EOSTAT (OUTAP,JERR)

AGAIN EOQT, TERMINATE

IFCJERR) 14,32,14

GO TC (33,37,37,37),IND

BUFFER QUT (OUTAP,1) (BUFOU2(1),BUFOU2(255))
IF (ULNIT,QUTAP) 34,35

CALL EOSTAT (OUTAP,JERR)

IF (JERR) 14,36,14

GO TC (37,30,37,37),IND

ASSIGN T T0 JUMPIL

JPOUNT=Q

RETURN

END

[61]

FTN 5.3

20

Q

a

Q

10

[
Ny

PAGE NO. 1

0>/2576/

SUBRCUTINE DISTZV(A, D)

THIS ROUTINE WILL READ DATA INTO A DOUBLE QUFFER SYSTEM AND DISTR#

BUT= THEM OM CALL INTO ARRAY A, 1 WORDS AT A TIME

DIMENSION ACD)

COMMCN /DIS1ZV/ 1ERR, INTAP,LENGTH, JFILL, IND

COMMCN /DISzZV/JPOINT.BUFTNi(255),BUFIN2(235)
I1=1

JFILL=C

L=21

GO TC JUMP1,(2,5,11,17)

BUFFER TWQ HAS BEEN EMPTIED.SWITCH TO BUFFER ONE.

L=JrlLL+1

JPOINT=E

CHECK FREVIOUS BUFFER IN OPERATION BREFORE [SSUING THE NEXI
IND=1

IF(URIT:INTAP) 2)3;14:15

CALL EOSTAT C(INTAP,I1ERR)

DID WF REACH END OF TAPE

IF (IFRR) 13,4,13

LEMNATH=LENGTHF (INTAP)

IF(LENGTH.NE.255) GO TO 16

1SSUE PUFFER IN FOR BUFFER TWO

BUFTER IN (INTAP,1) (BUFIN2(¢(1),BUFIN2(255))

ASSICN 5 TO JUMPY

DISTRIDUTE DATA FROM BUFFER ONE INTO ARRAY A,

DO &6 JrFILL=L,I1

JPOINT=JPOINT+1

A(JFILL)Y=RUFINL(JPOINT)

IS ALFFER EXHAUSTED

IF (JPOINT-255) 6,7,56

COMTINUF

RETURM

BUFTER ONE HAS REEN EMPTIED.SWITCH TO BUFFER TWO.

L=JFILL+1

JPOINT=C

?HFCK PPEVIOUS BUFFER IN OPERATION BEFORE ISSUING THE NEXI
ND=Z2

IFCINIT, INTAP) 8,9,14,15

CALL EOSTAT (INTAP,IERR)

DID WE REACH END OF TAPE

IF (IFPR) 13,19,13

LENGTH=LENGTHF (INTAP)

IF(LENGTH.NE.255) GO TO 16

1SSilE BUFFER IN FOR BUFFER ONE.

BUFFER IN (INTAP,1) (BUFIN1(1),BUFINL1(255))
ASSICGM 411 TO JUMP1

DISTRIBUTE DATA FROM BUFFER TWO INTO ARRAY A.

Do 22 JFILL=L, It

JPOINT=JPOINT+1

A(JEILL)Y=BUFIN2(JPOINT)

1S RLFFER EXHAUSTED

IF (JPOINT-255) 12,1,12

CONTINUE

RETURN

ERROR HANDLING

[62]

FTN 5.3

(@]

200

Q0

PAGE NO. 2

05/25/6/

END CF TAPE SENSED.

13 IERR=1
JUMP =1
ASSIGN 17 TO JUMP1L
RETURN
END CF FILE SENSED
14 IERRP=2
JUMP=2
ASSIGN 17 TO JUMPL
RET!URM
RFAD PARITY ERRQR
15 IERR=3
JUMP=3
ASSICGN 17 Tn JUMP1
RETURN
READ LENGTH ERROQR
16 1ERR=4
JUMP =4
ASSICGN 17 TO JUMP31
LENGT=LLENCTH
RETURN
LAST INDICATED ERROR HAS NOT BEEN HANDLED 3Y CALLING ROUTINE.
TERMINATE JOB WITH MESSAGE.
127 GO TC (186,19,20,21),JUMP
18 PRINT 1¢CG, INTAP
STOR
19 PRINT 41C1, INTAP
STOP
20 PRINT 132, INTAP
STOP
21 PRINT 123, INTAP,LENGT
STOP
INITIATE FIRST READ AND SET POINTERS. (AT 3EGIN AMD AFTER ERROR)
ENT2Y ININZV
JPOINT=?
ASSTCN 2 TO JUMP1
BUFFER IN (INTAP,1) (BUFIN1(1),BUFIN1(255))
IERR="
RETURN
ERRNR MESSAGES
100 FORMAT (*2NO CARE WAS TAKEN OF THE END OF TAPE CONDITION INDICATED
1 BY <DISTZV- FOR UNIT *,I14,+ RUN TERMINATED.*)
101 FORMAT (*4NO CARE WAS TAKEN OF THE END OF FILE COMDITION INDICATED

1 RY =DISTZV-
102 FORMAT (=INO
1 BY <DISTZV-
103 FORMAT (*1NO
1-DI1STZV- FOR
END

FOR UNIT
CARE WAS

,14, RUN TERMINATED.*)

TAKEN OF THE READ PARITY CONDITION INDICATED
FOR UNIT w,I14,« RUN TERMINATED,w)

CARE WAS TAKEN OF THE READ LENGTH ERROR INUICATED BY

UNIT #*,14,/+ THE LENGTH WAS *,110,*.RUN TERMINATED.*)

[63]

FORTRAN COMPILERS

by

Je Garratt

CONTENTS

1., INTRODUCTION

2. PROGRAM PLANNING AND CONSTRUCTION

3« FORTRAN PROGRAMMING TECHNIQUES AND FORTRAN PROBLEMS

31

342

33
3el
345
3e6

Declarative statements

3+1e1 DIMENSION

34142 EQUIVALENCE

34143 COBMON

3¢1el DATA statement
3e1e5 EXTERNAL statements

Control statements

34241 GO TO statements
34242 Subroutine CALLS

IF statements
Arithmetic statements and expressions
DO-loops

Extracting information

4, CONCLUSION

APPENDIX I

[66]

N

o O o o 1w WD

-~
o

=
-

1. INTRODUCTION

Before dealing with construction of FORTRAN progrems and methods of reducing the
time taken by the executing progrem, it is worth talking a little sbout the actual
process of compilation, i.e. the translation of FORTRAN statements into a form acceptable
by a particular machine.

Compilers vary considersbly in sophistication from simple statement translators to
multi-pass systems which scan the source statements (or their internal equivalent) again
and again, determined to squeeze all redundant instructions from the final output object
program.

The more powerful the compiler the less the user has to worry sbout optimization at
the source level, but there is always an area which the compiler can never optimize as
it does not know the purpose of the source program, merely its statement-by-statement

structure.

At CERN, we have been dealing with simple compilers on the CDC 6600/6400. Both the
SIPROS compiler and the SCOFE compiler are essentially one-pass compilers which translate
statements as they are encountered, and neither goes into a complicated scan of, for
example, DO-loops. Simple compilers normelly have the advantage of fast compilation speeds.

In Appendix I, a very broad outline of a compiler is shown. This is a simplified
f}ow chart but gives the main components, i.e. input of source statements, analysis of
d;clarations , breaking down arithmetic expressions, output to assembler of symbolic
machine code (not always necessary, though many compilers do this), final output to loader
(and/or card punch) of relocatsble machine instructions.

2. PROGRAM PLANNING AND CONSTRUCTION

Tt is very difficult to lay down hard and fast rules for program construction, but
it is possible to give some general pointers. The first questions the programmer should
ask himself are:

- Does this program have to be debugged quickly and then af'ter several runs be of no
further use?

- Is it a program which will run for some time, using a considerable amount of machine-
time during its lifetime?

In other words, is a quick answer the desired goal, or a slick, sophisticated routine
which will run reasonsbly efficiently for a long period? Obviously the criteria governing
the construction of the former are different from those governing the latter. In the
first cese, no time should be spent on examination of DO-loops for redundent sub-—expressions,
complex EQUIVALENCE structures should be avoided, the programmer should be generous with
temporery PRINT statements (in default of a symbolic debugging package), the statements
should be simple (no 10 continuation card arithmetic expressions).

[67]

S1S/kw/gs

-2 -

Most of these things help "compile time, as a normal compiler spends an inordinate
amount of time chasing along EQUIVALENCE chains and decoding massive arithmetic expressions.

For the production program, of course, the goal is perhaps twofold -- to produce
results fast, and also not to be oversophisticated so that the programmer who may one
day inherit the job will not spend his entire career understanding what it does.

The following points are basically common-sense but perhaps worth iterating:

i) Progrem design is a logical procedure —- it is worth spending a fair proportion of
one's time in the planning stage (especially for the production routines).
Many people, including the writer, find flow charts invaluable.

ii) It is worth checking the library to see whether any method has been programmed
already. In this context, the Programming Bnquiry Office is there to help at the
design stage as well as during the "debugging" stage. »

iii) Keep up to date with system documentation. It is often very useful to know about
the latest aids which are of'ten designed to cut your through=put time.

iv) Do not be mean with comments. Without them it is particularly difficult to remem-
ber how a program you wrote two years ago really functions.

v) For all classes of user, it is generally true that simple FORTRAN statements produce
the best results; in compilation-time, execution-time and, perhaps most important,
debugging"=time. There is a temptation occasionally to treat FORTRAN programming
as a challenge to outwit the compiler and to "bend" the language. No compiler is
perfect, and it is not hard to find ways of "breaking" it or deceiving it.

However, the next FORTRAN compiler will have its own set of idiosyncracies which
will probably cause you trouble had you pushed the language to the limit.
An example of this iss

END
1 FIIE 6 (continuation card).

3. FORTRAN PROGRAMMING TECHNIQUES AND FORTRAN PROBLEMS

In this section an attempt has been made to list points according to type of state-
ment inwlved. This is a "rag=bag" of explanations of facilities which have caused
problems in the past together with hints as how to improve object-time efficiency.

3.1 Declarative statements
3.1.1 DIMENSION

During the testing stage of a program, many people specify dimensions which are too
large, subsequently failing to reduce them when a job goes into production. As space is
importent in a multi~programming system, it is worthwhile checking dimensions to see if
they cannot be reduced. This also applies to the TYPE declarations and COMMON.

Variable dimensions

Many people have used varisble dimensions with a feeling that in some mysterious way
they save space. They do not. Space is allocated at compilation=time in the calling
program and is never released at execution=time.

(e8]

-3 -

Originally the main reason for variable dimensions was to use a standard subroutine
with varying calling routines. However, for those who are anxious about execution=time,
these statements cause extremely laborious code to be generated, as the following example
shows?

SUBROUTINE VARDIM (A,I,J)
DIMENSIZN A(I,J)

e o

A(K,M) = 3.0 .

To calculate the address referenced by A(K,M) requires the following:

Addr of exrray A+ I * (M - 1) + (K - 1)

and this is even worse for three-dimensioned arrays. These calculations have to be
performed at execution-time as the dimensions are variable during compilation of the
subroutine.

If possible, always declare the full dimensions or the appropriate reduced size in
constant form in the subroutine, unless it is required to change the row/column relation-
sMp,im.

DIMENSIZN A(10,10) in main program

CALL SUB (A,5,6)

3.1.2 EQUIVALENCE
This statement is normally used for the following reasons:
i) Space-sharing (sequentially) i.e.

EQUIVALENCE (A,B)
DIMENSIEN A (1000), B(1000).

A and B are not used at the same time.

ii) Mixed-mode arrays

An array containing fixed-pt and floating-pt numbers may be given a fixed and
a floating name, and elements be referred to in either mode.

iii) EBase of programming

Mnemonic reference to array elements, e.g.

DIMENSIZN A (1000)
EQUIVALENCE (STOPFG, A(3)), (GOFAG, A(4)), eeeenrsn

Over-elaborate use of equivalence tends to increase debugging problems and has an effect

both on compilation- and execution-time, particularly the latter.

If the compiler is comparatively simple, it will not attempt to optimize code in

which equivalence variables appear, as the following example shows:

[69]

-l -

EQUIVALENCE (A,Z).
Z=B+C*A
B = A/Q

The compiler will often try to remove redundant references to the same variable when
translating to machine code. In the gbove example, if Z was not equivelenced, the
compiler would load A into a register in the first statement and use the register again
in the second reference to A. As Z is equivalenced it cannot do so, and the problem
is that it requires a great deal of work to decide if a variable is equivalenced,
whether all this sort of optimization should be stopped or not. Most compilers do not

bother -- they just say the variable is equivalenced and stop it automatically.
3.1.3 COMMON

One advantage in using blank COMMON (apart from the possibility of redefining its
size in later subroutines) so that in some systems it overlaps (or uses the same space
as) the loader (i.e. the system program which accepts compiler output and lays it out

in memory, linking all referenced routines, etc.).

Labelled COMMON is certainly more elegant, end has the advantage of programming
ease. It also has the advantage of saving space in sequenced jobs where a particular
1abelled COMMON block is only referred to in a particular segment, whereas blank
COMMON reserves space all the time.

3.1.4 DATA statement

Some points to emphasize.
i) The type of the constant takes precedence over the type of the array or varisble.
ii) The use of octal constants as test patterns, e.g.

DATA (A = 616161B)
is system-dependent when used to compare, say, BCD characters on input. H=fields
should be used for this sort of thing.

iii) Some compilers do not diagnose "spill" conditions, e.g.

DATA (2 = 1.0, 2.0)
(where Z is unsubscripted).

3.1.5 EXTERNAL statements

To pass the name of a subroutine or entry point to emother routine, the EXTERNAL

statement must be used, e.g.

EXTERNAL EEB
CALL SETTZL (431,EEE).

I# it is not used, & local varieble, EEE, will be assigned to the calling routine, and

the called routine will transfer control to it, usually with disastrous results.

[70]

3.2 Control statements

3.2.1 GO _TO statements

G0 TO 100 - normel GO TO
6o T0 (10,20,30,40),I - computed GO TO
GO TO I - assigned GO TO .

A general remark sbout transfer statements. Try to avoid "birds-nest" coding which has

the following appearance.

GO TO—]

GO TO

— GO TO

I__J

GO TO

This sort of thing tends to occur during development, and if this is a one~time job it
is not important. However, all transfer statements inhibit optimization and the more

there are, the slower the program.
The choice of ASSIGNED GO TO, COMPUTED GO TO is largely a matter of taste, but there
are points to bear in mind:

The code generated for the ASSIGNED GO T0 is invariably shorter than that generated for

the COMPUTED GO TO, which has a “"switch-tsble". However, the COMPUTED GO TO normally

has a built-in check which is safer.

3.2.2 Subroutine CALLS

The information which may be passed to a subroutine via a CALL statement is of the
following type:
Variable
Constant
Expression
Array
Array element
External symbol
H=-string

The following points may be of interest:
i) When passing a constant, e.g. CALL SUB (2,3), watch for redefinition in the

subroutine, i.e.

(7]

SUBROUTINE XYZ (I,J)
I=Y
J=2

.
.
3

This will have the effect of altering all references to 2,3 in the calling routine
to the velue of Y,Z.

ii) The habit of dividing a program into many subroutines, each of which do very little

and pass on arguments to the next in the chain, is rather slow in execution-time.

iii) Where possible, use COMMON for passing arguments rather then formal parameters,
especially arrays and expressions. Most compilers are more efficient in code
generation where COMMON is used. This is because information is usually passed to
a subroutine in such a way that to reference an argument not passed in COMMON

requires approximately twice the time during execution than a reference to COMMON.

3.3 IF statements

In most compilers, the logical-IF statement is more elegant and even more efficient
than the arithmetic-IF. Currently, in SIPROS, the arithmetic-IF is more efficient.
The power of the logical-IF is to combine several conditions rather than to string such

conditions in sequential arithmetic-IF's, e.g.
IF(A.EQ.B.OR.C.NE.D.AND.G.GE.H) DO THIS ...
A good compiler will ignore all subsequent tests as soon as possible, e.g. in the above

expression, if A = B at execution-time the rest of the statements are ignored.

Arithmetic-IF statements require more statement numbers, a factor affecting the compiler

optimization performance.

3,4 Arithmetic statements and expressions

All, or neerly all other statements mey have some form of arithmetic expression
involved within, e.g. IF, CALL, and a reasonable compiler will have a standard set of
routines which "break-down" such expressions. The form of expressions presented to the

compiler has a significant effect upon its performance.

The following points may help to speed up execution:

i) The compiler is not of infinite size, and therefore it has built-in table limits.
Those progremmers who insist on constructing expressions covering several
continuation cards are probably not getting the best out of the optimization
process. This is because the compiler tries to produce as good code as possible
up to the limit of information it can hold at one time. After that, it will tend
to give up and revert to unoptimized mode. Moreover, it is not particularly easy
to "debug" this sort of program.

ii) If one is really worried about execution-time speed, it may be worthwhile to look
at function references, which cause a break in the optimizing sequence. If they

can be extracted from the middle of expressions and used before, i.e.

[72]

Z = A(I)*3.142+SIN(Q)/X+A(1)/C
becomes
SIN(Q)/X
A(I)*3.142+QQ+A(TI)/C.

QQ
Z

iii) There should be no "side-effects" in function calls, i.e. a function should return
one result and not alter any arguments or COMMON variables. Some compilers assume
this to be the case.

iv) On the 6000-series machines, constant divisors should be avoided, if possible.

Some compilers do this for the programmes, our current compilers do not,
8.8, Y = X/2.0 becomes Y = X*0.5.

Division on 6600 : 2.9 microsec

Multiplication " ¢ 1.0 microsec (also can be overlapped).

v) Subscripts. It is difficult to draw a line between what the programmer should worry
about, and what the compiler should do for him. In this less than perfect world, the
programmer who wishes to get the best out of his program is advised to try to
rearrange some subscripts (especially in D@-loops) to help the compiler. Compilers

tend to optimize subscript expressions which vary only in the constant part, i.e.

DIMENSION A(10,10), B(10,10).
a) A(1,7) = B(I,J+3).
The evaluation of the address A(I,J) is
Addr A+[10*(J-1)+I-1].
The evaluation of the address B(I,J+3) is
Addr B+[10%(J+2)+I-1].
The only difference is constant and the compiler will arrange to use the

expression (10*J+I) in an optimized way, i.e. it will not recalculate.

b) A(T,3) = B(J,I).
Here the variable portion of the subscript differs and the compiler will
probably not optimize.

The compiler can be helped, as the following example shows:
DIMENSION H(10,10,10)

D(M,M) = H(L,J,N) + H(I,J,N) + H(L,J,K) + H(I,J,K) + H(L,M,N)
+ H(I,M,N) + H(L,M,K) + H(I,M,K).

The compiler will not recognize (L,J,N), (I,J,N) as partially similar, but if ome
sets

MM = L + 10(J-1) + 100 (N-1)

NN =MM -L +1
then

H(L,J,N) becomes H(MM,1,1)

H(I,J,N) becomes H(NN,1,1)

(73]

and similarly for
H(L,J,kK), H(I,J,K)
H(L,M,N), H(I,M,N)
H(L,M,K), H(I,M,K).

This cuts out two multiplications for each subscript peir.

It should be emphasized that this sort of thing is only for those programmers

who are anxious to speed-up sensitive areas of production programs.

vi) Avoid redundant parentheses.

vii) Avoid redundant statement numbers.

3.5 DO-loops

The general rule for making a DO-loop more efficient is:

only leave within the loop such informetion which is directly or indirectly
dependent upon the DO-index, or information which chenges during the

processing of a loop.

Remember the DO-index should not be altered during the processing of a DO-loop.
Particularly important to watch when a DO has an extended range, i.e.

DO 10 I=1,5

CALL 'xyz(I,A(I)).

10 CONTINUE

It is probably safer to say ITEMP = I and send ITEMP across to XYZ,
or get XYZ to set ITEMP from I.

The extended range of a DO ruins all the compilers good intentions to optimize °

your loop as any transfer statement causes such optimization to cease.

Remember the following transfer situation is ambiguous and although not speci-
fically disallowed will cause trouble:
Do 100 I=1, 10

GO TO 100
DO 100 J=1, 10

DO 100 K=1, 10
L—— 100 CONTINUE

This will cause a transfer to the beginning of the innermost

Do(DO 100 K=1,10) as the CONTINUE statement expands as follows:

100 K = K+1
IF (K.LE.M,) GO TO K-LOOP

J = J+
IF (J.LE.M;) GO TO J-LOOP
I=1I+1

IF (I.IE.Mp) GO TO I-LOOP

(7]

3.6
i)

ii)

iii)

iv)

-9 -

The CONTINUE statement in this context should be thought of as part of the inner-
most loop and therefore such a transfer is one from outside a loop into the range

of such a loop.

Extracting information

Look for constant statements:

e.g. DO 100 I = 1,20
X = 3.0
100 A(I) = X*B(I)

X = 3.0 should be extracted from the loop.
Look at statements for divisions:
DO 100 I=1,20
100 A(I) = B(I)/zZ
Why not say ZZ = 1/Z and rewrite

DO 100 I=1,20
100 A(I) = B(I)*zZ

Look for static sub=expressions in statements:

DO 100 I=1,20
100 A(I) = C(I)*SIN(Z)*X.
SIN(Z)*X is static, should be:-
CC = SIN(Z)*xX
DO 100 I=1,20
100 A(I) = c(1)*cC
Look at subscripts:
It is recommended that this is only done by those programmers who have a definite
need to optimize particular loops in FORTRAN. Let us assume we have the following
situation:
DIMENSION A(10,10)

DO 10 J = 1,10

DO 26 I=1,10
A(I,T) = c.unen
If nothing is done by the programmer, a simple compiler will recalculate
A(I, J) each time.
However, we know J is constent in the inner loop. So, if in the outer loop we
set
JJ
XK

10(J-1) + (Value of my, first indexing para).
7+ (me - my)

then the loop may be rewritten:

D0 20 I = JJ,KK
A(T,N) = covennanns

and the calculation of (10(J-1) + I-1) is kept outside the loop.

[75]

b

- 10 -

A more difficult case is:

DO 100 K Z eesoe

. DIMENSION A(10,10,10).
DO 200 J = =--»
DO 300 I=....

A(TK,I) = evene

where I varies in the subscript by another factor then ms. A(J,K,I) can be defined as:
Addr A + [(J-1) + 10(K-1) + 100(I-1)].

This calculation takes place each time around the inner loop, and it is worth getting
outside. Therefore I varies by a factor which is a function of Dy ,D,, the first two
dimensions of the array. If we were compilers, we would try to arrange for an index

IMOD, say, which alters by such a factor that within the loop one could say
A(IMOD,1,1) NOT A(J,K,I)

and setting the initial IMOD value outside the loop. This can be done by setting
IMOD = Invarisble part of index (i.e. J,K part) + (my -1)* I-factor (Dy*D,).

Exemple DIMENSION A(10,10,10)
DO 300 I = 3,10
A(TK,I) = ...

¥
becomes?:

DIMENSION A(10,10,10)

IMOD = J+10*(K-1)+(3-1)*100 (3=m)

DO 300 I = 3,10

A(IMOD,1,1) = +.uns

IMOD = IMOD + a (a = 10*10) (set outside the loop).

s ec e

CONCLUSION

As stated earlier, this discussion can hope to do no more than touch on a miscellany
of odd points which mey help the FORTRAN programmer. However, the purpose of these
seminars is to encourage the computer user to consider ways in which he can help the
turn-round situation by writing more efficient programs, using the latest system
facilities and gaining a deeper insight into the way in which various parts of the
various systems do their job, Ultimately it is the user's responsibility to decide how
he wants to construct his jobs, and what he wants to do with them.

Well-constructed FORTRAN programs ere largely a matter of common sense. Decisions
as to whether to concentrate on speed, space~saving, or rapid debugging are a matter for
the user, but it is the writer's contention that simple FORTRAN will normally give him
all three (except in the rather sophisticated techniques described for DO-handling which
are not recommended for general use).

[76]

- 11 -

GENERAL FLOW CHART OF A FORTRAN COMPILER

This flow chart is based on the current SIPROS compiler.

READ A CARD

|

'END' CARD?

lNO

YES
—

SAVE <« B8 CONTINUATION CARD?
m N
BUFFER | w
PICK UP BUFFER SAVED
FROM PREVIOUS CARDS
YES
PROCESS ALL IS THIS THE FIRST
DECLARATIVES < EXECUTABLE STATEMENT?

(DIMENSION ,COMMON,ETC.)
AND ALLOCATE SPACE \ NO

k o

ANALYSE TYPE OF STATEMENT
AND JUMP TO APPROPRIATE
PROCESSOR, e.g.

APPENDIX I

CALL IN ASSEMBLER AND PASS
TO GENERATE RELOCATABLE

M/C INSTRUCTIONS

=

iy B3 B 3

EIC
REPLACEMENT , : :
STATEMENTS Ve N
ALL STATEMENTS GO THROUGH AN
ANALYSIS PHASE, CHECKING SYNTAX
AND TRANSFORMING TO SUITABLE
INTERNAL FORM
STATEMENT CONTAINS — 20, ARITHMETIC
- EXPRESSION EXPRESSION
CRACKER
l NO
GENERATE MACHINE
CODE FOR o
PARTICULAR STATEMENT & O OPTIMIZATION
l REQUIRED?

SEND TO ASSEMBLER 1ST

DECLARATIVES

!

ANALYSE AS FAR AS
POSSIBLE CONSTRUCT
TABLES OF ARRAY
SIZES l

®

_YES, REARRANGE
ORDER OF

INSTRUCTIONS

l PASS

®

[77]

FORTRAN INFPUT-gUTPUT STATEMENT
AND ERROR RECOVERY PROCEDURES

by

Je Garratt

1.
2.
3.
L
5
6o
Te
8.
9e

10,

INTRODUCTICH
BINARY INPUT/QUTPUT
SUMMARY

SHORT FORM OF ARRAY
BCD INPUT/PUTPUT
SUMMARY
ENC@DE/DEC@DE
ENC@TE

USING ENC@DE

ERROR PROCEDURES

APPENDIX I

APPENDIX II

APPENDIX IIT

CONTENTS

(80]

O\O\l\IO\ONV'I\.N_N\N.s

-

-
-

1.

2.

SIS/kw/gs

INTRODUCTION

The purpose of this paper is to attempt to give the FORTRAN programmer an insight
into the mechanics of input/output sequences of operations initiated by the FORTRAN state-
ments, READ, READ(i), WRITE(i), PRINT, etc. The uses of ENC#DE/DEC#DE are briefly discussed,
and their relative merits for certain tasks examined. The philosophy discussed is that,
applicable to SIPROS, but much of the general logic is common to other systems. A short
description of the error recovery procedures available in the SIPROS follows the main

description, in order to clarify their use with I/¢ operations.

BINARY INPUT/#UTPUT

In the SIPROS system, binary information is stored on tape in logical records, which
mey consist of one or more physical records. A logical record represents the amount of
information contained in the list of a WRITE(i) statement. A physical record normally
consists of 512 full central memory words of information, plus a 12-bit "byte" containing
the number of the physical record within the logical record. The last physical record
(or the only physical) of a logical record may contain 1 to 512 CM words with no trailing
byte. Thus & logical record is a well-defined entity when stored on tape.

The SIPROS system is also capable of reading/writing tapes in IBM 7090 format.

Binary input/output is achieved by use of the FORTRAN statements, READ(i) list and
WRITE(i) list, and we shall now examine these statements in more detail.

Let us take an example of a READ(i) list statement

READ(5)A, B(3), (¢(1), I =1, 100).

Here the programmer wishes to read 102 words from a logical record into the elements A,
B(3), and the first 100 locations of C.

The FORTRAN compiler, on meeting a statement of this form, will generate calls to
execution-time routines which will deal with the transfer of information from the next
logical record on log. unit 5 to the 1list, as follows:

(1) CALL I@RWB1(5, code)
(2) CALL FPLIB(A, B(3))
(3) DFxI=1, 100

(%) x CALL FPLIB(C(I))

(5) CALL IgRWB3.

Let us now anelyse these calls a little further:

(1) The first call to IPRWB1 is an initialization cell which sets up internal flags
and counts within the execution-time I/f routines and checks the validity of the log. unit

number. The "code" defines the operation.

(2) This is followed by one or more calls to FPLIB, dependent on the list structure,
which is the routine responsible for transferring data from the record to the list.
It processes as many items per call as possible and returns only in the following situations:

[81]

-2 -

a) A D@-loop structure (e.g. C(I), I = 1, 100) is
encountered in the list

b) On reading, a list of the form I, A(I),... where the value of I will change
before A(I) is filled.

A general flowchart of FLIB, IgRWB1 and IPRWB3 is given in Appendix I.

Generally speaking, FPLIB is a simple loop, which reads a physical record from the
tape into a CM buffer of 512 words and then transfers data from this buffer to the list,
asking for another physical when the buffer is empty, or returning control to the calling
program when no more list items remain to be processed. When it finds it necessary to ask
for a new physical record, control is taken away from the program until such time as the
record has been transferred to the buffer by the peripheral processor program which reads
the tape.

(3), (&) 1In the case of D@-structures, one item only is passed at a time to FPLIB,
the D@-loop itself being held in the calling program.

(5) IPRWB3 is a terminating routine which "skips" the rest of the logical record
(if necessary) when the list is exhausted. This is carried out by successive reads until
a "short" physicel record (i.e. not 512 + byte) is encountered. The tape is now positioned

to be read again at the beginning of a new logical record.

Error conditions are discussed in the section on "Error Procedures".

Similarly a WRITE(i) 1list statement of the following form:

WRITE(5)A, B(3), (¢(I), I =1, 100)

would be expanded to the following calls by the compiler

CALL IgRWB1(5, code)
CALL FQLIB(A, B(3))
DFx I =1. 100

x CALL FPLIB(C(I))
CALL IPRWB3 .

The "code" in the initialization call to IPRWB1 defines the operation as read or write.

The same remarks about the list structure apply to writing as to reading.

For writing, FPLIB acts in the reverse direction, taking data from the list amd
storing it into the CM buffer until the buffer is full, then issuing a request to write
one physical record on log. unit 5. For each physical written by FPLIB (i.e. not the last
physical of a logical) the physical record number is attached to the emd of the 512 word
data blocks.

IPRWB3 writes out the last physical record from the data left in the buffer from the
last call to FPLIB,

[82]

3.

L.

SUMMARY

(1) Within SIPROS, all FORTRAN binary reading /writing is performed by the routines,
IgRwWB1, FALIB, IQRWB3.

(2) 1Information is transferred to and from a CM buffer of 512 words in length,
physical record at a time, control being taken away during the transfer time.

(3) List structures of the form C(I,...), I = ... tend to cause slow execution as

they are dealt with word at a time.

(&) MB. The call to FELIB, although shown sbove as a FORTRAN CALL, is non-standard
and cannot be simulated.

SHORT FORM OF ARRAY

Statements of the form READ(i)A, WRITE(i)A, A being an arrey, will be executed much
faster than the alternative D@-form. This is because the size of the array is passed in

one call to FPLIB which cen organize a very fast transfer loop rather than satisfying the
list, one element at a time.

BCD_INPUT/MUTFUT
BCD data may come from or be written to the following media:
(1) Magnetic tape
(2) Card reader
(3) Printer
(&) Card punch .

We shell consider the input/output of information to and from magnetic tape in this
section, although the action of the CP routines is virtually identical for the other
media (the only difference being the conventional size of unit record for each medium).

Ttems (2), (3), (&) sbove are transferred to and from disk as far as the BCD I/¢f
routines are concerned, i.e. the routines never "read a card" direct from the card reader
or "print a line" direct to the printer. All transfers are carried out via a CM buffer of
512 words to and from the disk.

However, information on tape is transferred directly, record at a time, to and from
a small 14 word buffer held within the I/f execution-time routines. This buffer is also

used to hold individual records obtained from the large CM buffer for card reading/printing,
etc. A simple diegram is shown in Appendix IT,.

The size of a BCD record on tape is 14 CM words, and conventionally a physical record
is equivalent to a logical record in BCD operations (for backspacing, etc.).

From this point, the notion described is identical for BCD records handling irrespec-
tive of the medium.

Let us take an example of a typical READ(i,n)... statement

READ(5, 10)IA, B, C
10 FERMAT(5x, I3, Ak, E10.3).

[83]

-l -

The next record on log. unit 5 contains the following information

word 1 3 Pbbbbb10L4LAB
2 1 CDbbbbb213
3 2 . 4DbDbbbbDbbD
L=k all blank

A simplified flowchart of the I/ff routines (BCD) appears in Appendix III.

Under SIPROS, the READ(i,n) statement is compiled into a sequence:

(1) CALL FRMTAN1(5, 10, code)
(2) CALL FPLI¢(IA, B, C)
(3) CALL FRMTAN3 .

(1) FRMTAN1 is the initialization routine which checks the log. unit number, picks
up the FPRMAT conversion information necessary, and initiates the first read from the

specified log. unit.
When FRMTAN1 returns control, the situation is as follows:
a) the record described earlier is in the buffer as shown;

b) the FZRMAT statement has been scanned and the 5x has been obeyed, and the

first conversion specification I3 is ready for the first conversion.

Assume a pointer to the buffer, it would appear

(5x)

A —e

word 1: Pbbbb10LAB

(next character to be teaken).

(2) FPLIF is the routine which takes one conversion specification from the FPRMAT,
applies it to the date within the buffer, calls the appropriate conversion routine, and
stores the result in the next item in the list, It then calls the routine which gets the
next FERMAT specification and loops until the list is exhausted.

The sequence in the sbove example would be:

a) Pick up three characters, 104, from buffer according to I3.
b) Convert to binary and store in IA.

c) Pick up next conversion specification, AlL.

d) Pick up next four characters in buffer, ABCD.

e) Store left justified in B, i.e. ABCDbbbbbb.

f£) Pick up next 10 characters, bbbbb213.4.

g) Convert according to E.format.

L) Store in C.

i) Pick up next conversion specification: ")"(end-of=-record).

j) List exhausted, so return.

(8]

6.

-5«

(3) FRMTAN3 is a termination routine which resets the buffer, ete. For output,
e.g. [WRITE(i,n)...] it would write any output record set up in the buffer by FPLIf.

The sequence of events for WRITE(i,n) list is very similar except of course, that the
transfer of informetion is from list to buffer, e.g.:

WRITE(5, 10) IA, B, C
10 FPRMAT(5x, I3, ALk, E10.2)

would be compiled into the sequence:

CALL FRMTAN1(5, 10, code)
CALL FoLIg(1a, B, C)
CALIL FRMTAN3.

In the case of writing FRMTAN1 sets up an empty buffer, into which FPLIZ transfers
charecters according to the appropriate conversion specification. Whenever the FERMAT,
is completed, i.e. the last right parenthesis is encountered and more information remeins
to be output, a record is written from the buffer to the output medium. This also applies,
of course, if slashes (/) are encountered within the FPRMAT.

FRMTAN3 outputs the last record.

The transfer of records is governed only by the FPRMAT specification, not by any
overflow in the CM buffer, e.g.t

PPRMAT(160A1).

This is treated as a FERMAT error condition at execution~time.

SUMMARY

(1) Under SIPROS, all FORTRAN BCD input/output is achieved by the routines,
FRMTAN1, F@LI@, FRMTAN3.

(2) Information is dealt with record at a time by these routines. Control is taken
away whenever the central program would have to wait for a transfer to/from an external

medium.,

(3) Bach 1list element associated with a FPRMAT specification requires a conversion
process to complete the transfer to and from the record. This applies even to A-format,
where strictly speaking no conversion is carried out, but information is transferred
o character at a time. All conversions are done in the central processor -- information

passed to the appropriate PP routines is in external character form.

(%) Short forms of arrays are handled more efficiently than the alternative
D@-structure although this has little effect on the total time taken to transfer BCD data

because of the conversion/packing process.

(5) Where possible, BCD operations should not be performed where they can be replaced
by binary operations, for the following reasons:

[85]

-6 =

a) on tape, the packing density under SIPROS is far inferior (a maximum record
size of 14 words);

b) the FORTRAN I/¥ routines to hardle such operations are considerably slower for
the reasons mentioned earlier.

It is recognized that tapes are produced which have to be printed or used outside
CERN. There appears to be no reason why BCD records should be written on to 1" tape.

ENC@DE /DEC@DE

The main point to be remembered sbout these statements is that they are essentially
BCD I/¥ statements with the exception that the transfer of records is memory to memory,
rather than memory to/from some external medium (e.g. tape).

The statements generate calls to the same I/@f routines mentioned sbove, i.e. FRMTAN{,
PPLIP, FRMTAN3.

They are therefore no faster than any other BCD Input/Output as far as CP time is

concerned.

DECZDE can be used for records of varisble format, in order to decipher some keyword
within the record and then convert the rest of the information according to such a keyword.

Example
DIMENSION IX(%)
DATA(IA = 6H HEADER)
1 READ(5, 100)IX
IF(1X(1).EQ.IA)GH T 2
DEC@DE(36, 200, IX)X,Y,Z

2 DECEDE(36, 300, IX)A,B,C

.
.

100 mem(z'.mo)
200 FERMAT(10X, E15.3, I5, A6)
300 PPRMAT(10X, 2F10.0, I6).

The record is resd in with a normal READ(i,n) statement in A-format, and different
DECPDE statements are used according to the information in the first word.

ENCgbE

Programmers who use ENC@DE for packing into records in A-format and writing BCD
records in this way might consider whether they could equally use the system "packing/
unpacking" routines, BITSZA AND IMBDZA, and write the information in binary mode.

ENC@DE is also used for creating such tools as variable FQRMATS.

An example of this usage follows, together with an elternative method which uses

more space, but is considerably faster in execution.

[86]

9'

10.

Example

To create a varisble FPRMAT capable of printing 1/J where J may vary in size from
2 to 1000, without right-justifying J within an I, field, e.g. 1/bbb2. We require a
FERMAT conteining I1, I2, I3 or I4 dependent on size of J. Assume IA contains size of
I-filled required.

USING ENCEDE

Assume array IVAR contains (before printing I/J)

word 13 (5, I2, 1bb
word 2% H/, In) .
Using ENCZDE as follows:
ENC@DE(16, 100, IVAR)IA
FORMAT(1LH(5X, I2,1bb H/, I, I1, 1H)).
This will construct the array as shown above, with n = current value of IA.
I/J can be printed out using

PRINT IVAR, I, J.

A faster method:

DATA(IVAR: 10H(5X, I2, 1, 4HH/, I, 1Hb, 1H))

sets up IVAR as follows:
IVAR(1): (5X, I2, 1
IVAR(2): H/, I
IVAR(3): (blanks)
IVAR(4):)
DATA(IBCD: 1H1, 1H2, 1H3, 1HL).
The following sequence will produce the same result:

IVAR(3): IBCD(IA)
PRINT IVAR, I, J.

Generally speeking, the use of ENCPDE/DECEDE should be very carefully considered
where CP execution=time is important. Where the same result can be achieved by some
other method, it is advised that another method be chosen.

ERROR PROCEDURES

The use of SETTZL/EXEMZL, the general error routines, is described in the CERN
CDC 6600 computer Operations File (Section 3.2). The following is a brief description
of the method by which these routines interface with the FORTRAN I/@ routines and the
users recovery routine.

(87]

-8 =

If the user wishes to recover from a particular error condition (e.g. read parity) he
will call SETTZL with an error number and the name of a routine to which he wishes control
to be passed if the error occurs (or RETURN if he wishes standard recovery to be taken).

SETTZL stores the error number and the routine address in a table of "activated error
conditions".

If the FORTRAN I/¢ routine now senses a read parity indication (returned from the PP
routine reading the tape) it calls EXEMZL with an error number, a message, and information
concerning where EXEMZL should return control within the I/¢ routine.

EXEMZL will check the error number against those set by SETTZL and, if present, pass
control to the user's routine specified. The user may now:

a) set an indication for his own calling program (e.g. set a common flag);

b) return or exit by calling another routine which will re-initiate the whole
sequence of his program.

If the user wishes to accept the data he must return to EXEMZL by a normal RETURN
statement, because the list will remain unsatisfied unless he does so. Moreover, if he
wishes to return, he must not call further I/¢ statements within his recovery procedure,
because these may in turn cause errors which transfer again to EXEMZL, destroying the
linkage, e.g. if he now tries to return via EXEMZL, he will loop.

Similarly, if he tries to use the same I/¢ statement within the recovery routine,
he will loop when he tries to return at the I/f statement level.

Gernerally speaking, if the user intends to exit from his recovery routine, he may use
further I/@ statements.

If he wishes the I/f statement to be completed normally, then he should return via
EXEMZL, as the error is passed to the error routine when it is encountered, which means
that the operation may not be completed at that point.

[88]

Write
physical
record

Error/Special
condition ?

Yes

EXEMZL
(+ error No.)

APPENDIX 1
GENERAL FLOW OF FORTRAN I/g ROUTINES
(1gRwB1, FPLIB, IPRWB3) (BINARY)
IgRWBA
No
Is loglcal unit _ o pypysy 5 TERMINATE
no valid ?
Yes
Set up parameters
for record size,etc.
lSet buffer empty
RETURN
FLIY
No i Yes
READ ? >
l Yes
Buffer full ? £ > Buffer empty ? —¢
iNo No Rad

Transfer
list item to
buff.

List exhausted ?

No

physical record
into buffer.
(Unless last physical
already transferred
error - list exceeds
record)

Transfer item
from buff. to
list

Yes
<—— List exhausted ?

+No

Error/Special
condition ?

lYes

EXEMZL
(+ error No.)

No

Y
IORWB l— Error/Special ? ——> EXEMZL
J’ Yes . Have we already read _ No '\Read
GAD 2 ———>
RLiDN&; the complete logical ? vhysical
Write Yes
short
physical
record

Yes
EXEMZL <——— Error/Special ?

\LNO

RETURN <——————

[89]

- 10 -

APPENDIX II

INTERFACE BETWEEN FORTRAN BCD I/8 ROUTINES AND EXTERNAL MEDIA

Cards

(reading) Q

Large
Cards : sk | cM
(punching) 4—— | Tbuffer

(512 words)

) /
Printing

2 Fortran I/§
routine
tape > | buffer (14 words)

Fortran BCD
1/ ﬂ routines

[90]

- 11 -

APPENDIX III

GENERAL FLOW OF BCD I/# ROUTINES (FRMTAN1, FéLQ. FRMTAN3)

FRMTAN1

Initialize information
(begin addr. of format,
type of operation,etc.)

No
Log. unit valid? ——— > <EXEMZL > ... TERMINATE

READ
No
Yes
Errors? ——> EXEMZL
No
Get first format spec.
< FRMTAN2 >
EXIT
reLIg
Yes Read or write

Switch by type
of conversion spec.

! ! Lo

@ @ Others

® (not
1 1=

Transfer Convert Convert
char. at a time char. at a time char. at a time
from buffer BCD to binary to internal
to list according to FL-PT form.

1/8 spec. according to
Ew.d.
+ spec.
&

¥

Get next format spec.

End=-of record 3

(last call to FRMTAN2
sensed the last)

lYes
Yes
or READ(i, n)? ———> Read record

sensed? record in buffer

get next format spec.

N
<« M Errors? —22 5 mymum
READING? No

¥

Switch by type
of conversien spec.

v)
®

®

| |

Transfer Convert FL-PT No.
char. at a time in list item
from list word to external string

to buffer representing

I this No.

, Yes
® 42— hnother list item ? —2° 5

NB.
return will replace such a character by blank.
If the buffer overflows, a FORMAT error is diagnosed.

FRMTANJ

READ ? —2° 5 Write last

Yes record

&M prrors ? —Yo3 \ mxmuzL

-

Others
(not
shown)

If a character is sensed which is invalid according to its conversion specification, EXEMZL is called, and the

C0S~-~CHIPPEWA OPERATING SYSTEM

by

A. Maver

1e
2.

3

INTRODUCTION
SYSTEM ORGANIZATION

COS FILE SYSTEM AND J@B EXECUTICN

CONTENTS

[ox]

2.

518/kcw/eg

INTRODUCTION

This paper describes some fundamental characteristics of the Chippewa Operating System
%
(cos) /, The description is based on an example of a job processed by the system from the
initial phase when it is loaded from the card reader to the termination phase when the out-

put produced by the job is printed and punched, The example of the job is shown in Fig. 1e

J@Be

comgy FILE1,
comgN FILE2.
REWIND (FILE1)
REWIND(FILE2)
RUN(S)

164,

RELEASE FILE2,
EgR

PROGRAM EXAMPLE (INPUT, @UTPUT, FILE1, FILE2, TAPE3 = INPUT,

1 TAPE1 = FILE1, TAPE2 = FILE2)
STOP
END
EgR
DATA SET

& I5

Fige 1: Example of a COS job

The first card of a CO0S job must be the job card. It contains as a minimum of informa-
tion the job name (J(ZfB in our case). Other information like field length, priority and time
limit may be specified on the job card., For the sake of simplicity they will not be considered
here, In our case the system itself sets this information to fixed system parameters. The
job card is followed by a set of job control cards, terminated by an end-of=record card (Eﬂﬂ?.).
The control cards determine which programs are to be executed as part of the job and under
which conditions (equipment, central memory space, etc.) they are to be executed. Then a
program card follows and all the cards constituting the (FORTRAN in our case) program. The
program is terminated by an EFR carde A set of data cards follows, terminated by an EPR card,
The end of +the job is indicated by an end-of-file (EQF) cardes

SYSTEM ORGANIZATTON

To understand better the processing of our job, some words must be said about the system

organization: about the system components and about the communication between them.

€03 is initially loaded from the system tape, and during the loading its components are

stored in the central memory, on the 10 peripheral memories, and on the magnetic diske The

#) (C0S is an early version of the SCOPE system currently in use on the CDC 6000 series com-—
puters. The text in this paper is therefore out of date if referred to the SCOPE system
run at CERN, and should be completed with the appropriate documentation, mainly:

6000 Series SCOPE Handbook and 6000 Series SCOPE General References

[95]

-2 -

most frequently used programs and tables are stored in the central memory and in the peri-

pheral memories, the others on the disk,

The central memory contains permanently the Central Memory Resident (CMR), which is

composed essentially of tables, some frequently used central processor and peripheral proces-
sor routine libraries, and pointers to these tables end libraries, It also contains two
small central processor routines: the M@VE routine used to re-arrange the assigned central
memory space in contiguous form as jobs are terminated and new jobs arrive for execution, and
the IDLE routine, executed whenever there is no other job which can use the central proces-
sor. The CMR occupies about 6K words, The rest is left for user jobs, Figure 2 shows a

simplified layout of the central memory organization,

POINTERS

TABLES 1’c:xm (6K WORDS)

LIBRARIES OF SOME
CP AND PP ROUTINES

JOB AREA

Fig, 2: Central memory organization

Of the 10 peripheral processors (Fig, 3), one (PPO) is assigned permanently to the Sys-
tem Monitor (MTR) and one (PP9) to the System Display Program (DSD), These two processors
cannot be used for any other purpose,

MTR acts as the supervisor of all the system activity: it initiates and terminates the
execution of jobs in CMj; it monitors central processor programs for I/¢ requests and assigns
peripheral processors to execute these requests; it assigns data chamnels and peripheral

equipment; it administers the disk files, maintains the system time accounting, and so on,

DSD is responsible for the communication with the display console; it accepts commands
from the operators and sends requests to the operators; it displays the actual status of

the system components,

The peripheral processors P1, P2, ..e, P8, constitute the pool of free processors.

They have no fixed assignment. Their activity is subordinated to the monitor which asks
them to perform specific functions., The communication between the peripheral processors
and the MTR is handled by the peripheral processor resident, stored permanently in each of

the 10 peripheral processors' memories, For every MTR request, the peripheral processor resi-
dent loads a system routine and executes it, Every time a routine has to be executed by a
peripheral processor, it is loaded expressly and then executed, When the execution is ter-
minated, the peripheral processor is returned to free status and can be assigned by MIR to
perform another function, The routines loaded by the peripheral resident are called transient

routines, They can, in their turn, load overlay routines to perform more specific functions,

[96)

-3 -

In this way all users' I/ operations are treated, as well as operations concerned with the
loading and termination of jobs and generally with the handling of the job flow through the
system, As an example, consider the transient routine CIf (Combined Input/futput). A job
wanting to perform an I/ operation sends a request for CIZ to MTR, specifying also the type
of operation (read, write, etc,). MIR sends the request to a free peripheral processor which
loads CIF, CI@ calls first the overlay 2BP to check the buffer parameters and the legality
of the operation, and then the specific overlay to perform the operation requested (2RD to
read from disk, 2WD to write to disk and so on).

RESIDENT RESIDENT RESIDENT RESIDENT
MIR DSD
PPO PP1 PP8 PP9

L)
\4

POOL OF FREE PP's

Fig. 3: Peripheral processor assignment

For each job executing or waiting for execution in central memory, COS maintains some
basic informetion which permits it to switch the central processor from one job to another
at any time, This basic information is kept in appropriate areas, called the Control Point
Areas (CPA).

The information in the CPA includes the register contents (exchange-jump package) the
job name and priority, information about the time and space used by the job, the equipment

and PP's assigned to the job, the job control statements as shown in Fige k4.

EXCHANGE-JUMP PACKAGE

JOB NAME

TIME AND SPACE INFORMATION, PRIORITY

PP ASSIGNED

EQUIPMENT ASSIGNED

CONTROL STATEMENTS

Fig. 4: Control point area

There are seven control point areas, numbered from 1 to 7. The numbers associated
with the control point areas are called the control points. A job, the basic information of

which is contained in one of the control point areas, is said to be assigned to the (corres-

[97]

-4 -

ponding) control point, Only one job can be assigned at any time to a control point, so

that at most seven jobs can be executed concurrently under the control of COS.

Not only CP jobs are assigned to control points., Jobs using only PP's are assigned to

control points as well. Examples of such jobs are the Print and Card Read routines each of

which resides on a proper control point. These are system routines, but any other job using
exclusively PP routines would also be assigned to a control point, To conclude: any CP or

PP activity must be assigned to a control point., Figure 5 shows an example of control point

assignment to various jobs,

Control point |Reference address |Field length| Type of job

1 14000 3000 PP using CM

2 17000 10000 Ccp

3 27000 30000 CPp

4 57000 0 FP not using CM
5 57000 0 Unassigned

6 57000 2000 PP using CM

7 61000 15000 CP

Fig, 5: Example of control point assignment

3, COS FILE SYSTEM AND J@B EXECUTION

Under COS all I/f information pertinent to users as well as to the system is transmit-
ted in the form of named files, BEvery file handled by COS must have a name and any refer-

ence to a COS file must be made via the file name,

Externally, from the users' standpoint the name identifies the file uniquely; inter-
nally, for the system, the control point which the file is assigned to is also necessary to
jdentify users' private files (different users mey have the same names for different files),
When a user defines a file, assigning it a name, he can also specify the actual file medium,
The files not assigned specifically to a particular medium are assumed to be disk files,

In a FORTRAN program, for example, all input/output statements refer to disk files unless
explicitly assigned to another medium by the user, So the statements originally intended
for tape operations, like READ(u,n), WRITE(u), and so on, actually refer to disk files, the
names of which are TAPE plus the unit number specified in the statement (TAPE1, TAPE2, and
so on). The statements READ, PRINT, and PUNCH refer to (disk) files with special names
(mpUT, PUTPUT, PUNCH) which will be examined extensively in the following description.

The assignment of a physical unit to a file is controlled by job control cards and does
not depend on the central processor coding. Any device under the system control can be as-

signed to a file. How this is actually performed will not be examined in this paper.

Some names like INPUT, @UTPUT, PUNCH are reserved by the system for special files, They
cammot be adopted by the users for other purposes. The following description will clear the
meaning of INPUT and @UTPUT files, the extension to PUNCH files being quite obvious,

[98]

-5-

Programs being executed under COS cannot refer to the card reader to read input data,
nor can they refer to a line printer to output results on-line* . Instead, the cards cons-
tituting the job are transmitted to a section of the disk before the program starts execution,
The card-to-disk conversion is done automatically under control of COS while other jobs may
be in execution, The Section of disk on which the job has been recorded is logically similar
to a magnetic tape file. It is called the INPUT file for the job.

Results to be printed are sent to another section of the disk called the @UTPUT file of
the job, and when the job has been terminated the information on this file will be printed

automatically under control of COS as soon as a line printer becomes available,

Our FORTRAN program refers to the INPUT file by means of READ statements and to the
GUTPUT file by means of PRINT statements, Equating the file TAPE3 to the INPUT file has the
effect that all the statements using TAPE3 will actually refer to the INPUT file,

The INPUT and @UTPUT files, as all other files, are logically similar to magnetic tape
files, A pointer is associated with each file which takes the place of the read/write heads
of the magnetic tape files, Read and write operations referring to a disk file move the
pointer as they transmit data to or from the file. The information in COS files is subdivided

into logical records, In the case of our job INPUT file, there is one logical record per

group of cards terminated by an E@R card,

For each file defined in the system, COS maintains an entry in a special table (kept in
CMR), the File Table. The entry contains various types of information about the file such
as: the file name and type, the equipment number, and the control point number to which the
file is assigned, if any, For disk files it also contains the starting address and the cur-
rent position of the above pointer. The type of file is determined by its use, When COS
transmits a job from the card reader to the disk it generates a file of type input. The files
waiting to be printed are of type output. The files of type input and those of type output
constitute two stacks of files waiting to be processed by special system peripheral processor
programs, These programs treat the stack elements as data and select them in the order deter-
mined by their priority. The programs are: The Begin Job (1BJ) routine which selects the
next job to be executed and the PRINT routine which handles the printing of the elements in
the other stack, The 1BJ routine will be described in more detail shortly; before that, two
other types of files have to be mentioned: the files of type local and type common, The

files of type local are files assigned to a particular job and dropped at the end of the job.
They have the control point number registered in the File Table entry corresponding to the
file., Local to the job are, for example, the files INPUT and @UTPUT. The files of type local
are discarded at the completion of the job (INPUT and all other files except PUNCH and PRINT),
or when they have been output (PRINT, PUNCH). The files of type common can be transmitted
from one job to another, While they are assigned to a job, they have the control point num-
ber of the job registered in the File Table entry and are not accessible to any other job,

At the end of the job they are not dropped, unless explicitly requested by a job control card
(RELEASE). In our example, the files FILE1 and FILE2 are both defined to be common at the
begimning of the job, They are supposed to be prepared previously by another job. At the

*) This is not true in principle, as any equipment can be assigned to any job file,
Under normel circumstances it may nevertheless be assumed that no job is allowed
to get hold of a printer or card reader for private use, which would lock out the
other users,

[99]

-6 -

end of the job the file FILE1 remains in the system as common file and can be used succes-
sively by other jobs while the file FILE2 is dropped.

Let us now return to the initiation of our job, When a control point becomes free, COS
loads the scheduling program 1BJ (Begin Next Job) into a PP, and assigns it to that control
point, 1BJ scans the File Table, looking through the stack of input files, and selects an
input file with the highest priority., Eventually our job will be selected, It is, in fact,
registered as a file of type input, generated when the job deck was input from the card reader,
The name of the job file is the job name taken from the job card (J#B in our case) completed
with an integer giving the sequence number of the job in the series of jobs presented since
the system dead stert, If our job was presented as the 711th job, the job file name would be

JgB711,

During the first initialization process, 1BJ reads the job file, up to the first E@R
card, into a section of the control point area and leaves the file (pointer) positioned in
front of the next record, i.e, in front of the FORTRAN program, It also sets a pointer, in
the same area, to the first control statement. At this stage the central memory space, re-
quested by the job on the job card, is assigned to the job, If the job card does not specify
a central memory request, as in our case, a fixed number of central memory words is assigned
by the system, It should be noted that the job area thus assigned is distinct from the con-
trol point area of the job, While the control point area contains information requested by
COS to control the job, the job area is used to hold the programs which are required by the
jobe An erroneous program may invalidate the information in its job area, but it cannot

write into its control point area,

When 1BJ assigns the job to the control point (the seame to which 1BJ itself is assigned),
it changes the file name from J@B711 to INPUT and the file type from input to local. The file
becomes assigned to the control point: the control point is recorded in the File Table entry

for the file in order to distinguish it from the files assigned to other control points,

When 1BJ has initiated the job COS calls on another system routine, 2TS (Translate State-
ments) to translate the control statements, These are translated one at a time and in the
order presented in the card deck, The first statement translated is in our case the CEMMEN

statement,

There are two kinds of control statements available under C0S: execution control state-

ments and program call control statements. Referring to our job: CAMPN and RELEASE are
statements of the first type; REWIND, RUN, and LGZ are of the second type. In general, the
execution control statements have fixed control symbols recognized directly by the system,

while program call control statements have any symbols chosen by the users to designate their
programs, In the case of our job, RUN and REWIND are two particular names designating the
system FORTRAN compiler and a system routine used to position files at their start address,
Log (loadrand-go) is a file containing the binary version of the compiled program. The pro-
blem will be briefly discussed later; let us return to our job.

The first control statement translated by 2TS is COMMPN and then CAMM@N again, For each
CPMM@PN statement, 2TS searches the File Table for a file with the name specified (in our case
FILE1 and FILE2), If the file exists, if it is of type common and is not assigned to another

job, then it is assigned to our job, until job termination when it is returned to common

[100]

-7-

unassigned status, If the file is assigned to another job or does not have common status,
our job must wait until the file becomes available, Finally, if the file were (this is not
our case) a local file for our job, it would become a common file and would not be deleted
at the end of the job.

The next two statements (REWIND) are self-explanatory: the file is positioned at the
very beginning, REWIND is the name of a system program and the statement is the call for
that program, FILE1 and FILE2 are arguments transmitted to the program. A program called

by a control statement may, in fact, refer to one or more program parameters, These para-

meters are placed at the very beginning of the job area, The parameters of a FORTRAN program
are names of files and are specified in the PR@GRAM statement, In our case, the parameters
(files) specified are: INPUT, @UTPUT, FILEl, FILE2, The parameters may be equated to other
parameters, Two parameters equated are equivalent within the program. In our case, any opera-
tion on TAPE3 will, in fact, concern the file INPUT, and any operation on TAPE1 (TAPE2) will
concern FILE1 (FILE2), When a program execution is initiated by a program call statement,

the call may specify one or more arguments, These are transmitted verbatim to the program
called and replace the original arguments, In our example, FILE1 (FILE2) in the REWIND state-
ment replaces the original parameter of the REWIND program which acts so precisely on FILE1
(FILE2). The same happens with the next control statement, RUN(S) initiates the system com-
piler replacing the first parameter of this program by the identifier S, The compiler, in
fact, uses several parameters to allow the user to specify different compiler options, such
as: compile and execute, compile and punch the binary version of the program, compile with
source and object list and do not execute, and so on, Our call changes the first parameter

to S and leaves the other parameters unaltered, Under those conditions, RUN expects a FORTRAN
source program on the INPUT file, stores the listing of this program on the file @UTPUT, and
writes the binary version of the program in the file LGd,

Note that all input and output for all jobs is controlled by CO0S., ZEach I/¢ request sub-
mitted to COS specifies the name of the file involved in the I/¢ operation, When COS receives
a write request for a file whose name is as yet undefined, it will automatically generate a
disk file which is of type local and has the specified name, Thus, while RUN is executed as
part of our job, local files PUTPUT and LG@ are generated automatically, These files are not
rewound at the end of the compilation, i.e, when the compiler input reaches the second EZR
card on the file INPUT, The INPUT file is so positioned at the end of our compilation that
the next read operation will obtain the data cards,

2TS is now called again to process the next control card, i.e, LG, Like RUN, LGJ is
not recognized as an execution control statement by 2TS and is therefore taken as a program
call,

Program calls may be either calls of a user program or calls of a library program, To
distinguish these two cases, the files associated with the control point are searched first,
If a file is found whose name is the name of the specified program, then COS rewinds that file
and reads it into the job area, In our example, the call of LG effectively loads the binary
program which the RUN compiler has written to file LGZ beforehand,

This program, when executing READ statements, produces an input request to file INPUT
and thus finds the data cards at the end of our job, Execution of PRINT statements produces

[101]

-8 -

an output request to file PUTPUT and thus adds the programs' results after the listing of
the source program which RUN had written onto @UTPUT.

The next call of 2TS makes the file FILE2 be released: when the job is terminated this
file is deleted as any other local file,

When 2TS is now called again, it finds that all control statements of our job have been
executed and therefore calls upon 1AJ, a system program used to terminate a job, 1AJ deletes
the local files INPUT and LG@ from the File Table, whereas FUTPUT (by virtue of its name)
becomes an unassigned file of type output whose name is changed to J@B711. This file will
therefore be printed on a line printer under control of COS, Printing terminates with a
short series of messages which specify the control statements recognized by COS, and the cen-
tral processor and peripheral processor execution times of the job, These messages are called
the dayfile messages of the Jjob.

[102]

PART II

MATHEMATICAL TOPICS

MINIMIZATION AND CURVE FITTING

by

GeCe Sheppey

16
2,
30
Lo
5
6o

INTRODUCTION

SIMPLE METHODS
ROSENBROCK'S HETHOD
CONJUGATE DIRECTION METHODS
MINIMIZING SUMS OF SQUARES

COMPARISON

CONTENTS

[106]

-t

~N o oW

S18/kw/sb

1. INTRODUCTION

The usual problem at CERN is to find the minimum with respect to x, a column vector of

n components, of

P (x) =i [f(i)(x):l .

1=1

One of the methods to be given will be specifically for functions of this type, but the

others will be applicable to general functions of many variablese.

It should be noted that when all the f(i)(x) are linear functions of x (i.e. when
af‘(i)/axj = const) the problem, in general, has a unique solution, the calculation of which
involves a matrix inversion. Even if the matrix to be inverted is ill-conditioned, an
attempt at a direct solution is much to be preferred to the use of an iterative method
suitable for non-linear problems, since any such method is likely to comverge very slowly

if the problem is ill-conditioned.

2, SIMPLE METHODS

The most obvious method of finding a minimum of a function of n variables is what is
known as the method of coordinate variation. A minimum is found with respect to each
coordinate in turn, repeating with x4 after x,. This is illustrated in two dimensions in
Fige 1 which is a plot of the contours of the function to be minimized. Starting from the
point Ao, successive minima along lines parallel to the coordinate axes are found at A4, Az,
etc. This illustrates the fact that this method requires a great many steps to converge

when used on functions with large correlation between the variables.

X2 |

Ao

X,

FIG.1

If aF/bxj, the derivatives of F(x), can be calculated as well as F(x), the method of
steepest descent can be used. This method is intrinsically attractive since it chooses the
direction from the starting point in which the function decreases most rapidly. The mini-

mum is found in this direction and the process repeated.

[107]

3.

The direction of steepest descent, {, is defined by

&/ (&]]

Thus if x is the minimum point along a direction n, and { is the direction of steepest

descent from x, then

since x is the minimum poimt along n., Hence §{ and 7, which are successive directions of
search, are perpendicular., This is illustrated in two dimensions in Fig. 2, and it is clear
that, in two dimensions, this method is equivalent to the method of coordinate variation
apart from a transformation of axes., In many dimensions the two methods are not equivalent,
but experience shows that, when there is strong correlation between the variables, the

method of steepest descent converges only very slowly.

X4

Ao

ROSENBROCK'S METHOD

The method to be given here is a slight variation of that given in the paper by
Rosenbrock), and is an extension of the method of coordinate variation. It does not
require the calculation of derivatives.

Suppose that in Fig. 1 the point A. has been reached, then the principle of this method
is that the best direction in which to search next is along the line joining Ao to Az. A
minimum is found along this line, then in the direction perpendicular, and the process is

repeated with a new 'best' direction.

[108]

-3 -

In n dimensions the procedure is as follows.

Let g(i) (=1, eee, n) be n orthogonal directions, Find the minimum of the function
in each of these directions in turn and suppose that di is the size of the step taken to

reach the minimum in the direction { .,

Let
@ N . i
a o= ZdJ§ J (=1, «e0y):
J=1

ie.e. a(1) is the vector joining the initial and final points, a(z) is the sum of all steps
taken except the first, etc.

New directions g(') are then defined as follows:

MO am/ (1))

L@ @) Z <a(.i),;<a')> (3)

J=1

(@) b(i)/ o))

i1=2, ¢eey, n.

(1)

The procedure is then repeated with the new set of orthogonal directions { .

While this method has no real theoretical background, in practice it has been found
very useful,

Finding the minimum along a line

Starting from a point x take a step of length s in the direction {, i.e. evaluate
F(x + sl)e

If F(x + s{) £ F(x) the trial is a success, replace x by (x + s{), and s by as, where
a > 1,

If F(x + s{) > F(x) the trial is a failure, replace s by s, where -1 < 8 < 0O,

Repeat this procedure until there is a failure immediately preceded by a success.
This will ensure that a parabola fitted through the last three points will have a minimum
(not a maximum), and that this minimum will be between the first and third of these points.

4o CONJUGATE DIRECTION METHODS

These methods have a broader theoretical background based on the minimization of a
quadratic forme The Jjustification for using this as a basis is that any analytic function
will approximate to a quadratic form sufficiently near a minimum. Powell2 gives a method
which does not require the calculation of derivatives of the function to be minimized, and

3
Fletcher and Powell ’ give a method which uses these derivatives.

[109]

-l -

Suppose that the function to be minimized is the quadratic from

F(x) = Fo +a'x +-% x'Gx ,

where a is a column vector and G the n x n matrix of second derivatives.
Then p and g are defined to be conjugate directions if p’Gg = O.

Suppose now that g1, ey, Qm (ms n) are m mutually conjugate directions, then any

point in the space defined by the point xo and these m directions can be represented by

where a1, ees, Qm are m scalars. Also

m

PG) =rGe) +) [eyaiteriny) + 3 afogoa, |

i=1

since q:{LGqJ. =0 for i # j.

Now, the term in each a in this expression is independent of the other aj; therefore
the minimum in the space defined by x, and 9 (=1, ses, m) can be found by the estima-
tion of each ass for the minimum point, in turn, i.e. by a search in each of the directions
9 in turn.

It should also be noted that if two different points xo and x4 are both minimum points

of F(x) in the same direction g, then

q’(a + Gxo) =0
and

a'(a + Gxq) =0
therefore

Q' G(xo = x1) =0,

i.e. q and (xo - X1) are conjugate directions.

This is the basis of the method given in the paper by Fletcher and Powellz) of which
an iteration is as follows?

Given n linearly independent directions §i and starting from a point po,

for r = 1, 2, ..., n calculate A so that F(Pr-1 + xrgr) is a minimum and define

Pp=Ppy * 7‘rgr;

for r = 1, eee,(n = 1) replace [N S
replace gn by (pn = Dpo);

find A so that F(p, + M) is a minimum, replace po by (pn + Mn) and repeat the

iteration.

[110]

-5 -
)

i =1, eeey, n) will be mutually conjugate, and that the point p_ of the last iteration
b b n

2
It can be shown by induction / that after n such iterations the directions §i

will be the minimum of the quadratic forme

However, in practice the procedure as given can run into trouble as it may choose
directions which are Vvery nearly dependent, In any case, the choice of the direction {4
as the one to be dropped is arbitrary, and a modification should be made to the basic
procedure., The basis of this modification is the fact that if the directions §i
(i = 1,..05n) ave scaled so that g46¢; = 1 (i = 1,...,n) then the determinant whose columns
are the n vectors §i has its maximum value when these vectors are mutually conjugate (for
proof see Ref. 2). Therefore, in the iteration procedure, the new direction (pn - po) is
used if it will increase det ({1, +s+y {n), and replaces §i such that the determinant is

maximized.

Supposing that (pn - po) = a1l1 + a2lz + eee + anln and (pn = po) = ug, where { G0 =1,
the replacement of §J. by §P will multiply det ({4, eeey n) by the factor aj//.t.

Now

0 = \l z (f‘(pn_1) - f(pn)> (see Ref. 2)

and pu can be calculated by fitting a parabola through the function values F(po), F (pn), and
F(2pp - po)e The direction §J. to be replaced is chosen to make oz.j a maximum and is replaced
by §P only if o > He

Use of derivatives

If the derivatives of the function to be minimized can be calculated, the method given

in Ref. 3 can be used.

Let g be the vector of derivatives of the quadratic form F(x), then
g =a + Gx

Therefore if xpm is the minimum point

Xm = —G-1a = —G-1g + X,

that is

Xm = X = "G-18 ’

i.es the direction in which to search for a minimum is given by § = —G-1g. This method
therefore assumes an estimate H of the matrix G-1, and given the derivative vector g it
searches for a minimum in the direction { = -Hge Having found the minimum, an improvement

is made to the estimate H of G s
Suppose that, starting from the point Xi5 @ minimum is found in the direction §i at

.= x, +a. .
%541 i 1§1'

[144]

-6 -

Let the derivative vector at x; be 8;5 let

Vi = 84 T 84

and let

then put

In Ref. 3 it is proved that after n such steps Hp = ¢™" and Xn is the minimum point of the

quadratic form, o5 (=1, eeey n) being mutually conjugate directions.

Finding a minimum along a line

In the case where derivatives are available, cubic interpolation can be used given

function values and derivatives at two points. Details of this are given in Ref., 3.

5« MINIMIZING SUMS OF SQUARES

Let the function to be minimized be given by

N e
7 (x) kZ[f (x>]

where x is a column vector of n componemts and m 2 n.

4
The method given in the paper by Powell) is based on the linearization of the problem.
Let

u

si(k)(x) =3_2; f(k)(x) (1 =1, eesy 1)

(k =15 eeep m)

Then for a small 8; (i=1, «ee, n)
P(x + 8) ~i [f(k)(x) + iaisi(k)(x):lz ,

k=1 i=1

the minimm of which is given by the solution of

}‘i { igi(k)(x)gj(k)(x)} 5, = _isi(k)(x)f(k)(x) G ots e)
j=t k=t k=1

[112]

-7 -

Thus starting from a point x, given function values and estimates of the derivatives, a
correction 5 to x is calculated. Then F(x + A8) is minimized with respect to A. At this
point the function values calculated during this minimization along a line are used to cor-
rect the estimated derivatives, and then the procedure is repeated. Thus the derivatives
have to be estimated by finite differences (thus using extra function evaluations)only once

at the beginning. Full details of the procedure are given in Ref. L.

COMPARI SON

5 6
The papers by Box) and Fletcher) give some comparisons between the methods given
here and also some others.

Their main conclusion is that for a least squares problem a method designed for this
particular case [e.g. Powell's methodd)] is usually better than a general minimization
method. For the general problem it is usually worth while to calculate derivatives amd use
the method of Fletcher and P0we113 . If this is not possible Boxs) considers Powell's

)

method is less favourable in comparison with Rosenbrock's1 .

2 6
method) superior, but Fletcher ’ says that, with an increasing number of variables, this

* * *
REFERENCES

1) H.H. Rosenbrock, "An automatic method for finding the greatest or least value of a
function", Comput.J. 3, 175 (1960).

2) M.J,D., Powell, "An efficient method for finding the minimum of a function of several
variables without calculating derivatives", Comput.J. 7, 155 (1964).

3) R. Fletcher and M.J,D. Powell, "A rapidly convergent descent method for minimization",
Comput.J. 6, 163 (1963).

4) MJJ.D. Powell, "A method for minimizing a sum of squares of non-linear functions with-
out calculating derivatives", Comput.J. 7, 303 (1965).

5) M.J. Box, "A comparison of several current optimization methods", Comput.J. 9, 67 (1966).

6) R. Fletcher, "Function minimization without evaluating derivatives--a review",
Comput.Js 8, 33 (1965).

[113]

MATRIX MANIPULATION TECHNIQUES

B

by

™

GeAeo Erskine

CONTENTS

1. INTRODUCTION
1¢1 Matrix storage conventions in FORTRAN
1.2 Elementary operations
2, SIMULTANEQUS LINEAR EQUATIONS, MATRIX INVERSION
2.1 Gaussian elimination
2,2 Pivoting strategies
243 Equilibration
2.4 Jordan elimination
2,5 Triangular factorization
2.6 Choleski factorization
2¢7 Operational counts
2,8 Improvement of the solution
2.2 Iterative methods
2,10 Complex matrices
3, EIGENVALUES AND EIGENVECTORS
341 The power method
342 The real symmetric matrix
3e3 Jacobi iteration
344 Givens' method
3¢5 Householder's method
346 Calculating the eigenvalues of a tridiagonal matrix
3.7 Calculating the eigenvectors of a tridiagonal metrix
348 The eigenvalue problem for non-symmetric matrices

SUGGESTED READING

[116]

& wow

O © [oo] ~ ~ (o) [XSAN) | +

-
(=]

-
o

12
13
13
14
15
17

1. INTRODUCTION

1.1 Matrix storage conventions in FORTRAN

Let A be a matrix of m rows and n columns:

a4 a2 LR an

{ az1 azz oo azn

am4 amz2 cese amn

The most natural way to store A is to set a;; = A(I,3) where A is a two-dimensional FORTRAN
array with declared dimensions not less than m and n. If A(1,1) is stored at address a

within the computer, we have
{Address of A(I,J)} = a + (I=1) + M*(J=1) . (1)

The convention a . = A(I,J) is not always the most convenient one. For example, if
A is large and symmetric it might be better to store only the upper or lower triangle of

A with rows (or columns) packed end-to-end.

Subroutines for manipulating matrices will normally be written so as to accept matrices
of arbitrary size. This means that the subroutine must have a DIMENSION statement con-

taining formal parameters. For example

SUBROUTINE MATOP(A,B,M,N)
DIMENSION A(M,N),B(M,N)

e

The subroutine then assumes that it will find a; in the address given by formula 1).
This will be the case only if the values of M and N at the time when the subroutine is
called are equal to the dimensions appearing in the DIMENSION statement of any other
program or subroutine referring to the matrices A and B. In order to avoid this limita-

tion we can supply the declared dimensions as additional parameters to the subroutine:

SUBROUTINE MATOP(A,B,M,N,M1,N1)
DIMENSION A(M1,N1),B(M1,N1)
DO 1 I=1,M
DO 1 J=1,N

1 B(I,J) = FUNCTION(A(I,J))
RETURN
END

M1 and N1 are here the declared dimension of the arrays A and B in the routine which calls
MATOP; M and N are the "mathematical® dimensions of the corresponding matrices. In fact,
as can be seen from formula (1), the column dimension is irrelevant, and N1 can be omitted

and replaced by 1 (or any other integer) in the DIMENSION statement of the subroutine,

[117]

SI8/kw/hsi

We therefore have three possible conventions for transmitting dimensions:

i) transmit mathematical dimensions M and N only (these must then also be the declared

dimensions in other programs referring to the same matrix);
ii) transmit the declared row dimension M1 as well as M and N;

iii) transmit the declared row and column dimensions as well as M and N (although the

column dimension is redundant).

1.2 Elementary operations

The basic matrix operations of addition, subtraction, multiplication, multiplication
by transposed matrix, etc., are available in two packages: the GRIND library package
(permanently stored on the CDC 6600 disc), and the CDC MATRIX package. The function calls
for both these packages are listed in Tables 1 and 2. Each package provides some opera-
tions not provided by the other. All the CDC MATRIX routines are written in machine
language (ASCENT) and most of the GRIND routines are also in ASCENT.

SIMULTANEOUS LINEAR EQUATIONS, MATRIX INVERSION

If A is a non-singular square matrix of order n, and if x and b denote column vectors,

where b is known, the system of simultaneous linear equations

Ax = b (2)

has a unique solution. If the solution is required for k different sets of right-hand

sides bi, b2, ..., Ek’ and if X1, X2, eeey X, are the corresponding solution vectors, we
have

AX = B, (3)

where X is a matrix whose columns are X1, Xe, see, X and B is a matrix whose columns are
b1, Doy eee, By If B is set equal to the o order unit matrix I, the solution of

Eq. (3) is X = A™'. Therefore any procedure for solving sets of simultaneous linear
equations may be used to find the inverse of a matrix. Conversely, if the inverse A7 of
A can be calculated, the solution of Eq. (2) is given by x = I\ b. However, the calcula-

tion of A" is always slower than the direct solution of Eq. (2).

We assume throughout that A is a non-singular matrix. The probability that a matrix ,
whose elements are subject to round-off error should have a zero determinant is negligible,
but it is fairly common for matrices to have two or more rows or columns which are nearly
linearly dependent, resulting in a near-zero determinant. For such matrices, small
perturbations in the matrix elements (for example, round-off errors) can cause much larger
perturbations in the components of the solution vector x, and special precautions are

needed in the numerical solution. Matrices of this kind are said to be ill-conditioned.

There is an extensive literature on the error analysis of methods for the solution of
linear equations, with particular reference to ill-conditioned matrices. It should be
noted, however, that the solution of an ill-conditioned system of equations with rounded
coefficients is inherently poorly determined, and that a big effort to improve the
accuracy of the solution (for example, by using double precision arithmetic) may be mis-

placed.

[118]

-3 -

We describe below only a few of the large number of numerical methods for solving

linear equations or inverting matrices.

2.1 Gaussian elimination

One of the simplest methods for solving the system of Egs. (2) is that of successive
elimination of the variables, usually called Gaussian elimination. By subtracting appropri-
ate multiples of the first equation from each of the remaining equations, the coefficient
of x, may be reduced to zero in the remaining equations. The system of equations is written

in full below, with the appropriate multiplier enclosed in parenthesis on the left of each

equation:
a11X4 + @12X2 + eee + @4nXn = b'T
(t21 = 321/311) a21X4 + @22X2 + eee + a2nXn = b2
(L34 = as1/ai1) azqXy + asz2Xa + ... + aznXn = b3
> . (&)
cee cese ceoe oo
cos oo o ces
(ln1 = a,m/a”) an1Xy + ana2Xa + eee + annXn = bn

~/

After the subtractions have been performed, the first column of the new matrix of
coefficients will have zeros in all positions except the first. Thus the second equation

is now of the form

Ug2X2 + U23X3 + eee + UapXn = C2
th th
L

The next stage is to subtract multiples of this equation from the Brd, y esey I
of the new equations so as to reduce the coefficient of x, to zero in these equations.

The appropriate multipliers are £i. = uiz/uzz2 (i =3, 4, eoe, n). At each stage the new
coefficients can be written on top of the old ones, which are no longer required. Continu-

ing in this way we eventually arrive at the following triangular system of equations:

11Xy + Uy2X2 + Uy3X3 + eee + UWynXp = Cy e

Uz2X2 + UWz3X3z + ... + Uz2nXn Cz2

uzsXs + ... + UsnXn Cs

S . (5)

UnnXn = Cn

~

These equations are solved by back-substitution: xn is obtained from the last equation,

Xn-y from the (n—1)JCh equation, and so on. The operations which reduce (4) to the triangular
form (5) do not change the value of the determinant of A, which is therefore equal to the

product of diagonal elements u;iuzz ... Unne

2.2 Pivoting strategies

The diagonal elements U by which we must divide in order to form the multipliers

Lij are called the pivots, and the equation from which the pivot is chosen (and which

[119]

-l -

remains unchanged in subsequent stages of the reduction) is called the pivotal equation.

The procedure described above, in which the pivots are chosen in the order u;;, U2z, ...,

is called sequential pivoting.

Sequential pivoting breaks down if any of the us is zero. This can happen for

perfectly well-behaved matrices; for example for

o 1
A= .
1 0

However, at any stage in the reduction, it is not possible for all the coefficients of the
variable being eliminated to become zero, since this would mean that the matrix was singular.
At the ith stage of the reduction we may therefore select some equation for which
a. (r > i) is not zero, and interchange this equation with the ith equation in the store of
the computer so that it becomes the pivotal equation. It is natural to choose as the
equation for interchange the equation in which the coefficient of x; has the largest modulus.
This not only avoids the possibility of having a zero pivot, but also makes it less likely
that the selected pivot is one which has lost a large number of significant digits through
cancellation. This pivoting strategy, in which the ith pivot is chosen from the leading

column of the current reduced matrix, is called partial pivoting.

It is also possible to choose as pivot at the ith stage of the reduction the coefficient
of largest modulus in the whole of the square sub-matrix which remains to be reduced,

instead of only its first column. This procedure is called complete pivoting. When the

pivot has been chosen, the row containing it must be interchanged with the ith row, and
the column containing it must be interchanged with the ith column. The column number r

of each pivot must be recorded, so that when the back-substitution is complete, X; and x,
can be interchanged. Experience has shown that total pivoting does not usually produce any
large increase in accuracy as compared with partial pivoting. It takes appreciably longer
than partial pivoting. We therefore make the following recommendation:. when a program

allows a choice between complete pivoting and partial pivoting, choose partial pivoting.
2.3 Eguilibration

Some computer programs which employ complete or partial pivoting carry out a preliminary
scaling of the rows and columns of the matrix so as to ensure that the largest element in
each row and column has a given order of magnitude. On a binary computer, multiplication
by powers of two can be done without introducing any round-off error, and the rows and
columns can be scaled so that the element of largest modulus in any row or column lies
between Y, and 1. This process is called equilibration. Equilibration makes it more
likely that coefficients which have lost many significant digits during the elimination
will be small in magnitude and will not therefore be accepted as pivots. After the final

back-substitution it is necessary to divide xg by the multiplier used in scaling the ith

column.

2.4 Jordan elimination

In Gaussian elimination the pivotal equations are not used in subsequent stages of the
elimination. The program therefore operates on successively smaller square sub-matrices,

and the final result is a triangular system of equations consisting of the pivotal

[120]

-5 =

equations used at successive stages. An alternative procedure is to eliminate x; from
all equations except the first as in Gaussian elimination, but then to eliminate x> from
all equations except the second, including the equation which has just been used as a
pivotal equation. In the same way Xs, X4, ..., are eliminated from all equations except
the jrd, hth, ..e, equations respectively. This procedure is called Jordan elimination.
It can be thought of as a version of Gaussian elimination in which the equations above the
current pivotal equation are no longer exempt from manipulation. The final result is a
diagonal system of equations of the form vii%y
variable X; can be calculated by a single division. As with Gaussian elimination, the

= (i =1, 2, .eo, n) from which each

modified coefficients can be written on top of the original coefficients in the store of

the computer, and no additional storage space is required.

Sequential pivoting, partial pivoting, and complete pivoting may all be used. Since
no back-substitution is required in Jordan elimination, the computer program is slightly

simpler than for Gaussian elimination.

2.5 Triangular factorization

Suppose that a system of linear equations with matrix A has been reduced to the
triangular form (5) by Gaussian elimination with sequential pivoting. If the multi-

pliers used during the elimination are eij and the coefficients in the final triangular

system are uij’ it can be shown that for any subscript pair (p,q)

apq = £P1u1q + tpzuzq + eee + tp’p_'llp_1 »q + upq . (6)

This is equivalent to

A=1L0,
where
~ - — -
1 O Ujq Uq2 U3 eee U4n
L2y 1 Uz2 U23 eee Uzp
L = t31 t;z 1 > U= Uz s oo Usn .
.o cee 1 oo
nt fnz lnsz eee Llnyn-n LO unn

Gaussian elimination therefore produces a triangular factorization of A. The left
factor L is a lower triangle with units along the diagonal, and the right factor U is an
upper triangle. It is possible to perform the factorization directly, using only the
relation (6). 1If the rows of U and the columns of L are calculated alternately in the

order shown in the diagram below, equation (6) determines the value of exactly one of the

.. oru,.
i ij

[121]

-6 -

As soon as each element of L or U is calculated it can be written on top of the element
apq of A from which it was derived using formula (6). If suitably programmed, this method
is not only mathematically equivalent to Gaussian elimination, but is arithmetically

identical with it.

Tt can be seen from formula (6) that the currently unknown element of L or U is cal-
culated from a sum of products of previously calculated elements. If this sum of products
can be accumulated to double precision accuracy, round-off errors can be significantly
reduced without having to provide double precision storage for n® numbers, as would be the

case if Gaussian elimination were used.

To solve the equations Ax = b, the vector ¢ defined by b = Le can be calculated at
the same time as the calculation of the factorization A = LU. The equation Ax = b are then

equivalent to LUx = Lc, or Ux = ¢ which is the matrix form of Eq. (5).

Partial pivoting can be used with triangular factorization, but there does not seem
to be any way of carrying out complete pivoting. However, experience has shown that
provided the sums of products are accumulated to double precision accuracy, triangular
factorization with partial pivoting is usually more accurate than single precision Gaussian
elimination with complete pivoting.

-t -
To calculate A we first invert L. The inverse L is also a lower triangle, and

-1
the calculation can be done on top of L itself. We can then find X = A by solving

-1

UX =L

2.6 Choleski factorization

If the matrix A is symmetric, the triangular factorization A = LU can be carried out
by setting U equal to the transpose of L. We have, therefore

A=11t .

Partial or complete pivoting of the kind described above cannot be used. Also, as

can be seen from formula (6) by setting U the diagonal elements (.. must be

=L..,

Ji
calculated by taking a square root. The fact that A is symmetric does not guarantee that
the diagonal elements are real and non-zero. This can, however, be guaranteed whenever A
is positive definite, and the process is usually used only for positive definite matrices.

-1 -1 -1
To calculate A we can first invert I and then calculate X = A by solving LTX =L .

2.7 Operational counts

An approximate measure of the amount of work required by each of the above methods is
given by the number of multiplications required to solve AX = B for a matrix B consisting
of k right-hand sides.

For comparison, it is interesting to consider the number of multiplications involved

in solving the system AX = B by first calculating A"'1 and then X = Af1B, We see that for
. . -1 - -

a non-symmetric matrix A requires at least n® multiplications. Since A 18 requires kn”

multiplications, the total is at least n® + kxn®. Therefore, do not form A"1 when only the

solution of simultaneous equations is required.

[122]

Approximate No.
of multiplications

Method
A_X:B AX:I
. . . 13 2 14-3*)
Gauss (or Triangular Factorization) 30 +kn 30
*
Jordan 1 n® + kn? 2 43)
2 2
1 -1-n3
Choleski 3 n® + xn? 2

*) The asterisk indicates that in these cases the number of
multiplications can be reduced to n® if the program, at each
stage of the reduction, by-passes the zeros which remain on
the right-hand side.

The time in seconds taken by several CDC 6600 computer routines available at CERN is
shown in Table 3. The source program language is indicated by F (FORTRAN) or A (ASCENT).
FORTRAN compilations were carried out using SCOPE (version dated 29.1.1968).

2.3 Improvement of the solution

If X0 is an approximation to the exact solution x of Ax = b, we shall have

b - A% = Io

where the residual vector m, is unlikely to be zero. Hence, the error vector x - Xo

satisfies the equation
AX-%)=b-(-ro) =ro .

We would therefore expect that the vector xi = xo + S0, where Eo is obtained by
solving ASo = ro, would be an improved approximation to x. If necessary the process
could be repeated. In practice it is necessary to use double precision accumulation of
sums of products in forming the residual vector To, but only single precision working is
needed in solving ASo = ro. Usually the triangular factors L and U of A = LU are available

from the calculation of X,., Therefore only n® multiplications are needed to solve for So.

2.9 Iterative methods

The method of the preceding section leads to the following iteration

5, =b- A
Aés =T, (s =0,1,2, ...) .
= + 6

[123]

-8 -

Other iterative methods for solving Ax = b are known, and conditions for convergence
can be established. The disadvantage of these methods is that convergence cannot usually
be guaranteed for a general matrix A and an arbitrary starting vector. Their advantage is
that, since they usually involve only multiplications by the original matrix A, full
advantage can be taken of any zeros in A (which are destroyed by elimination methods).
This is particularly important for the large but "sparse" matrices which occur as the
finite difference analogues of partial differential equations. In addition to having many
zeros, these matrices often have a repetitive structure which can be exploited in devising
iteration methods, and there is an extensive literature on the iterative solution of

systems of equations of this kind.

One iterative method which converges for any positive definite matrix A is the method
of Conjugate Gradients. If there were no round-off errors this method would converge to the
true solution of Ax = b in exactly n steps, each step requiring approximately n® + 5n°

multiplications.

2.10 Complex matrices

The system of equations Az = b where
A =B + iC, E=2+id, _Z.=l‘.+iI
is equivalent to the two sets of equations

Bx - Cy

1l
lo
—

Cx + By = d

These 2n equations involving real numbers may be solved by any of the methods described

above.

EIGENVALUES AND EIGENVECTORS

Given a square nth order matrix A, the problem here is to find those numbers A for

which there exists one or more column vectors u such that
Au = M . (7)

A number A which satisfies this condition is an eigenvalue of A, and the associated
vector u is an eigenvector corresponding to A. Equation (7) is equivalent to (A - AI)u = 0.
This system of homogeneous equations can have a solution only if the determinant of

(A - MI) is zero. Therefore A must satisfy the equation

det(A - NI) = 0o + ayh + oo0 F an_1xn-' + (=1)™"
p, (M) (8)

=0 .

Equation (8) is the characteristic equation of the matrix A. It follows from Eq. (8) that
the matrix A has n eigenvalues, some of which may be coincident. Also some of the A's and
u's may be complex even when A is real. For a general (non-symmetric) matrix A, the

number of linearly independent eigenvectors may be less than n.
If X is an nth order non-singular square matrix, and if B is defined by

B =X AX, 9)

[124]

-9 -

then B is similar to A. The matrices A and B have the same eigenvalues, and if u is an
eigenvector of A then X_1E is an eigenvector of B. Many of the numerical methods for
calculating the eigenvalues of a matrix depend on reducing the matrix to a simpler form by
means of similarity transformations. A particularly important subclass of similarity
transformations are those for which the real transformation matrix U is orthogonal, defined
by

uvu

n
L]

Equation (9) then becomes

B = UTAU .

The most direct approach to finding the eigenvalues of A is to calculate in some way
the coefficients ao, a4, ... of the characteristic equation (8), and then to use one of
the standard equation-solving techniques to find the roots A, In this procedure there is
a serious danger of losing significant digits when calculating the coefficients @ from
the elements of A. Further, even when the coefficients in Eq. (8) are accurately known,
the problem is often ill-conditioned in that small perturbation in the coefficients ao,
@1, ... can result in large changes to one or more of the roots A. For this reason the
direct calculation of the characteristic equation is usually recommended only for very
small matrices or for certain classes of matrices for which this procedure is found to be

numerically stable.

In the following we describe in brief outline a few of the large number of numerical

methods which have been used for solving the eigenproblem (7).

3.1 The power method

Suppose that the eigenvalues of A have been arranged in order of decreasing modulus:
|K1|3|12|3 oo ilknl, and that there exists a corresponding set of linearly independent
eigenvectors Wi, Uz, e.., u (this is always true for symmetric A, and is usually true

for non-symmetric A). Then if Xo is an arbitrary vector, we can write

Xo = ctuy + czuz + ,,, t Cc U

On multiplying Xo repeatedly by A we obtain the sequence of vectors

r
x = Ax = A Xo

r r r
ci1hMuy +czhzuz + ... FC AU
- nn-<n

— T)\'r._
AT Lf1g1 + cz (%%) Uz * ... o <X%> E@J .

Therefore, if [h,l>lk2|, X, approaches a multiple of u, as r tends to infinity, and the

ratio of corresponding components of x and X tends to the dominant eigenvalue A1.

In practice it is convenient to divide each X, by its component of largest modulus before

multiplying by A. The remaining components of X, and Xx.., can then be easily compared.

The rate of convergence of this process depends upon the ratio Ikg/k,|, and will
be slow if |\z| is close to |M|. The simplest way to increase the rate of convergence is
to iterate with a matrix (A - pI) instead of A, where p is some number for which the ratio

|(X1 - p)/(lz-— p)l is not too close to unity. There are other devices for accelerating

[125]

- 10 -

convergence, and the method can be adapted to handle equal or complex eigenvalues and
complex eigenvectors. However, these special cases must be tested for during the course

of the iteration, and such tests may be troublesome to programme.

Once an eigenvalue A4 and the corresponding vector u: have been found, there exist
methods of constructing a matrix of order (n-1) which does not have Ay as an eigenvalue.

This process is called deflation, and may be used in conjunction with any numerical tech-

nique which yields the eigenvalues and eigenvectors one at a time.

3.2 The real symmetric matrix

When the matrix A is real and symmetric the number of methods available for the solu-
tion of the eigenproblem is larger than for a general A, and it is easier to obtain accurate

numerical results. The important properties of the symmetric matrix are:

i) all eigenvalues and eigenvectors are real;

ii) irrespective of whether or not the eigenvalues are all distinct, it is always possible

to find n mutually orthogonal eigenvectors u;, uz, ..., u (i.e. EiTEj =0 if i £ j).

These vectors form a basis for the n-dimensional space.

If the eigenvectors u, are normalized so that EiTBi =1, and if U is defined to be the
th .

n" order matrix whose columns are u;, Uz, ..., u, We have vy =1 (i.e. U is orthogonal)
and

vlay = .

3.3 Jacobi iteration

Given an angle ? we may define a rotation matrix R(i,j) by

Column i Column Jj
) i
1
. T Meos 9 8
R(1,3)" = oos sin « Rowi
1
-sin @ cos ¥ « Row j
1
L e q.

This matrix differs from a unit matrix only in the rows and columns identified by i and j,

and is orthogonal. To simplify the notation we write ¢ = cos ¥, g

= gin ¥, and we denote

th .th
the i~ row of A by R, and the i~ column by C;. If A’ is obtained from A by using R(i,3)

as a transformation matrix we have

[126]

-1 -

B * I
L cRi + st
. T .. ‘.
A" = R(E,3)7ARGE,G) = | . (10)
J _sR, + cR.
. i J
cCi+st —sCi+ch

Rows and columns of A other than the ith and jth remain unchanged. Except for the four
elements marked with a cross, the ith and jth rows and columns of A’ are simnle linear
combinations of the same two rows and colums of A as shown in formula (10). If A is

symmetric, the two off-diagonal elements marked with a cross are given by

.' = ! = - + 2— 2
as 255 sc(ajj aii) (c s)aij .
These elements can be made to vanish by choosing ¢ such that
2a; .
tan 219: 2sc = LJ
2 2 a.. — a..
[11 Jd

with |9] < 7/k.

Tt can be verified that the sum of the squares of the off-diagonal elements other
than (i,j) and (j,i) is invariant under the transformation (10). Therefore if ¢ has been

chosen so as to ensure that ai.’ = ajil = 0 we have

§{;£2{: (apq')2 -0 = zg;#ggj apqz - 2aij2 . (11)

Thus the sum of squares of all off-diagonal elements is decreased by any transformation

of type (10) which annihilates the (i,J) and (j,i) elements of the matrix.

The Jacobi method consists of repeatedly applying transformations of type (10) until
all the off-diagonal elements have become negligible. We are then left with a diagonal

matrix D obtained from A by an orthogonal transformation of the type

D=(®" ... R2RT) A (ReRz ... R) .

The diagonal elements of D are the eigenvalues of A and the columns of the product matrix
Rk’ ..., R2Ry are eigenvectors of A. After each transformation, the elements which were
set to zero by the preceding transformation become non-zero again. However, Eq. (11)
shows that the sum of squares of the off-diagonal elements must decrease in spite of this,
whereas the sum of squares of all the elements remains constant under the transformation
(10). Therefore it is only necessary to prove that the limit of the decreasing sum (11)
is in fact zero. This can be done for the following commonly used versions‘of the Jacobi
process:
i) repeatedly annihilate a, ; over the upper triangle in cyclic order: (1,2), (1,3), ...,
(1,n); (2,3), (2,4), +.., (2,n), etc;

[127]

- 12 -

ii) at each step amnihilate the off-diagonal element of largest modulus;

iii) annihilate only those elements which are larger than some fixed threshold value €,

Then reduce € and repeat. Go on doing this until € is small enough.

If full advantage is taken of symmetry, a complete sweep through all the of'f-diagonal

elements of A requires approximately 2n® multiplications and n? square roots.
3., Givens' method

This method uses the same transformations as the Jacobi method, but in such a way as
to ensure that the zeros introduced by one transformation are not destroyed by the next.
Tt is not possible to reduce a symmetric matrix A to diagonal form in this way, but A can

be reduced to the tridiagonal form shown below:

O
AN

If we consider the transformation of A by R(i,j) with i < j, we see from the

transformation (10) that for elements of the jth row other than those marked with a cross

we have

PR ..
a5/ = - sin 9 a;. * cos 9 23y (r #1,3) .
If A is symmetric, a;j has the same value as agr, and these two elements can be
annihilated by setting
tan ¢ = ajr/air’

giving
a; .. a.r
cos = si =
¢ .2 +a.° °’ n 2.2 +a.2
ir Jr ir Jjr

By using the transformation matrices R(2,3), R(2,4), r(2,5), ... , we can annihilate
833, 814 845, oo. and (vy symmetry) 834, 8445 8545 +.. . Thus all except the first two
elements of the first row and the first column have been reduced to zero. Then, by using
R(3,4), R(3,5), R(3,6), ... we can annihilate a4, 8zs, 826, -- in the first row and
842, 852, Bezs e+ in the second column. The important point is thet this second sequence
of transformations leaves unaltered the zeros introduced by the earlier transformations.
(Bach zero is replaced by a linear combination of two zeros.) By proceeding in this way

we eventually arrive at a tridiagonal matrix.

If full advantage is taken of symmetry, the reduction to tridiagonal form requires
approximately (%)n® multiplications and (%,)n® square roots.

The calculation of the eigenvalues and eigenvectors of the tridiagonal form will be
considered after Householder's method has been described in the next section. Once the
eigenvectors of the tridiagonal form have been found, the eigenvectors of the original
matrix can be calculated as in the Jacobi method.

[128]

- 13 =

3,5 Householder's method

This method is similar to that of Givens in that it reduces the symmetric matrix A
to tridiagonal form by a finite sequence of orthogonal transformations. However, the
transformation matrices are not the rotation matrices R(i,j) used in the Jacobi and
Givens methods, but are symmetric matrices of the form
r 7
1-2w, 2 —2WyWa —2WeW3 ees
P=1I- 2MT = | -2wawy 1-2wp> =2WoWy ...
~OwsWy -2WwsW, 1=2ws?

DY oo .

i "

For P to be orthogonal we require PTP = I, and this is the case if

vlT_v! = W2 + W .. F wnz = 1. Each step of the method consists of a transformation

T . .
of the form Ar = Pr Ar_.1 Pr where the numbers Wi, Wa, «cos W, which defi.ue Pr are chosen

in such a way that the necessary set of zeros are introduced into one row and column of

Ar+1‘ Thus, at the first step, setting Ay = A, we require:

— —

3.11’ 321' 0 ... 0

a4z’
Az = PaTAP, = 0 (12)

0 7
L

This result can be achieved if the first component of w is set equal to zero, so

that ET is of the form (O,Wz,Ws, oees wn). Equation (12) then determines Wz, Wi, «++5 W .
In fact w3, «.., W, (but not WZ% are merely multiples of a3, «.., &, n’ respectively.

The next transformation As = Ps A;P; is chosen so as to perform a similar transformation
on the shaded sub-matrix in (12); the appropriate _v_vT is of the form (0,0,Wz, «.., wn),
which ensures that the first row and column of A, are not affected by the transformation.

After a total of (n-2) transformations we obtain a tridiagonal matrix.

If full advantage is taken of symmetry, the reduction of A to tridiagonal form
requires approximately (%)n® multiplications [ef. (%)n’ for Givens' method] and n
square roots [cf. (%)n? for Givens' method]. Both Givens' method and Householder's
method are numerically stable if suitably programmed.

3.6 Calculating the eigenvalues
of a tridiagonal matrix

Let us suppose that a matrix A has been reduced by a sequence of similarity
transformations to some special form G, not necessarily the tridiagonal form. The eigen-

values of A are then the zeros of the nth degree polynomial

p,(A) = det (C - AI).

[129]

-1 -

If there is a method by which the value of pn(l) can be easily calculated for any given
value of A, the zeros of p, can be obtained by means of one of the iterative root-finding
methods which uses only functional values (for example, the Rule of False Position or the
quadratic interpolation method of Muller). If the derivative pn’ can also be calculated,
Newton's method can be used; ir pn" can be calculated, Laguerre's method is available.

The problem is therefore to find a convenient way of calculating pn(K), and possibly one
or more derivatives, for an arbitrary value of A.

If C is a tridiagonal form (not necessarily symmetric) we have

o=\ B2
Yz az =\ B3
Y3 az=\
p () = .t
" .. By
Yn an-x

Ifr pr(x) denotes the leading principal minor of order r in this determinant, the
expansion of pr(k) by its last row yields the recurrence relation

Po(x) =1
pi(A) = =2 . (13)
p.(0) = (e, = M) v, (W) - By o, (M)

(r=2, 3, vo., n)

Differentiating relation (13) yields recurrence relations of similar type for the
derivatives of P These relations permit the calculation of the quantities required by
the various root-finding algorithms.

If the tridiagonal form C is symmetric, Y; = ﬁi, and hence:

= - -8 2
p.(A\) = (e, -Mp,_ (A) -p2p ()
If none of the ﬁi is zero, it can be shown that there is exactly one zero of 2 between
each of the necessarily distinct zeros of Prige From this the following theorem can be
proved: "For any number p, the number of agreements in sign of consecutive members of the

sequence Do), P1(l)s eees pn(u) is the number of eigenvalues of C which are strictly
greater than p".

This forms the basis of an effective method for localizing the eigenvalues of C by

repeated bisection of an initial interval which is known to contain all the eigenvalues.

3.7 Calculating the eigenvectors
of a tridiagonal matrix

Having obtained a close approximation A to one of the eigenvalues of a symmetric
tridiagonal matrix C, we wish to find a solution u to the homogeneocus system of linear
equations

(C=AI)u=0.

[130]

- 15 =

If BT = (Xy, Xay eees xn), these equations are
(Ct1 -)\.)X] + ﬁzxz =0
Baxq + (@2 - \)X2 + B33 =0
Ppey*n— * (an-1 -)‘)xn-t * By =0
nn-4 ¥ (an -)‘)Xn =0

In principle a solution could be obtained by rejecting one of these equations -- say the
ith -- and solving the remaining (n-1) equations with x5 set equal to one. On substituting
the solution so obtained back into the ith equation we shall obtain some non-zero number §,
owing to round-off errors. The numbers Xi, Xz, .. X, so obtained therefore satisfy the
following system of equations:
0 if j£1i
Bx. + (ay=Nx, +p. X, ={

J7g= J I s 5 if j=14i

Since the eigenvector is independent of any arbitrary multiplier, we can consider this

solution as being equivalent to the solution of the system of equations

(c-AJu=e; , (1)

where _e_i is the ith

unit vector. Wilkinson has shown that, even when N is very close to a
true eigenvalue of c, the solution of Eq. (14) may be a poor approximation to the corres-

ponding eigenvector. It is better to replace Eq. (14) by
(C-Mu=b, (15)

where b 1s an arbitrary vector, and to iterate one or more times using Eq. (15). Thus on
the first iteration the solution u of Eq. (15) is used on the right-hend side instead of b.
Alternatively, it is possible to calculate the initial vector b in such a way as to make
iterations beyond the first unnecessary in the majority of cases. This procedure is usually

called inverse iteration.

3,8 The eigenvalue problem for non-symmetric matrices

The numerical calculation of eigenvalues and eigenvectors of non-symmetric matrices
is more difficult than for symmetric matrices. Many mathematically elegant procedures
lead either to disastrous numerical instebility or to excessive amounts of calculation, or
both. Even when this is not the case, it is often necessary to use double precision
arithmetic at some stage of the calculation. The eigenvalues and eigenvectors may be
complex, and it is no longer possible to reduce the emount of calculation by exploiting
symmetry. However, a more serious difficulty in devising satisfactory procedures arises
from the fact that one can no longer be sure that there exists a set of eigenvectors

spanning the whole of the n-dimensional space.

The power method and its refinements may be used with non-symmetric matrices.
An alternative approach is to use the orthogonal transformations which reduce a symmetric

[131]

- 16 -

matrix to tridiagonal form, such as the methods of Givens and Householder. If applied

to a non-symmetric real matrix these transformations produce a Hessenberg matrix,

consisting of an upper or lower triangle bordered by a single diagonal; for example,

O

Other methods besides those of Givens and Householder can be used to produce a Hessenberg
matrix. To calculate the eigenvalues of the Hessenberg matrix one can proceed in two ways.
One can either perform a further reduction (preferably in double precision arithmetic) to
produce a tridiagonal matrix, and then use the methods described earlier (possibly using
complex arithmetic), or one can make use of recurrence relations analogous to formula (13)
to evaluate pn(x) in a standard root-finding technique. When the eigenvalues of a

Hessenberg matrix are known the eigenvectors can be calculated by inverse iteration.

Two methods which have been developed in recent years for application to non-symmetric
matrices are the LR algorithm of Rutishauser and the QR algorithm of Francis.

The LR method is based upon the triangular factorization algorithm mentioned above in
connection with the solving of linear equations. Writing A = LR, where L is lower
triangular and R is upper triangular, we deduce immediately that L-lAL = RL. Thus the
matrix RL formed by multiplying the triangular factors in reverse order is similar +to A.
The principle of the LR algorithm is to generate a sequence of matrices similar to A = A4

by means of the iteration

>
1

ooy = L. R, (defining L _ and R__)

(r=2,3, voo)

.
1

T Rr-—1Lr--1

It can be shown that under certain conditions the matrices .l\.r tend to an upper triangular

matrix whose diagonal elements are the eigenvalues of A.

The QR method uses a different factorization of A, namely,
A=QrR,

where R is upper triangular and Q is orthogonal. Either the Jacobi rotation matrices or
the Householder transformation matrices may be used for Q. In either case it can be shown
that for a non-singular A the factorization is unique if the diagonal elements of R are
taken to be real and positive. We see that Q:AQ = RQ, so that RQ is similar to A.

Once again we form a sequence of matrices similar to A = A, by means of an iterative

procedure:

>
)

T=1 Qr-1Rr-1 (defining Qr-1 and Rr—i)

(r = 2,3, ooo) .

1S
]

Q

=R
r =1 T-1

[132]

-17 -

The Ar will tend (under more general conditions than for the LR algorithm) to an
upper triangular matrix whose diagonal elements are the eigenvalues of A.

SUGGESTED READING

L, Fox, An Introduction to Numerical Linear Algebra (Oxford University Press, London,
196L4) (General Survey).

G.E. Forsythe and C.B. Moler, Computer Solution of Linear Algebraic Systems
(Prentice-Hall, Englewood Cliffs, 1967) (Analysis of Gaussian elimination and its
variants, with computer programs).

J.H. Wilkinson, The Algebraic Eigenvalue Problem (Oxford University Press, London, 1965)
(Treatise with detailed error analyses and examples illustrating difficult cases).

A.S. Householder, The Theory of Matrices in Numerical Analysis (Blaisdell, New York, 1964).

Table 1
FORTRAN arguments for TC matrix routines
OPERATION ENTRY DIMENSIONS
la|l B] c|
%3 { MXEQU (A,B,I,J) I,I 1,J
where A'X = B MXEQU1 (4,B,I,J)

The system of equations ATX = B is solved without pivoting. (This is valid when A
is positive definite.) The matrix A is replaced by a matrix the product of whose princi-

pal diagonal elements is equal to the determinant of A.

MXEQU1 has the same effect as MXEQU, but assumes that CALL MXEQU has already been

executed with the same A:

AB > C MXMPY (B,A,C,K,J,I) I,J J,K I,
ATs s MXMPY1 (B,A,C,K,J,I) J,I J,K IK
UL MXMFY2(B,4,C,K,J,I) I,J kK,J I,K
ATsT 5 ¢ MXMPY3(B,A,C,K,J,I) J,I K,J I,K

A and B may be the same. If J is zero, C is filled with zeros:

+C>C MmxMap (B,4,C,K,J,I) 1,J J,K I,K
ATs C~>¢C MxMaAD1 (B,A,C,K,J,I) J,I J,X I,K
ABL 4 C o MXMAD2(B,A, C,K,J,I) 1,5 K, I,K
AT s c - MXMAD3(B,A,C,K,J,I) J,I K,J I,K
AB -C->C MXMUB (B,A,C,K,J,I) I,J J,K I,
ATB - MXMUB1(B,4A,C,K,J,I) J,I J, K I,X
BT -csc VXMUB2(B,A,C,K,J,I) 1,7 K,J I,K
AT ¢ MXMUB3(B,A,C,K,J,1) J,I K,J I,K

Any of A,B,C may be the same. If J is zero the products AB, etc., are assumed to be

zero, and the effect is +C - Cs

[133]

- 18 =

OPERATION ENTRY DIMENSIONS
[al 3] c|

A+B-C MXADD (4,B,C,I,J) 1,3 1,3 1,J
A-B->C MXSUB (4,B,C,I,J) 1,J 1,7 I,
A->C MXTRA (A,0,C,I,J) I, - 1,J
PA > C MXMTR (4,8,C,1I,J) I, - 1,J

(B = scalar)
-A->C MXNTR (4,0,C,I,J) 1,0 - I,J
AT MXTRP (A,B,I,J) 1,0 3,1 -
E-> A MXUTY (4,I) I, - -

(E = unit matrix)
Any of A,B,C may be the same.

In the following operations the diagonal matrix D is assumed to be stored as a

one-dimensional FORTRAN array containing only the principal diagonal. A and C may be the

samez
DA~ C MXDMR (A,D,C,J,I) I, 1,I I1I,J
DA +C>¢C MXDMAR(A,D,C,J,I) 1,J I,I I,J
AD > C MXoML (D,4,C,J,I) 1, J,J 1,J
AD +C>C MxoMaL(D,A,C,Jd,1) 1,3 J,0 1,J
A +pD>C MXDMA (4,8,D,C,I) 1,1 1,1 1I,I
(B = scalar)

[134]

-19 =

Table 2

Elementary matrix operations in CDC matrix package

Note that A(P) denotes a symmetric matrix stored in packed form (upper triangle

stored by rows).

In all cases the declared row dimension of A, B, C are M1, M2, M3, respectively.

OPERATION ENTRY DIMENSIONS
la 8] c]
A »>3B MATRIX(1,I,J,0,A,M1,B,M2,0,0) 1,J 1,3 -
AT ss MATRIX(0,I,J,0,A,M1,B,M2,0,0) I,J J,I =
A+B=>C MATRIX(21,I,J,0,4,M1,B,M2,C,M3) 1,J 1,J I,J
A=-B->C MATRIX(22,I,J,0,A,M1,B,M2,C,M3) 1,3 1,J I,J
AB > C MATRIX(20,1,J,K,A,M1,B,M2,C,M3) I,J J,K I,K
ATB - C MATRIX(23,I,J,K,A,M1,B,M2,C,M3) 1,J I,K J,K
PERY MATRIX(5,1,0,0,4,0,B,M2,0,0) - I,I =
s -3 MATRTX(4,I,0,0,4,M1,8,0,0,0) 1,1 - -
2Ta > 3(®) MATRIX(2,I,J,0,4,M1,B,0,0,0) 1,0 - -
Table 3

6600 Execution times for some simultaneous
equation and matrix inversion routines

Time in seconds

Routine Language Action Method Pivoting n =10 n = 100

LINEQ1 F x=4""B Gauss Complete 0.008 4.9
Complete 0.007 Lol

MATRIX A X=2"'B Jordan Partial 0.00L 1.7
Sequential 0.003 1.0

MXEQU A x=A""B Gauss Sequential 0.004 2.5

-t

MATIN1 P A Jordan Complete 0.016 11.9
Complete 0.008 5.6

MATRIX A A Jordan Partial 0.006 3.0
Sequential 0.005 2.8

[135]

MONTE CARLO METHODS

by

R. Keyser

1. HISTORICAL INTRODUCTION
2.
3¢ APPLICATION OF MONTE CARLO METHODS
4o VARIANCE-REDUCING TECHNICUES

Le1 "Hit or miss" Monte Carlo

4e2 Crude Monte Carlo

Le3 Control variate method

Loy Stratified sampling

4.5 Importance sampling
5 ANTITHETIC VARTATES
6. REGRESSION ANALYSIS
7. QUASI-RANDOM NUMBERS

BIBLIOGRAPHY

CHARACTERISTICS OF THE MONTE CARLO METHOD

[138]

o o FFF R

o w =~

SIS/kw/ha

2.

HISTORICAL INTRODUCTION

Before scientists had available electronic computers, all probabilistic problems
were expressed and solved in a deterministic manner. However, there are one or two
instances where experiments were performed which contained the ideas of Monte Carlo
methods —- perhaps the best known one being that of Captain Fox who threw a needle at a
board ruled with straight lines, and inferred the value of m from observations of the
number of intersections between needle and lines. It was with the advent of computers,
and in particular with the work of von Neumenn and Ulam on the atomic bomb, that Monte
Carlo methods were used as a research tool. With advancing techniques, Monte Carlo
methods were used to solve deterministic problems such as simultaneous equations,
eigenvalue problems, etc. However, in a lot of these cases Monte Carlo methods are
inefficient, and their application to unsuitable problems and also their use in a crude

manner led to their discredit.

With improved variance-reducing techniques, the growing emphasis on problems that
involve detailed practical complications, the simulation of probabilistic situations and
a better recognition of which problems can efficiently be solved by Monte Carlo methods,
such methods have established themselves as a useful tool. In their breaking of new
ground they have allowed problems to be seen from a different angle; this has permitted

new techniques, such as those using quasi-random numbers, to be developed.

CHARACTERISTICS OF THE MONTE CARLO METHOD

One constructs for each problem a random process with parameters equal to the
required quantities of the problem, determining estimates of those parameters approximately
by carrying out the random process and then computing statistically the required parameters

and also setting some form of confidence interval on the results.

For example in evaluating

I=ff(x)d.x

if £ is a random number with a rectangular distribution between 0 and 1, then f(g) is an
unbiased estimator of I, i.e.
N

T) =t

i

E [£(8)]

and its variance can be shown to be o2/N where

j1[f(x) S1)2 =02 .

Further we know by the Central Limit Theorem that f is normally distributed.

[139]

Thus by taking a series of random numbers E,, £, «.. En and forming T we can say

that
=, 20 . .
I=fz= with 95% confidence
g
or
1=F+ 2;;“ with 99% confidence.

Now we do not in general know o but may estimate it from the formula

N
2 oA _ 7Y
s® = N o3 fi f .
i

1
The most important fact above is that the error decreases as N /;-u-it is unfortunate
that to gain one more significant decimel digit one must calculate 100 times the number of

points.

3. APPLICATION OF MONTE CARLO METHODS

The generation of random numbers Ei and the tests of randomness are left outside the

scope of this lecture. They are generated by the functions

RANF on the CDC 3800

RNDM on the CDC 6600.

The routine on the CDC 3800 is statistically superior to RNDM which is unfortunate since
the CDC 6600 is considerably better suited to Monte Carlo calculations than is the CDC 3800.

Monte Carlo methods have been applied to various classical problems including
eigenvalue problems, simultaneous equations, partial differential equations, and integrals.
However, if a classical method of solution for these problems exists, the classical method

is invariably superior.

To obtain some idea as to when the Monte Carlo method may be a reasonable attack, let

us note that in the above example the method is

i) independent of the dimension of the integration;
ii) independent of the nature of f other than it was specified to be finite;
iii) easily adapted to the interval of integration if it should be sectional or has other

such difficulties.
Thus Monte Carlo methods may be considered for

i) multidimensional problems;
ii) "fussy" problems, e.g. awkward regions or discontinuous functions;

iii) problems intractable in terms of classical mathematics;

[140]

L,

-3

iv) simulation of probabilistic processes;

v) large problems, especially isolated solutions, for example, under certain conditions

an isolated unknown in a system of 100 x 100 simultaneous equations.

If we wish to improve the error estimate ko/YN without increasing the labour involved,
we must design methods which either reduce o or improve on the power of N in the denominator.

I will now state four principles in Monte Carlo werk which should be followed:

I) use an exact value rather than an estimate whenever possible;
II) do as much anslytically as possible;
III1) reduce the variance of the method;

IV) choose your random numbers.

Let us now turn to these principles. (I) and (II) are actually particular cases of
(I1I) but are worth stating separately, for in general the greatest gains in variance

reduction arise from exploiting specifiic peculiarities of the problem.

VARIANCE-REDUCING TECHNIQUES

We shall now consider some variance-reducing techniques as applied to simple
integration as a model., A simple integral is chosen since it lends itself best to the

various ideas. In particular, the methods have been applied to the two integrals

1 x 1
1, = j' e —tax, 1,-= f sin 7x dx ,
(o]

o

and the standard deviations of the various methods when applied to these two integrals
are tabulated in the following table,

I, 1,

1) Hit or miss 0.5 0.48
2) Crude 0.286 0.308
3) Central variate 0.037 0.063
4) TImportance sampling 0.052 0.08
5) Stratified sampling 0.08 0.1

6) Antithetic variate 0.051 0.09
7) Regression analysis 0.0034 0.013

[131]

4e1 "Hit or miss" Monte Carlo

This was one of the earliest ways of applying Monte Carlo techniques. Let us

illustrate it.

Suppose that

Then I is the proportion of area of the square beneath the curve. Taking two random
) 2 gzi'

Then if n* is the number of hits out of n tries, n*/n » I. Since the distribution

numbers £ ., & ; We call it a hit whenever f‘(gzi -,

is binomial
Tnt/n = I(1 - I)/n .
This is a terrible method but is easily described pictorially. This method was one of

the main causes for the bad reputation that Monte Carlo methods acquired. It is included

here for completeness and as a warning.

For the two standard integrals we have

- 0.1-0-18 X 0'582 - 002#3 (1)
n*/n" n T n
2(4.2)
2 _ T T 04231 2
o_n*/n = n = n . ()

442 Crude Monte Carlo

This method has been described above in Section 2.

4.3 Control variate method

Suppose we know an answer to a simpler yet similar problem.

Then we break the problem up into two parts, thus:

1=ffu)u

=]¢u>u+f1wu>-uﬂfu.

o

Then we obtain an estimate of the second integral, which if ¢(x) is well chosen will have

a smaller variance than the original, by crude Monte Carlo.

Taking ¢(x) = x for integral 1, and

o(x)

n
-
A
[1aY
-~ i

[N B =

]

2 - 2x,

A
]
A

for integral 2, we obtain the figures given in the table.

[142]

-5 -

Thus we may consider this as an example of principle (II) in the preceding section

regarding f(x) as a perturbation of ¢(x).

Loy Stratified sampling

Break the range of integration into several pieces aj—1< X < aj where
0= ao < ays eeey @ = 1 and apply crude Monte Carlo sampling to each of them. Then take

as an estimator for I

n

dJ

i 1

L (ay = o) oy Flogy Loy = ey] &)

which will have variance

k a. k Q.
\ llj - llj_1 Jd 2 1 J 2
J fd
=1 %51

j= 3=

1]

where nj is the number of sample points in the jth piece. In practice,

2 n.

_k J

=) —H*L'r)-z (51"
J=1

flJ fa \ [(xJ C(J_J gl,])

-
J n.

I
.
It
II [N
"4:>

If the stratification is well chosen so that the variations of f within the pieces
are less than the differences of the mean value of f in the various pieces, then st2 will
be less than the corresponding crude Monte Carlo process with £ n. evaluations. In
practice, one divides the original interval into k equal pieces (as has been done taking
four intervals for the integrals of the table) or so that the variation of f is the same

in each piece.

In the examples for the table, an equal number of evaluations have been taken in each
interval but a further simple refinement is to take n'j proportional to the variance of f

within the interval.

45 Importance sampling

We can write

1= f £(x) ax = f 2%,’% a6(x)

o

[123]

5.

where
X

6(x) = f g(y) &y .

4]

We restrict G to be a positive-valued function and (without further loss of generality)
&(1) = 1. Then G(x) is a distribution function and if 5 is a random variable sampled
from G then

and with variance

£ o
Gig= | G- DT

[

G(x) should be chosen so that f/g is as constant as possible. The transformation is

especially valuable for unbounded integrals.

For the purpose of the table we have taken for the first integral

g(x)=2,
and for the second integral
1
g(x) =4x x<3
=4 - Lx x s+
= - A >2.

ANTITHETIC VARIATES

Suppose t is an estimator for T.

Tn the control variate method we sought another estimator t/ with known expectation

I’, and we then sampled t - t¢ + I’ as the estimator of I. Since
var (t - t/ + I/) = var t + var t/ - 2 cov (t,t’)

we will have gained if 2 cov (t,t’) > var t/.

An alternative approach is to seek an estimator t” having the same unknown expectation
as t and a strong negative correlation with t. Then ot + Bt”, where a + # = 1, will be an

unbiased estimator of I, and

var {at + Bt#} = o var t + B2 var t¥ + 2 af cov (t,t7) .

Thus we will gain if only cov (t,t#) < O. Any estimators which mutually compensate each

others' variations are termed antithetic variates.

[424]

b)

-7 -

For example we may consider a system of antithetic variates by stratification.

If the function is monotonically increasing we may take the estimator

5, = af(agy) + (1 - a) fla+[1-a) &) -

If the function has a single maximum or minimum

T = af(ag;) + (1= a) £(1 = [1 - a] £,)

may be taken with advantage.

It is difficult to locate the value of g exactly but a = Y, is usually a fair guess.

For Ta a more sophisticated estimate would be « such that

£la) = (1 = a) £(1) + af(0) .

One can continue with this procedure and subdivide the intervals further by first

using Ta and then Sﬁ which requires four evaluations of f per estimate. Further

variations are unlimited.

6. REGRESSION ANALYSIS

This is a method of general application that does, however, introduce a slight bias

into the result.

In its generality we start off with several unknown estimands I,, ..., IP and a set

of estimators ty, ..., tn where

the x,
i

E()) =X -1,

being known constants.

J

Let V be the n x n variance-covariance matrix of the ti's. Then it is known that

the minimum variance unbiased linear estimator of I will be

with

=@V Y,

var (2*)=(x' ¥ 07 .
If V, is some other variance-covariance matrix we have
B(te*) = B{(x %' 07T X L7 8

= E(X' Yo X)°

[145]

-8 -

If V, is a reasonable approximation to ¥V, then to* will be very nearly a minimum variance,

unbiased estimator of I.

In practice, we obtain N independent sets of estimates %, ta2, ..., EN An

approximate variance-covariance matrix may be calculated as follows. Denote

_t_k = l&iki (n X 1)
and form
N
- 1
ti N Z tik *
k=1

N
) ey = B (e - By
k=1
With these values we calculate
(A VI G A

as our estimator of I. It is nearly unbiased with covariance matrix approximately
-1 -1
(¥ X /MN.

Suppose, for example, we estimate an integral I by

ty = f(g)
tz = f(1 - E)
and obtain N such estimates. Thus
E(ty) =1 » E(t2) =1
i.e. Xt = {1, 11 .

Next we form T, and %, and Ve (2 x 2) as above. Then if
-1 _la b

to*zi(a+c)E,+(b+d)t2§/(a+b+c+d) .

[146]

Te

QUASI-RANDOM NUMBERS

The above principles can be carried over for multidimensional integrals. In fact,
Monte Carlo methods are more accurate than the trapezoidal rule in three or more
dimensions and better than second order rules in five dimensions, since for such methods

of order v in k dimensions the error is of the order
N(—2v+1)/k

Thus until such time as better methods are devised, the Monte Carloc one is a

practical approach,

However, so far we have not restricted f whatsoever. If f is well behaved (in the

sense that it can be expanded in a Fourier series)

and

ZZ la] =B <00,
o Pk

then we can choose our random numbers and obtain estimates with errors o(N~') and O(N'Z).

In particular, to integrate

‘/' £(xy, vees 1) Axy, eer, X

we choose a,, ses, % to be independent irrational numbers belonging to a real algebraic
field J(z K+ 1), ie€e Qqy seny x are real roots of a polynomial of degree § with
integer coefficients, and no non-zero set of integers n;, ..., n exist such that
Naay + eee na = 0., Then

N

S =z f([nm], [nag} e [nak]) H

n=1

‘where [+] denotes the fractional part of the enclosed number, is such that S -» I with

error O(N~*).

Thus, for example, taking a4 = JE-and considering the integral

1
I = f sin #x dx

[

[147]

- 10 =

it was found that the values of the maxime and minima of the error in I closely obeyed
the law 1/N.

Although irrational numbers cannot be represented exactly in a computer, rounding
errors can be neglected providing the number of digits in N2 is less than the number of
significant digits in a.

The generality of the Monte Carlo method in the sense that the restrictions on f
are minimal gave rise to methods the efficiencies of which were initially questionable when
applied to many analytic problems. With the marriage of Monte Carlo methods to other
disciplines, efficient methods have been developed for problems which obey slightly

more restrictive conditions.

BIBLIOGRAPHY

JeM. Hammersley and D.C. Handscomb, Monte Carlo methods (Methuen Monograph, London, 1964).
Contains excellent bibliography.

Method of statistical testing - Monte Carlo method (Edited by Yu A. Shreider) (Elsevier
Publishing Co., Amsterdam, 1964).

A. Hall, On an experimental determination of w, Messeng. Math. 2, 113-4 (1873).

[148]

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

