
Using multiple engines in the Virtual Monte Carlo package

Benedikt Volkel1,2,∗, Andreas Morsch2, Ivana Hřivnáčová3, Jan Fiete Grosse-Oetringhaus2,
and Sandro Wenzel2

1Ruprecht-Karls-University Heidelberg, Germany
2European Organization of Nuclear Research (CERN), Geneva, Switzerland
3Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France

Abstract. The Virtual Monte Carlo (VMC) package provides a unified inter-
face to different detector simulation transport engines such as GEANT3 and
GEANT4. It has been in production use in various experiments but so far the
simulation of one event was restricted to the usage of a single chosen engine.
We introduce here the possibility to mix multiple engines within the simulation
of a single event. Depending on user conditions the simulation is partitioned
among the chosen engines, for instance to profit from each of their advantages
or specific capabilities. Such conditions can depend on phase space, geometry,
particle type or an arbitrary combination.
As a main achievement, this development allows for the implementation of fast
simulation kernels at the VMC level which can be used stand-alone or together
with full simulation engines. This capability is crucial to cope with largely
increasing data expected in future LHC runs.

1 Introduction

The simulation of particles traversing complex detector geometries is one of the crucial build-
ing blocks of event simulation in heavy-ion and high-energy physics. Such simulations usu-
ally transport O(100)−O(10000) primary particles per event. This requires frameworks capa-
ble of modelling the interactions with the detector materials and solving geometry propaga-
tion tasks. Commonly used packages are GEANT3 [2], GEANT4 [3–5] and FLUKA [6, 7].

To cover specific needs or to automate workflows, those transport codes are commonly
utilised via additional experiment specific layers. The ALICE experiment at the LHC uses the
Virtual Monte Carlo (VMC) [1] library which defines common interfaces and functionalities
through abstract classes. In this way, the experiment’s software framework does not depend
on a specific transport engine1.

In the previous implementation of VMC a single event was simulated with one chosen
engine and it is not possible to dispatch to a fast simulation from the VMC code. The last
point is an important limitation as their usage becomes more and more crucial especially in
view of largely increasing data expected in the upcoming LHC runs.

∗e-mail: benedikt.volkel@cern.ch
1The implementation for the FLUKA VMC interface has been restricted for the ALICE collaboration in 2010

and will not be discussed in this paper.

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 245, 02008 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024502008

This paper introduces extensions to the VMC framework allowing for the partitioning
of one event among multiple different engines. Such a partitioning could depend on particle
type or phase space, detector geometry, other user defined conditions and as such it provides
the capability to dispatch the transport to a VMC based fast simulation.

Sec. 2 outlines the basic VMC workflow. The central code developments and new in-
terfaces are explained in Sec. 3 followed by proof-of-principle examples in Sec. 4. A final
discussion and outlook is given in Sec. 5.

2 The VMC implementation and workflow

The backbone of the VMC package is built by the three abstract classes:

• TVirtualMC: Define and devise the interface to a transport engine backend. A concrete
implementation of such an interface will be referred to as VMCEngine in the following.

• TVirtualMCApplication: Build the bridge between the running VMCEngine instance
and the user logic or user code specific to a particular experiment. A derived user imple-
mentation will be referred to as UserApp in the following.

• TVirtualMCStack: Particle stack helper class to collect and access transported particles.
A derived user implementation will be referred to as UserStack in the following.

In the multiple engine extension to the VMC package discussed here, two new classes are
introduced:

• TMCManager: Registers and steers multiple engines and their particle stacks.

• TMCManagerStack: Particle stack helper class utilised by TMCManager to arrange multiple
stacks internally and synchronise them with UserStack.

2.1 General considerations and workflow

The VMC workflow is sketched in Fig. 1 which is the same for both running with a single or
multiple engines. The difference is only in how the run is steered which will be explained in
section 3.1. Start marks the point when a simulation run is steered and End denotes when a
run is fully finished. Each box represents a stage where a corresponding method of UserApp
is called. This gives the possibility to inject additional user routines.

Figure 1. Sketch of the general VMC workflow. Boxes represent additional interaction between a
VMCEngine and UserApp.

2

EPJ Web of Conferences 245, 02008 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024502008

As the VMC framework makes use of different ROOT [8] classes, it also typically uses
its system for geometry description and navigation. Currently, only geometries described via
ROOT’s TGeoManager are supported when running with multiple engines.

The developments described in this paper were made carefully to ensure backwards-
compatibility for user-defined classes deriving from TVirtualMCApplication and
TVirtualMCStack. Thus, there is no need to change anything concerning these user im-
plementations when only a single engine is used.

3 Code developments and interfaces

This section introduces new classes, interfaces and extensions to allow for event partition-
ing between multiple engines. Fig. 2 sketches the implementation and interplay of the new
classes TMCManager and TMCManagerStack in the context of a multiple engine run. In the
following, key features are explained in more detail focussing on how a simulation run with
multiple engines is handled and how existing user classes need to be adapted for that scenario.

Figure 2. Sketch of the general VMC workflow. Boxes represent additional interaction between a
VMCEngine and UserApp.

3.1 Introducing TMCManager and TMCManagerStack

Multiple engine support is enabled if the TMCManager singleton object is present. In that
case TMCManager::Instance() returns a valid pointer and null otherwise. If it is not
present, the system will run only with one engine, and will trigger an assertion if more than
one VMCEngine is created.

When running with multiple engines, each VMCEngine registers itself to the manager ob-
ject during construction. In addition, UserApp must be registered as well as the user stack.
The latter will not be visible to the engines. Instead, each engine has a pointer to its individ-
ual TMCManagerStack object set by TMCManager which will synchronise and merge partial
stack histories to one coherent history on the user stack.

A run with multiple engines is initialised and run calling TMCManager::Init() and
TMCManager::Run(Int_t nEvents), respectively. Thus, it follows the workflow of the
single run where the initialisation and run are steered from VMCEngine.

3

EPJ Web of Conferences 245, 02008 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024502008

Transferring tracks

A track is transferred to another engine via TMCManager::TransferTrack(Int_t
engineId) or TMCManager::TransferTrack(TVirtualMC *mc) by passing the target
engine’s ID or a pointer to it. A possible use case is given in Listing 1 where a track is
transferred if it enters the volume with the ID volIdChange. TMCManager interrupts the
transport and caches the current track status as well as the navigator state. The latter is espe-
cially useful to re-initialise TGeoNavigator when the paused track is resumed. It avoids the
time consuming task of searching the geometry tree again to find the current volume.

1 UserApp::Stepping()
2 {
3 // Some implementation
4
5 // Now make the decision whether the track should be transferred based on

the current volume ID
6 // (Need to pass a reference where the copy number is saved in addition.)
7 Int_t copyNo;
8 if(fMC->CurrentVolID(copyNo) == volIdChange) {
9 // If target and current engine are the same, nothing will happen

10 fMCManager ->TransferTrack(targetEngineId);
11 }
12 }

Listing 1. Transfer track during stepping based on volume ID.

Making the user stack ready for multiple engine usage

The user is responsible for recording, managing and indexing created tracks via a specific
UserStack implementation. To comply with the user-specific stacking procedure, each at-
tempt to push a track during simulation is always forwarded to the user stack. Listing 2
shows an example implementation of a UserStack. First, a track is created and indexed as if
it was a run with only a single engine. Afterwards, the pointer to the track object is passed to
TMCManager::ForwardTrack(...) along with its ID and parent ID. In general, no further
changes are necessary to use a previously implemented UserStack with multiple engines.

1 UserStack::PushTrack(Int_t toBeDone, Int_t parent, ..., Int_t& ntr, ...)
2 {
3 // Some implementation as they were done for a single run
4 TParticle* particle = new TParticle(...);
5
6 // Derive the ID of the track
7 ntr = GetNewTrackID();
8
9 // Some further implementation as they were done for a single run

10
11 // Decide if multi-run by checking for valid pointer of a cached

TMCManager pointer
12 if(fMCManager) {
13 // Forward to current engine...
14 fMCManager ->ForwardTrack(toBeDone, ntr, parent, particle);
15 }
16 }

Listing 2. Forward track in UserStack when running with multiple engines.

4

EPJ Web of Conferences 245, 02008 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024502008

Further important methods

• void ConnectEnginePointer(TVirtualMC *&mc): Keep the passed pointer reference
up-to-date to always point to the currently running engine.

• TVirtualMC* GetCurrentEngine(): Return a pointer to the current engine.

• template <typename F> void Apply(F engineLambda): Apply a callable object
engineLambda, which takes a pointer to a TVirtualMC object, to all registered engines.

• Bool_t RestoreGeometryState(): Set TGeoNavigator to the state the current track
was paused at. Returns kFALSE if it could not be restored.

• Bool_t RestoreGeometryState(Int_t trackId, Bool_t checkTrackIdRange
= kTRUE): Set TGeoNavigator to the state of the track with ID trackId where it was
paused at. If checkTrackIdRange is set to kFALSE, it has to be ensured that the track
with that track ID exists. Returns kFALSE if the state could not be restored. This method
is utilised by TMCManager itself and it restores necessary navigator states automatically.

3.2 Modification and extension of TVirtualMCApplication and TVirtualMC

A UserApp can automatically initialise a multi run scenario with the
method TVirtualMCApplication::RequestMCManager() during construc-
tion which registers the application to the manager. The latter is then accessi-
ble via the member TVirtualMCApplication::fMCManager while the mem-
ber TVirtualMCApplication::fMC always points to the currently running engine.

The previous singleton property of the TVirtualMC class has been lifted to allow for
multiple instances of that type. To ensure backwards-compatibility, the static member fgMC
as well as the static access method GetMC() returning that member are kept. When running
with multiple engines, fgMC is updated by TMCManager whenever the engine changes.

Event processing

Having multiple engines, a track might have been transported already to its current posi-
tion. To make an engine aware of that, the private virtual method ProcessEvent(Int_t
eventId, Bool_t isInterruptible) has been introduced. Its implementation in a
VMCEngine has to check whether a track was already transported partially and if so, any
procedures related to starting a new track must be omitted. This method is solely used by
TMCManager which is a friend class of TVirtualMC.

If a track meets the conditions to be transferred to another engine, it cannot simply be
stopped by StopTrack() as this calls TVirtualMCApplication methods related to finish-
ing a track. This is achieved by the private virtual method InterruptTrack(). Its imple-
mentation in a VMCEngine has to make sure that the track is not transported further but at the
same time any procedures related to finishing a track must be omitted.

GEANT3_VMC and GEANT4_VMC

The necessary pure virtual methods have been implemented for the VMC interfaces to
GEANT3 and GEANT4. Most importantly, the interaction with the particle stack and the
geometry navigation has been revisited and modified accordingly. Both interfaces can now
handle the scenario when a track has already been transported partially and if so, TMCManager
is requested to to restore the corresponding geometry state. GEANT3 and GEANT4 are there-
fore ready to be used in a multiple engine scenario in the VMC framework.

5

EPJ Web of Conferences 245, 02008 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024502008

4 Proof-of-principle example

Two proof-of-principle examples are presented, the first one mixing the full simulation en-
gines GEANT3 and GEANT4 and the second mixing a custom fast-simulation-like VMC
engine with GEANT42.

4.1 Mixing GEANT3 and GEANT4 simulation

The left sketch in Fig. 3 shows a vanilla sampling calorimeter with passive (dark) and active
(red) layers which will be called ABSO and GAPX, respectively. GEANT3 is responsible for
the simulation of the ABSO layers whereas GEANT4 takes care of the GAPX layers. The
right plot in Fig. 3 shows the time elapsed in simulation for different simulation scenarios
normalised to a GEANT3-only scenario. The horizontal axis shows the number of calorime-
ter layers while the overall thickness is fixed. Due to a more detailed simulation of GEANT4
this takes longer when compared to GEANT3, as expected. When partitioning the simula-
tion as described above (green line), the simulation time reduces significantly compared to
using only GEANT4. A flat curve indicates that the simulation time does not scale with the
number of layers and hence not with the number of track transfers. Pausing and resuming
tracks/engines do therefore not introduce any runtime overhead3.

25
0

50
0

75
0

10
00

12
50

15
00

17
50

20
00

layers

1

2

3

4

tim
e

/ t
im

e
(G

3)

G3 (ABSO + GAPX) G4 (ABSO + GAPX) G3 (ABSO) G4 (GAPX)

Figure 3. Sketch of a vanilla sampling calorimeter (left) and simulation time relative to the time elapsed
for GEANT3 when using different engines (right). Mixing the detailed GEANT4 simulation with
GEANT3, the simulation time reduces significantly compared to using GEANT4 only.

4.2 Mixing GEANT4 with a custom fast-simulation-like VMC engine

The same geometry setup introduced in the previous sub-section is used to demonstrate the
partitioning between GEANT4 and a custom fast-simulation-like engine4. GEANT4 trans-
ports the particles within the world volume up to the calorimeter and as soon as that is
reached, the custom engine takes over. The latter parametrises the entire energy deposit in
the calorimeter. To do so, an energy distribution was first simulated with GEANT4 which the
fast-simulation-like engine draws the values from. The result can be seen in Fig. 4 showing
the energy distributions obtained from the full simulation and the one from the custom engine.

2GEANT4 implements a fast simulation framework natively. However, those implementations cannot be used
with other full simulation engines and therefore, this scenario is not considered here.

3These scenarios are available as example E03c in the GEANT4_VMC repository at
https://github.com/vmc-project/geant4_vmc/tree/master/examples/E03/E03c.

4The corresponding implementations can be found at https://github.com/benedikt-voelkel/VMCFastSim and
https://github.com/benedikt-voelkel/FastShower

6

EPJ Web of Conferences 245, 02008 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024502008

https://github.com/vmc-project/geant4_vmc/tree/master/examples/E03/E03c
https://github.com/benedikt-voelkel/VMCFastSim
https://github.com/benedikt-voelkel/FastShower

0 0.005 0.01 0.015 0.02
total energy deposit (MeV)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

3
10×

 a
.u

.

G4 full

G4 + Fast

Figure 4. Total energy distribution obtained from a
GEANT4 full simulation and a fast-simulation-like
VMC implementation drawing from the full simu-
lation distribution.

The results are compatible, however,
when using the fast-simulation-like en-
gine, execution time reduces by one or-
der of magnitude. Such a reduction of
resource demands is one of the main pur-
poses of fast simulation implementations.

5 Conclusion

The VMC framework has been extended
to allow running multiple transport en-
gines such that the simulation of an event
can be partitioned among those. The en-
gines’ particle stacks are managed auto-
matically and synchronised with the user
stack ensuring a coherent history.

It has been ensured that the previ-
ous scenario with only one engine is con-
served and no changes are needed in pre-
vious user code in that case. In order to
use those with multiple engines, the re-
quired changes are minimal and straight-
forward to implement.

Partitioning a simulation has been demonstrated in two examples, one mixing the full
simulation engines GEANT3 and GEANT4 and another one mixing GEANT4 with minimal
custom implementation of TVirtualMC. The latter can be seen as an example of how to
incorporate fast simulation on the level of the VMC package and it can be combined with
other interface from TVirtualMC.

References

[1] Hřivnáčová, I. et al., Proceedings of Computing in High Energy and Nuclear Physics, pp
THJT006 (2003)

[2] Brun, R. et al, GEANT3: user’s guide Geant 3.10, Geant 3.11 (CERN, Geneva, 1987)
Report number CERN-DD-EE-84-01

[3] Agostinelli, S. et al, Nucl. Inst. & Meth. in Phys. Res. A 506 no. 3, 250–303 (2003)
[4] Allison, J. et al, Nucl. Inst. & Meth. in Phys. Res. A 835, 186–225 (2016)
[5] Allison, J. et al, IEEE Transactions on Nuclear Science 53 no. 1, 270–278 (2006)
[6] Ferrari, A. et al, FLUKA: A multi-particle transport code (CERN, Geneva, 2005) Report

Number CERN-2005-010; INFN-TC-2005-11; SLAC-R-773
[7] Böhlen, T.T. et al, Nuclear Data Sheets 120, 211–214 (2014)
[8] Rene Brun and Fons Rademakers, Nucl. Inst. & Meth. in Phys. Res. A 389, 81–86 (1997)

(see also https://root.cern.ch)

7

EPJ Web of Conferences 245, 02008 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024502008

https://root.cern.ch

	Introduction
	The VMC implementation and workflow
	General considerations and workflow

	Code developments and interfaces
	Introducing TMCManager and TMCManagerStack
	Modification and extension of TVirtualMCApplication and TVirtualMC

	Proof-of-principle example
	Mixing GEANT3 and GEANT4 simulation
	Mixing GEANT4 with a custom fast-simulation-like VMC engine

	Conclusion

