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The light-front wave function of a proton composed of three quarks and a perturbative gluon is
computed. This is then used to derive expressions for the color charge density correlator (p(g,)p?(g,)) at
O(g*) due to the emission of a gluon by one of the quarks in the light-cone gauge. The correlator exhibits
the soft and collinear singularities. Albeit, we employ exact gluon emission and absorption vertices, and
hence the gluon is not required to carry very small light-cone momentum, or to be collinear to the emitting
quark. We verify that the correlator satisfies the Ward identity and that it is independent of the
renormalization scale, i.e., that ultraviolet divergences cancel. Our expressions provide x-dependent
initial conditions for Balitsky-Kovchegov evolution of the C-even part of the dipole scattering matrix to
higher energies. That is, we determine the first nontrivial moment of the color charge fluctuations which act
as sources for soft color fields in the proton with wavelengths greater than approximately 1/x ~ 10-100.
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I. INTRODUCTION

The purpose of this paper is to derive expressions for the
(light-cone gauge) color charge correlator (p“(g,)p"(g,))
in a proton boosted to large momentum P+, on the x™ = 0
light front. The charge operator p corresponds to the plus
component of the color current due to valence quarks, and a
perturbative gluon which is not required to carry small
momentum fraction. It sums color charges with light-cone
(L.C.) momentum fractions greater than a cutoff x, which
collectively generate the color field from which the
projectile scatters eikonally. The kinematic region of
interest here corresponds to moderately small L.C. momen-
tum fractions x ~ 0.01-0.1.

Color charge correlations in impact parameter space are
obtained via 2D Fourier transform of the charge correlator,
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K
Here,' we assumed that P = 0 for the incoming proton;
K =—-4, — ¢, denotes its transverse momentum after
&K

scattering via two gluon exchange. Also, [z= [ o

The brackets (- - -) denote the expectation value of a given
operator over all possible superpositions of quark and
gluon states in the incoming and scattered protons, respec-
tively. The precise definition is given in Eq. (62) below.
Reference [1] showed that G, (b, g, — ¢») exhibits non-

trivial behavior as a function of impact parameter b and
relative transverse momentum ¢, — ¢, of the probes (and
their relative angle), changing from “repulsion” at small b
and ¢, — ¢, to “attraction” at large b, ¢, — ¢,. Their
analysis restricted to the valence quark state of the proton;
here, we derive the corrections to the color charge corre-
lator due to the emission of a gluon by one of the quarks.

1 . .

In general, we use the light-cone coordinates x* =
(x*,x7, X), where arrow notation denotes two-dimensional trans-
verse vectors, X = (x1,%,) = (x'), dx,dx, = d’x and ¥*> = |X|*.
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The exclusive y™*) 4+ p — J/W + p cross section, for

example, is determined by the impact parameter b and
dipole size ¥ dependence of the dipole-proton scattering
amplitude [2-10] which, in turn, is related to G,(q;,g»)
(see below and Refs. [6,11]).

In the covariant gauge, (p*(g,)p"(g,)) determines the S
matrix for scattering of a quark-antiquark dipole from the
color fields in the target proton (in the “dilute” limit
1 -8« S). The S matrix for eikonal scattering can be
expressed as (e.g., Ref. [12])

i =bols ()0}
= 1-T(%.b). )

(Following the standard convention in the small-x literature
we define the scattering amplitude without a factor of 7).

When integrated over impact parameters b, the scattering
amplitude is related to the so-called dipole gluon distribu-
tion [13]. U (U") are (anti-)path ordered Wilson lines
representing the eikonal scattering of the dipole of size 7 at

impact parameter b:
U()_é) _ Peigfdx_AJr“(x_,)_c’)t“’

Ut ()—Cv) _ r,_De—igfdx’A”(x’,})t“. (3)

Expanding 7 (7, l;) to second order in gA™, i.e., neglecting
exchanges of more than two gluons and the resummation of
two gluon exchanges, allows us to write it in terms of
correlators of the field integrated over the longitudinal
coordinate x~. This field is related to the two-dimensional
(2D) color charge density in covariant gauge via

SV3AT(R) = pi(B). 4)

We refer to Ref. [14] for a thorough discussion of the
relation of Wilson line correlators at small x to Wigner
distributions.

The gauge transformation from covariant to light-cone
gauge involves the color charge density itself [15,16].
Therefore, to quadratic order in the charge density, the
charge correlators in the two gauges are the same.

From Egs. (2), (4) one obtains the C-even two gluon
exchange amplitude [11]

Since G,(q,,g,) is symmetric under a simultaneous sign

flip of both arguments it follows that 7 (7, E) is real.
G, satisfies a Ward identity and vanishes when either
one of the gluon momenta goes to zero [17,18]:
Gy(G—1K,~G—1K)~(G£1K)? as § —» £1K.

The computation presented here corresponds to explicit
“evolution” of the three valence quark Fock state of the
proton to x of order a few times 10-2% The dipole scattering
amplitude at yet smaller x can be obtained by adding
additional soft gluons to the proton [20]. This is achieved
by the Balitsky-Kovchegov (BK) evolution equation
[21,22] which also accounts for multiple scattering (i.e.,
the resummation of two-gluon exchanges in covariant
gauge) as one approaches the unitarity limit.

Detailed fits of BK evolution with running coupling
corrections to the y* — p cross section measured at HERA
have been performed by Albacete et al. in Refs. [23,24]
(see also Refs. [25,26]). Improved recent analyses employ
a collinearly improved NLO BK evolution equation
(Refs. [27,28] and references therein). However, these fits
of small-x QCD evolution to HERA DIS data for the
inclusive cross section typically impose ad-hoc initial
conditions for the dipole scattering amplitude on the
proton, tuned to obtain the best match of the evolution
equation to the data. Moreover, a change in the initial value
of x requires uncontrolled (by theory) retuning of the initial
condition for the dipole scattering amplitude.

Here, continuing previous work [1,6,11] which restricted
to the three valence quark Fock state, we attempt to provide
initial conditions based explicitly on the light-front wave
function (LFwf) of the proton. That way one may take
advantage of “proton imaging” performed at the future
electron-ion collider (EIC) [29-32].

Our initial condition for BK evolution is obtained by
cutting off the divergent integral over the plus momentum
ky of the gluon in the right-moving proton. However, the
BK equation in its standard formulation evolves the wave
function of the projectile, and the evolution “time” is then
related to the minus component of the momentum of the
emitted gluon [33-35]. Ducloué et al. have reformulated
[34] BK evolution at NLO in terms of the target rapidity (or
Bjorken-x). They obtained an evolution equation which is
nonlocal in rapidity and which depends explicitly on the
initial rapidity (or x =k / P%). This underscores the
importance of a controlled x dependence of the “initial
condition” for the dipole scattering amplitude which we
compute here.

*The emission of a gluon which is not soft or collinear to the
valence charges has been considered previously by Altinoluk and
Kovner in Ref. [19]. However, their focus was on single-inclusive
particle production in the collision of such a proton with a nucleus
rather than on color charge correlations in the proton. Therefore,
they did not require non-forward matrix elements.
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II. THREE QUARK FOCK STATE
OF THE PROTON

The light cone state® of _an on-shell proton with four-
momentum P* = (P*, P~, P) composed of three quarks is
written as [37]

1 - . .
|P) :W/[dxi]/[dzkiwqqq(xl»kl;xz,kz;x37k3)
X Z€i1i2i3|P1,i1§P27i2;P3’i3>|S>- (6)

i1.02,13

Here, N. =3 is the number of colors while |S) is the
helicity wave function of the proton described in Sec. I A
below. It is normalized to (S|S) = 1. Furthermore, the
following compact notation has been introduced:

dux; dx,d
) = S22 51—y — 3, — xy),
8x1X2X3
2k ko d?hy - - -
[d%k;) = ———2—25(k; + ky + ks). (7)
(27)

The three on-shell quark momenta are specified by their
light-cone momentum components p; = x;P™ and their

transverse components p; = in3 + E. The quark colors are
denoted as iy,3. ¥,,, is the probability amplitude for
finding exactly three quarks (and no gluons) with the
specified momenta, colors, and helicities, in the proton. It is
symmetric under exchange of any two of the quarks:
‘quq(xl, kl;X2, kz; X3, k3) = quqq(x% kz; X1, kl;X3, k3) etc.

For simplicity, we will assume that the momentum space
wave function ¥, does not depend on the helicities #; =
+1 of the quarks, i.e., that the helicity wave function
factorizes from the color-momentum wave function. It is
presented in more detail in the next section.

We neglect plus momentum transfer so that &=
(KT — Pt)/P™ — 0. This approximation is valid at high
energies. The proton state is then normalized according to

(K|P) = 162°P+§(PT — KT)8(P — K). (8)
The one-particle quark states introduced above are

created by the action of the quark creation operator on
the vacuum |0):

|p.i.A) = b},(p)|0). (9)

The quark creation and annihilation operators satisfy the
anticommutation relation

{bjo(k), b (p)} = 85,167k 5(k* = p*)s(k— p),  (10)

3For a detailed presentation of the light-cone formalism and its
application to high energy scattering, see Ref. [36].

therefore,

p.iA) = 81623k (k- pH)s(k— p).  (11)

(k,j,o

These relations determine the normalization of the
valence quark wave function to be

1 - - -
5/[dxi]/[dzki]llpqqq(xl’kl;xbk2;x3’k3)|2: 1. (12)

For later use we also write the commutation relations of
the operators which create or destroy a gluon

laa(k). @y, (p)] = 6162k 8(k* — p*)s(k - p).  (13)

A. Helicity wave function

The flavor structure of the proton plays no role in our
analysis, so we may assume that the first two quarks are
always u quarks, and the third quark is always a d quark.
Further, we are interested in matrix elements of operators
which are diagonal in helicity. However, the ¢ — gg vertex
does involve the quark and gluon helicities and so we need
to properly count states to ensure the correct normalization.
Since we consider an unpolarized proton we assume that in
the three quark Fock state the quarks couple with equal
probability to positive or negative proton helicity,

1
S) =— + , S|S) = 1. 14
S) ﬁ<|m> py)) (S]5) (14)
In Schlumpf’s notation [38] the spin wave function of the
|uud) proton with positive helicity is

1)~ + 22 (15)
oL _

4 =T = 1), (16)
1 _

£ =511 =11, (17)

For |p;) all arrows (quark helicities) are reversed.
Hence, the squared norm of the state (15) is

)/%‘ T;(’;‘ + )/%”)/;2 + ﬁ‘ T)/;z + )/%ﬁ)/%‘ = 3. Therefore, we

take
1
Ipt) = 75()/{ +17)

1

V6

Helicity matrix elements of diagonal operators are
given by

CI) =) =Itit). (18)

034026-3



ADRIAN DUMITRU and RISTO PAATELAINEN

PHYS. REV. D 103, 034026 (2021)

(S101S) = 5 ((p110lpy) + (p,10lpy))

Aot t) + Aol )
(TLtoIM) + (1 < L)l (19)

+s|~w'~

We will use this expression below to sum the gluon
emission vertex over quark helicities. However, since we
are not concerned with helicity dependent processes
we shall symmetrize over permutations of the three
quarks. For example, Eq. (19) gives (h;h,) = § but when
we symmetrize over permutations, (hih,), = ((h h,) +
(hyhs) 4 (hah3))/3 = =3

III. THE THREE QUARK PLUS ONE
GLUON FOCK STATE

A. Quark to quark + gluon splitting

The light-cone wave function (LCwf) for g — gg split-
ting is given in LC perturbation theory by

—g(t*);

A, [, (k)¢5 (kg)un(p)].  (20)

wq—’q(](p’ kq’ k )

where p denotes the momentum of the incoming quark; and

%[”—‘h(l’)%(kg)uz(kq)}, (21)

q

qu—)([(kqv kgs p) =

where p denotes the momentum of the outgoing quark. The
quantities k, = p — k, and k, are the momenta of the other
quark and of the gluon respectlvely Also, a is the adjoint
color index for the gluon and i, j are the fundamental color
indices for the quarks. The quarks are assumed massless so
that their helicity is conserved. Note that the expression
above does not assume that the plus momentum of the
daughter quark or gluon is small. Using the on-shell
relation p~ = p*/2p*, and similar for k; and k,, the

energy denominator Ay, is given by
-r" 7 -0
Mgy == (b + 1) = 5.2 (B~ (55 /p)P)
q’g
=2
n
=—-oF— =4 22
2pz(1=2) q (22)

Here, 7 = k;/ pT with 0 <z <1 is the LC momentum
fraction of the gluon and

Q?\T‘l

(23)

*Note that in LCwf only the plus and transverse momentum
components are conserved.

is the center-of-mass transverse momentum. If we do
account for a nonzero quark mass in the energy denom-
inator, i.e., p~=(p*+m?)/2p" and k= = (12(21 +m?) )2k},
then the numerator in the right-hand side (r.h.s.) of the last
expression turns into 7> + (1 —z)?m*. We will use this
form whenever needed to regularize infrared divergences
but take m> — 0 where possible.

The quark-gluon vertex can be decomposed into its
symmetric and antisymmetric parts as [39]

ﬁi(kq)%(kg)uh(p)
! £\ siim tu
_mKl_E)é 2(kg)y T un(p)
=Sk ()| e (4)
and
ﬁh<p)¢a(kg)”/l(kq>
! “ ) sl tu
= m [(1 —§>5 h(P)J’ A(kq)
L0 k) e 25)

where k; = p™(1 —z) and k} = zp*. Note that §757 =

D — 2 and y'y' =2 — D and that this expression is valid in

arbitrary spacetime dimensions and automatically accounts

for the conservation of plus and transverse momentum.
Putting all together yields

Vol Pikask) =20(0) | (13 )38, ) )

nlej;m

S L AT e

and

Wagmq(kgs Ky

p) =20 (1-3) om0l (k)

n'e”

+§W<P>7+[}/1’},m]uh(kq)}nT, (27)

In D = 4, the expressions in Eq. (26) and Eq. (27) can be
expressed very compactly in the helicity basis by first
noting that [39]

iy (kg )y [y’ v/ u (p) = =2ihe" iy (ky )y u,(p).  (28)

where the remaining matrix element is simple,
i) (kg)y up(p) = /(2p")(2k; )8 = 2pV1 — 26y,

Hence, we find that in D =4, Eqgs. (26), (27) can be
reworked to

034026-4



SUB-FEMTOMETER SCALE COLOR CHARGE FLUCTUATIONS IN ...

PHYS. REV. D 103, 034026 (2021)

Wq—qq(P3 kg Ky)
29(1),;2p"V1 -z [( —)51'" Eze’m]élh”lf#
(29)
and
Wag—q(Kg ko> 1)
ot (1-2)om -]

(30)

As a check, note that in D = 4

N Z W y—gg (i kg Ky

Ch(razj

2
— 16g2(p+)2CF(1 _ Z) |:<1 _2) élmékn 4 lmekn

Ze*me” (31)

where the sum over the helicity states of the gluon
yields > eime! = 5™ and the Fierz identity, /e =
skemn — singmk  simplify the Kronecker delta contraction.
This gives the following result

la(p.h.i)) = ZY%(p >(|q<,,, ,

la/a

x|q(ky, 2, j)g(ky 0. a)) + )

Here, the LCwf for g — gg splitting is denoted as y,_,,,
and the Lorentz invariant measures qu and dk, are
defined as

/ /dk* &2k
2% (21

(o / dkt dP2%
( (27)2k* (27)P2"

(35)

The latter form will be used when we regularize ultraviolet
(UV) divergences by integrating over the momenta of all
particles in D dimensions. Here, an arbitrary scale u?
introduced so that the transverse integrals preserve their
natural dimensions. The quark wave function renormaliza-
tion coefficient Z, can be calculated from the normalization
requirement

/ dk,dk,(27)%5(p*

NG Z ‘Wq—»qq p? q (])|

‘haaz]

(1= (3

=8¢°Ce(p")*(1 - 2)[1 +
The result is proportional to the splitting function
P, 4q(z) ~ Ce(1 + (1 —2)?) as it should be. Also, in the
z — 0 soft gluon limit, the LCwf is independent of the
helicity of the quark

- n-ek

Wq—n]g(p’kq?kg) 4 (ta)jier—»—z(s/Ih- (33)

For our applications below it will be convenient to take
LC momentum fractions of the daughter partons relative to
the proton plus momentum P* rather than relative to the
parent quark. Hence, in the ¢ — gg amplitude, z is then
given by z = x,/x (or 1 — z = x,/x) where p* = xP* for
the parent quark, k; = x,P* for the daughter quark, and
k; = x,P" for the gluon. On the other hand, in the gg — ¢
amplitude, z = x,/(x, + x,).

B. The quark wave function renormalization factor
Z,(p*) at order g*

The full physical incoming one-particle quark state can
be written as a simultaneous perturbative and Fock state
decomposition in terms of the bare states

—k5)3(P — ky = ko)W gy (P kg k)

(34)
[
(q(p.h.D)lg(p.h.i)) = o(q(p. h.i)|q(p. h.i))o
=2p*(27)*6%)(0). (36)
At order ¢* for Z,(p™) we find
1 [~ 1
Zq(p )=1- 2p dkgﬁwlq*qg(p’kq’kgﬂ
q
=1-C,(p"), (37)

where |y, ,,|* is summed over the internal gluon and

quark helicities and colors. Substituting Eq. (26) into
Eq. (37) leads to
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1 ~ 1 Z2\2 72 1
Z,(pt) =1-=—— [ dk,—44*Ce(2pN) k)| (1 -2) +=(D-3)| =
(09 =1 =5 [ grarceenn@i | (1-5) + 5 0-3)] 2
ptdkf dP-2k 22 1
=1-24C J 22—0/2/ LI+ (=2 +5(D-4)| 5. 38
s [ i ) o |1 TP 5 (0-4) 5 (38)
where k; > 0. Changing integration variables from &/ to z and 129 to 7 gives
2 2 D-2
gCr [ldz F4 _ dP2n 1
Z,(pt)=1- —11+(1=2?*+>=(D-4 22D/2/——. 39
() =1-5F [Elva-p e So-9)ern [ S5 (39)

Finally, regulating the soft IR divergence in z — 0 by a cutoff @ > 0 with @ < z < 1 and the collinear IR divergence with a
quark mass parameter (as discussed in Sec. Il A), we arrive at

2 | 2 D-2,
2 =1 -5 ["E -2+ S0-a)|wrr [t
—1- 2 S - S0 -0 aa) (40)

Here we have introduced the following notation for the UV divergent integral (see the discussion in Appendix)

D_2l’l
M) =m0 [t

:F<2‘%> [ﬁ]mz_z :%FG—%) —10g<)%) +O(D -4), (41)

where A = (1 — z)?m?. In the above expression, we keep the universal constants together with the D — 4 pole. This
corresponds to the MSbar scheme for UV renormalization. Taking D = 4 — 2¢ in Eq. (40) and expanding in &, we find

2 2 2
g Cg 1 U 3 2r o
Z,(p") =1+ 56(l —a){ LMSbar +108<W>} (5+210g0€> +3-—-+ 0(8)} =1-C,(p"), (42)

where 1/éeyspar = 1/€ — v + log(4n), the parameter yp is the EulerMascheroni constant and the scaleless cutoff a =
pr./pT with pt. > 0.

In the coming sections, we will also need the following D-dimensional integral

27)P-1 dk R R
(27) /2( g )l//q—n]g(pl;pl_kg,kg)l//:;_,qg(pl—l;pl—kg—ll’kg_l_Fh)

2pf pi—k;
C.(p+ .
:2713{ ;2(?)+F(l,ll;al,m2)}, (43)
F

where two transverse momenta [ and /; are arbitrary. This integral is done in detail in Appendix where we also provide an

explicit expression for the finite function F (7, 71; a;, m?) which includes the contribution from the collinear DGLAP [40—
43] IR singularity. Lastly, the UV coefficient C,(p}") = 1 — Z,(p7) is related to the quark wave function renormalization
factor which is given in Eq. (42).

034026-6
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C. Proton with a gluon

We replace each quark state vector in Eq. (6) by the perturbative expansion in Eq. (34). This yields

lg(p1.hi.i1)q(pa. hos i) q(ps. b, i3))]S)

C,(p}) . . dk,
= [(1— 42 q(p1shisiy))o + 229(1 )jil/z(p.t,.i_gk;_)quqg(pl;pl — kg, k)

Ao.j.a

< La(pr = kyo e )glkps 0. @) + - ]

J=

< |q(ps = kg do gk 0.a))g + - ]
® Kl _ Cq<2173+)

< V(P Ky 1) (ke 02 ))o -+ - ] S).

We have extracted the common factor 2g(¢?);;
from ., via definition .. (p;;p;—kyk,) =
29(t) ;i Wamqq(Pis Pi — kg, kg). Note that the quark helic-
ities h; enter the ¢ — gg amplitudes vy, _,,,, see Sec. [T A.
Also, we note that C,(p;) ~ O(¢?) while w,_,, ~ O(g),
and that terms of order O(g*) and higher must be dropped.
Finally, the integration over the plus momentum of the

A Ao,0,)n,a 1

|q(p2. hy. 12))o + ZZQ(IG),'&/Z(L

A.o.j.a

1

Wygg(P2s P2 — kg k)
p;_k;r) q—4q9 g g

. dk,
)'Q(Ps,hs»l3)>o+ ZZQ(I“)ji3/W+—j,€+)ll/q_>qg(P3;P3 — kg, ky)
3 g

A0.j.a

(44)

gluon extends up to the plus momentum of the parent
quark; for example, kj; < pl+ in the first line, and so on.

We also need to add to the r.h.s. of Eq. (44) the O(g?)
contributions from two-body two-quark states, where one
quark emits a gluon which is then absorbed by a second
(distinct) quark. For example, if the first quark emits and
the second quark absorbs the gluon,

dk 1
2(sa a g ~ . ~ .
Z 4g° (1) ;; (t )niz/z(er—_k;)quqg(Pl,Pl — kg, kg)quwq(l’z,k‘q,m + k)

X |q(p1 = kg A1, J)a(p2 + kg A2 1))o ® [q(p3. B3, 03))0|S). (45)

Here, the integration over &, extends up to min(p;, P* — p3). There are analogous contributions corresponding to gluon
emission from quark 2 and absorption by quark 1 as well as from other pairings.

D. Wave function normalization

We recompute (K|P) to match its normalization to Eq. (8),

-

(K|P) = 1673 P*8(P* — K*)5(P - K). (46)

The O(g?) corrections to (K|P) are depicted in Fig. 1. For diagram 1(a) we get

(KIP)e o = (2)Po(P* = KD3(P=R) [1ax) [k

X Wy gq (X1, k13 X0, ks x5, k3 ) [2(S]S)

q99

1

1 ~ 1
— [ dky |y, ip1 — kg k)P
2p+/ gQ(p;r—k;_) |Wq qg(pl P1 g g)'

= (27)’P*§(P* — K*)5(P - K) / [dx] / (@K Co (P g (1. K13 3. K3 3. K3 )[2(S]S). (47)

034026-7
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(®) © (@)

FIG. 1. Diagrams for the computation of the proton wave function normalization at O(g?). In figures the notation K = K is used.

This diagram has a symmetry factor of 3 since the gluon may also be emitted and reabsorbed by quarks 2 or 3.
For diagram 1(c) we get

S c,(pt L
(K1P)eg v = ~@r (P = K95 = R) [lan] 106 XL g 01, B, )RUSIS). 49)

This will be multiplied by a symmetry factor of 6. These two UV divergent contributions cancel.
Continuing to diagram 1(b) we find

(K|P)pig 1) = —162° PT6(PT — KH)5(P - K)

) ~
g CrN, / > = / dk, 1
x =——= [ [dx;] [ [d*k;]P 00 (X1, k15 X0, koj x5, k
12 [ ] [ ] qqq\*1> %15 A2, R25 A3 3) p-li,- _ k; p;- + k;
x ¥y . (x; k k —l—xP Xy + X, k2+kg—ng’;x3,k3)
X <S|ll/q—>qg(P1;P1 kg, kg)‘/’q—»qg(pZ +k s P2, kg>|S> (49)

Note that the summations over the polarization of the gluon and the helicities of the daughter quarks are not indicated; the
helicities h, h, of the parent quarks which appear in the ¢ — gg amplitudes are those from |S). Also, there is an upper limit
for the integration over k; which is given by min(py, P* — p7).

The integral over k converges in the UV because it shifts the arguments of W, . Therefore, we can immediately insert
lpq—»qg(pl;pl kg7kg)l//q—>qg(p2 +k ’Pz, g

the D = 4 form of y,_,,, from Eq. (29):
i i 2\ ok 220 ki s
5J—|— lhef 1——=)6" —=ihe"|&
wror e = |(1-5)or + et | (1-3)# - Fine!
(k.fz_zlpli) ((1 Zz)kk—Zzpz K( >( Z_2> lezhh)é”‘
(k= z151)> (1 = 22)k, = 222)? 2
22 | ik
h 1—— —ih,—=(1-= !
+(m3(1-3) -3 (-3))]

k= ziph) (1= za)kf — 20ph) (50)

(k —2151)* (1 = 22)k, — 225)*

where z; = ;C—;’ and z, = . We now have to sandwich this expression between proton helicity states as given in Eq. (19).

X +x
Note that 4; = 1 and h; = i occur an equal number of times (same for /) so that terms linear in helicity drop out, while
(S|hyhy|S) = —1 (incl. symmetrization over permutations of quark helicities, cf. Sec. Il A). Hence,

<S|l/7q_,qg<P1; P1— kg, kg)l/72_>qg(l72 + kg3 P2, kg)|S>

+ N\ (K, — 215 1—2))k, — 25p
p2 +k+)mm< 21 22+%> (_'g 1_]?1) . (( 2)_'9 2[72) ) (51)

(kg - 21P1)2 (1= ZZ)kg - 22132)2

With this we finally obtain
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(K|P)gig 1) = —167°PF8(P+ — K)5(P - K)

N N - min(x;,1—x,
Xgch/[dxi]/[dzki]q’qqq<x1vkl;xz’k2;x37k3)/

X ‘P;qq( xg,lzl —/zg+ng’;x2 +x,,,/€2 +l:g—xg;’;x3,/z3)

i —z3 1 — )k, — 27
mm( z +Z2+%> (ﬁg 21P1) . (( Zz)_}g 22D2) ‘ (52)

(kg - 21131)2 ((1 - Zz)kg - 22132)2

ydx, x [ &k,

_ 3
X, X1 —x,) lbm

Recall that z; = % Zp = and p;, = k1 2+ X, 2P the shift k - k +x, P makes this expression independent of P. Here,

X +x

x is the minimal allowed LC momentum fraction of the gluon, i.e., in subsequent sections we will evaluate correlators of color

charges with LC momenta greater than xP™. In Eq. (52) the first quark emits and the second quark absorbs the gluon. By

symmetry of the wave function ¥, under exchange of the quarks, reversing emission and absorption leads to the same result.

Also, thanks to the fact that we have averaged over permutations of the helicities of the three quarks, in all we can simply multiply

this diagram by a symmetry factor of 6 to include the contributions where quarks 1 and 3 or quarks 2 and 3 exchange the gluon.
Lastly,

(K|P)pig. 1) = —162°P*6(P* — K*)5(P — K)

FCpN, .. dk, 1
X 12 [d.xi]/[dzk[]q‘qqq(-xlvkl;x27k2;-x3’k3>/ kq p2 _'_kj]»

aaq (X1 xg,l; —l_c) +x 13;x2+xg,l_c)2+l_c)g—ng;x3,k3)
X <S|l//q—>qg(p1; Pr— kg, kg)qu—»q(va kg; P2 —+ kg)|S> (53)

x ¥

Here, the product
<S|l/7q—>qg(pl; P1— kg’ kg)li/qg—ﬂl(p2’ kg7 P2 + kg)|S>

+ k,—z1p 1 —25)k, — 25
—4p1 p2 +k+ mm(l_Zl Z2+ZIZZ> (_)q lpl) . (( 2)_),(] 252)2’ (54)
(k —lel) ((I—Zz)kg—zzpz)

where z; = k; /p} = x,/x; and z, = kJ/(p3 + k) = x,/(x2 + x,). Therefore, we find the result

(K|P)gig 1(a) = 167°PT5(PT — K7)8(P — K)
min(x;,1-x;) dx

N - - i = X dzk
XQZCF/[dxi]/[dzki]‘yqqq(xl’kl;xQ’kz;x3’k3)/ Tgx, —lx /167;’
X g

9

X W,y = xg ky — kg + x,Pyxy + X ky + kg — x,P; x5, k3)

K —z5 1 —25)k, — 2P
mm( Z +Zz+%> (_,g 21P1) ) (( ZZ)_};] 22D2) . (55)

(kg - Z1151)2 ((1 - ZZ)kg - 121_52)2

The shift l_ég - l_ég + xgl'3 again shows that this expression is in fact independent of P.
The symmetry factor for this diagram is 6. Hence, the diagrams in Fig. 1(d), Eq. (55), and in Fig. 1(b), Eq. (52), also
cancel. The normalization condition for ¥, therefore remains as written in Eq. (12).

IV. COLOR CHARGE CORRELATORS

A. Color charge operators

The color charge operator p(X) measures the color charge density at transverse coordinate X, integrated over the

longitudinal coordinate x~. Its 2D Fourier transform is p¢ (I;) The contribution to this Fock space operator due to quarks is
given by the plus component of their color current g(#*); Wy *w; [11],
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-

- dx,d%q - -
palB) = 637, / o (e )by (s K+ ).

e 167t3xq
(56)

where 1 are the generators of the fundamental representa-
tion of color-SU(3).

The contribution of gluons to the color current in light-
cone gauge is (see, for example, Ref. [16])

To" (x) = gf A (x)0F A% (x), (57)

with 9t = 0_ = ai This follows from the quadratic in A’
part of (D,)*?(F**)? = J§# which we shift to the r.h.s.
of the equation. Usmg (D)) ap = 60, — igAS(TC) 4y
and F,; " =0 we obtain J*(x) = igA"(T¢)*" F'*" with
Fit = —9_A}. (T¢)® = —i f‘“” are the generators of the
adjoint representation of color-SU(3).

Next we introduce the standard plane wave expansion of
the bare gluon field in LC gauge on the x* = 0 front:

Al (x™,X)
dk+d2k . . ,
— —ik-x i T ik-x

Z/ 167r3k+ €yag(k)e™™ +€)'ay, (k)e™] Ly
(58)

Integrating J* over x~ leads to

dktd’k [ derd*e

abc +
pgl - 27”gf Z/ 16723k* 16734+ Lﬂ+5 a )

X [abz(k)ab(f)ei@‘”"? - aZl(k)aM(f)e-i(k-z)'f]_
(59)

Here, a,)(k)a’,(#) can be replaced by da,(¢)a,;(k)
because the commutator is proportional to &,., Eq. (13).
Finally, performing a Fourier transform to transverse
momentum space we find

pl(k) =gy (1°

Abc

dx, d’q . . -
167°x. a;i(xg7Q)aci<xg,q+ k).

(60)

The eikonal currents formally sit at x = 0 as we have
integrated over x~. They sum up the charge of all particles
with LC momenta >0. However, as already discussed
previously in Sec. III D, the integral over the L.C. momen-
tum fraction x, of the gluon diverges at x, — 0, and so we
introduce a cutoff x to exclude gluon fluctuations with
x, < x. Hence, our proton does not “contain” any gluons
below x so that, in effect, the correlator {p?p”) which we
compute below excludes contributions from softer gluons.

It would make no difference in our analysis if our p?(g) sat
at nonzero g™, as long as this g% is less than xP*. In other
words, we work in the “shock wave” limit where there
exists a separation of scales such that the plus momentum
of the gluon fluctuations in the proton exceeds that of the
probes corresponding to the p® charge operators. In
practical applications, one would choose the cutoff x to
correspond to the L..C. momentum fraction of color charges
probed by the kinematics of the process.

B. Correlator of two color charge operators,
P*(G1)r"(42))

In this section we compute color charge correlations
for two external probes,” (p*(G,)p"(4,)). Since p?(g) =
Piu(@) +p4(@) we have
(P"(@1)p"(@2)) = (P (G1)P(@2)) + (pa(d1)PGu(d2))
+(6u(@1)Pa(42)) + (PGu(G1)Pqu(d2))-

(61)

We define expectation values of products of color charge
operators by stripping off the delta functions for conserva-
tion of LC and transverse momentum:

(Klp* (1) - p™(gn)|P)
= 1623 P+5(P+ — K+)5<13 K- Z Zn)
X (p*(qy) -+ p*(Gn))- (62)

It is understood that the color charge correlators correspond
to a transverse momentum of the scattered proton of K =

P- >~ g; and light-cone momentum K+ = P*. We will
also abbreviate g = > ", g;.

1. Coupling to gluon, (p%(g,)p%,(42))

We begin with the diagrams where both external probes
couple to the gluon in the proton. (We amputate the
propagators of the external gluons in the following diagrams
to obtain the expectation value of the color charge correlator.)

To prepare, we first compute the matrix element of
pgl(ﬁl)pgl(ﬁz) between one-gluon states:

(€.p. dIp%(G1)p}(d2) kg, 0, ¢)
= P(TOT?) 16,5 (27)P 712k 6(k) — )S(ky — € — ).

(63)
The expectation value of a single charge operator is propor-

tional to the trace of a generator of color-SU(3), in either the
fundamental or adjoint representation.
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Here we used the color charge operator from Eq. (60) and the commutation relations (13).
We now proceed to compute Fig. 2(a) which reads

a (5 - 492 * 7 c
(Kl (@ (@IP) = [ 1) [ 0K i T, [[05) [N Wi0 o E e ()1

dk, / dk,’
- ' L (W g (P15 Pt = kg Wiy (1 P = Ky K0)1S)
/2(P1+_kg+) 2(pl" = k") q=q9\P1> P1 = Kgs Kg )W g—qg\P1> P1 — Ky Ky

X (Ph 15| P2, 1) (Ph 151 P3, 13) (P = Ky 71 P1 = kg J) Ky, dlpf(G1)P5(2) Ky, €)- (64)

Here, p; are the momenta of the quarks in |P) (with p;” = x;P" and p; = l;,» + x;P), and p’ those of the quarks in (K| (with
p'=x/K" and p;/ = K+ xgl?).
If we now evaluate the quark state overlaps and insert the result (63) we obtain

24"
31673
X Wegq(x1, ki — (1 =2x1)G; x5, ks + %23, k3 + x39)
(27)P-1 17

2py

Fig.2(a) =

trT“Tb/[dxi]/[dzki]‘l’qqq(xl,l—c)];xz,%2;x3,%3)

dk,
/ 2( k+) <S|l//q—>qq(pl’ P1— kqv kq)l//;—»qg(pl —q4,P1— kga kq - q)|S>7 (65)

where tr7°T? = N_.5%. Also, recall that the plus component of §,, g, is zero. The symmetry factor for this diagram is 3.
The expression for the integral of ¥, ;. 4, OVer k, is given in Eq. (43) above.
For Fig. 2(b) we get

a (= 49 7 * 7
(K@@ P =[] [ e, [ 106) [P0 (6K e

dkg dkg/ o~ . * A / !/
X ( k+ k+/) <S|l//q—>qg(pl sP1— kg? kg)l//q—n]g(pz, Pz - kg’ kg)|S>
g

)2(py
X (p5, 15 p3. i3)(PY. i1 1 = kg j1)(Ph = ks o] P2s 1)
x (kg dlpg(d1)p 1(212)|kgvc>( Vi (1) s (66)

P+, \ P+, \
Br / Pr /
(@) (b)

FIG. 2. Diagrams for <ﬂ§1(52)ﬂ§1(211)>- The cut is located at the insertion of the two color charge operators.

034026-11



ADRIAN DUMITRU and RISTO PAATELAINEN PHYS. REV. D 103, 034026 (2021)

—ﬁtrT“TbP’Lﬁ(PJF —K)8(P—K - ) /[dx.] /[dzklpp (x1. k) dkj &k,
6 ! 5 qqq\*i ™ k;}}— z(p;r _k;L)
A X2 1
Sl ; k., k N k,—q;pr.k,—q)lS —
X < ‘l//q qg(pl P1— Ky g) Yy qg( P2+ g~ 495P2: Ky Q)| >x2 n X, 2p3_
x W, (x) = x,, 1;1 + x4 — l@ + ng(;xz + X, 122 —(1=x)q + l_c'g - ng(; X3, l_<>3 + x39). (67)

We again evaluate the helicity matrix element of §r,_, .4, as in Eq. (51). This leads to the finite result

4
. g . - .S
Fig.2(b) = T T Tb/ [dxi}/[dzki]\quq<x1vkl;x27k2;x3vk3)

x/minml_xz>dx/d2k upr—ky 2Py —(1=2)(k,— G — G2)
N@pr—k) (b= (1= 22) (K, = G1 — 32))°

<1 _Z1 + 25 +Z1Z2)
xl—xg x2—|—xg 2 6

x ¥y . (xy xg,kl—l—xlq k —|—ng X —l—xg,kz (1—x2)21+kg—xgl_f;x3,z3 + x39), (68)

with z; = x,/x and z, = x,/(x, + x,). Here, the symmetry factor is 6 which includes a factor of 2 for interchanging the
gluon emission and absorption vertices between quarks 1 and 2. Note that this expression is invariant under translations in
2D transverse momentum space corresponding to a constant shift of both P and K ; this is evident upon shifting the
integration variable l:g - l:g + xgl? .

-

2. Coupling to one quark and the gluon, (p§, (ql)pbgl (42))
In this section we compute (p§, (1) p’g’l(E]’2)>. We can then obtain (pg (¢, )P54(G2)) simply by exchanging a <> b, §; <> 4,
since the two charge operators commute.

To prepare this calculation, we first list the matrix elements of p§,(g) and pgl(ﬁ) between one quark and one gluon states,
respectively:

FIG. 3. Diagrams for (p§,(q1)pp(q2))-
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(k17 |p3u(@)|ps by i) = g(1*) 1688, p*8(p* = kT)8(P — k = G),
(k.p.blp4(@)|p.c.c) = g(T),.(22)P~18,,2p*8(p* — k*)8(p — k — G).
We then obtain

4
. g . - .-
Fig.3(a) = 3. 16503 T Th/ [dox;] / [dzki]lpqqq(xlvkl;x27k2;x3vk3)

X Wigq (1 ky = (1= x1)G: %0, ky + %23 X3, k3 + X3G)

(27)P! dk . s
X ZPT 2(p1+ _qk+> <S|l//q—>qg(pl;pl _kg’kg)l//q—»qg(pl —4q;D1 _kg_ch’ g_QZ)|S>'
g9

The symmetry factor is 3. Similarly,

g4

F1g3(b) = —6 167[3 trT“Tb/ [dxi]/[koi]quqq(xl,kl;X2,k2;X3,k3)

X Wy (X1 ky 4 X1G = @3 X0 ko + X0G = G13x3, ks + x3G)

(ZH)D_I/ dk, R R
I (S| g (P15 P1 = Ko kWi (P1 = @23 Py = kg kg = 02)S).
zpi‘r 2(pTL_k;r) q—q9 9> g/ ¥ q—qg 2 g9 g 2

The symmetry factor is 6.
The remaining diagrams are finite.

g4

Flg3(c) :mtrT”Tb/[dxi]/[dzki]‘l’qqq(xl,l_c)l;xz,l_c)z;x%/;3)

" /min(xl,l—xz) % (1 _ 721+ 2o T ﬂ) X1 X2
i X, 2 6 X1 =X\ X2 —l—xg

-

P —k pr— (1—2)(k, — G

x/dzkg Zlfl L szz ( ZZ)(_’g f]z)
(lel - kg) (z2p2 = (1 = ZZ)(kg - 612))
X‘I‘[*m(xl—xg,k1+x1§—§1—kg+xgl%;x2 +Xg,k2+)€2é’—qz+kg—XgK;X3,k3 +X3a>,

2

with the same z; and z, as above. The symmetry factor is 6.

94

5 et T [ 5] [ 8K 1 R Bosn B

" /min(xl.l—xz) dxy 21t 2 + 7122 X1 *2
i X, 2 6 X — x4\ X + Xg

x/dzk 2P —ky ) (P2 = q1) — (1 —22)(k; — G2)
g - 7 \2 - N = N 2
(z21P1 —kg)” (22(P2—G1) — (1 = 22) (kg = G2))
X lIJ:;qq(xl — x4,k +x1G — k, —|—ng(;x2 + x4, ky — (1=x2)g+ k, —ng(;x3,k3 + x39),

Fig. 3(d)

The symmetry factor is 6.

Fig.3(e) = 0.

(69)

(71)

(72)

(73)

(74)

As already mentioned above, Egs. (70)—(73) should be duplicated with g, <> ¢, to include the contribution

from (p%(q1)p4u(d2))-
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3. Coupling to quarks,

G (@1)P4u(@2))

Now consider the diagrams where both external probes couple to quarks. The matrix element of pgu(c'j 1 )pf]’u (g>) in a one

quark state is

(P'. /'1PGu(d1)P5u(G2)

p.J) = g (t*") 162 p*(p't = p)é(p - p' = G). (75)

The first contribution where the color charge operators are sandwiched between the bare 3-quark Fock states [1 11° is

2
a (5 = 9 a 7. 7. 7
Pqu\91)Pqu\d2)) = X il ¥qqq\ X1, K15 X2, K25 X3, K3
(Pau(@)pqu(d2)) =" te't” [ ldx] [ [dki]Pagq (1, ki3 xa ks 33, &)

X [Wigq(x1, by = (1 = x1) G5 X2, ky + X2G5 %3, k3 + x3q)

2

2

The symmetry factor is 3. The first term (“handbag
diagram”) is proportional to the quark GPD
JdxH,(x,—g*) at vanishing skewness; cf. appendix B
in Ref. [44]. The second and third terms (“cat’s ears
diagrams”) are two-body diagrams where the gluon probes
attach to different quarks in the proton. They ensure that the
color charge correlator satisfies a Ward identity and
vanishes when either g, - 0 or ¢, — 0. Also, these
contributions are “higher twist” suppressed when both g;
as well as |q, — g,| are much greater than the typical
transverse momentum of quarks in the 3-quark Fock state
of the proton; on the other hand, the two-body contributions

. 4¢4*C
Flg. 5(3.) = m

P dky s

1 g

The symmetry factor is 3.

494 Cr

(2z)P-! / dk, )
X (S|rymqe(Prs Py — ko k
2pf ) 2py =k Y "

The symmetry factor is 6.

)l/,\/;;—u]g(pl s P1

1 - - - - - - > -
— = Wiga (X1 Kk +x1G = G13 X0, ky + X2G — G23 X3, k3 4 X3q)

1 - - o - N > -
— Wi (X1 Kk + X010 = Goi X0, ky + X204 — G13 X3, k3 + X3q)). (76)

dominate when the two probes share a large momentum
transfer, §, ~ g,, such as in exclusive y*)p — J/¥p at
large —t [6].

To account for the quark wave function renormalization
factor, we multiply the integrand in the previous equation
by Zq(xl)Zq(XZ)Zq(XS) =1- Cq(xl) - Cq(x2) - Cq(x3)'
This renormalization factor is given in Eq. (42), where
a — x/x;. Some of the corresponding diagrams are shown
in Fig. 4.

We now turn to the diagrams where pgu(ﬁl)pgu(c}’z) is
sandwiched between |ggqg) Fock states or where two quarks
exchange a gluon on either side of the operator insertion.

£ trt“tb/ [dx;] / [ 2K W g (1, Ky Xa, Ko X3, k3) Wigq (1 ky = (1= x1) G5 X0, ks + X205 %3, k3 + x3G)

Wiego(P1 — @3 P1 — kg — q.k,)|S). (77)

trtafb/ [dx;] / (K] ggq (1, ks Xa, ka3 X3, k3) Wgq (1, Ky 421G X0, ky = (1 = X3) 5 X3, k3 + x3G)

— kg, k,)|S). (78)

°In Eq. (76), to sum only color charges with light-cone momentum fractions beyond a lower cutoff x, one would restrict the

integrations over the active quarks to x; > x. That is, the first integrand would be multiplied by O(x,

— x), the other two terms by

O(x; — x)O(x, — x), respectively. However, we are interested primarily in color charge correlations at x much less than the typical
valence quark light-cone momentum fraction, so these restrictions may be dropped.
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b, @ a, qi b, ¢ a,qi b, ¢ a,qi

9000000000000000000000,

P, o e ™ i i L«
" e f) |\ &

(a) (b) ©)

FIG. 4. Some of the diagrams for the O(g*) correction to (p4,(4;)ph.(4>)) in the three-quark Fock state. The cut is located at the
insertion of the two color charge operators.

|
ﬁr)
FIG. 5. First set of diagrams for (pg,(q;)p5,(2)). The cut is located at the insertion of the two color charge operators.

26" 2 o E P o E o o B o

Fig.5(c) = 3.6 165001 [doi] [ [d2h]W ggq (1o ks Xo, ko3 X3, k3 ) Wog g (X1, Ky + X1 G = G X0, ko +X0G — G5 X3, k3 + X3G)

(S0 151~ b= 24,15 (79)

] Yq—sqg\P15P1 =Ky Kg )W g9\ P1 =425 P1 —Kg— 42, .
207 2(p<1|’_k;») q—4g 9°%g)¥ q—qg9 g g

The symmetry factor is 6.
The diagram where the two probe gluons connect oppositely to quarks 1 and 2 is

Fig.5(c') = Fig.5(c)(q; < ¢>) (80)
Again, the symmetry factor is 6.
Next,

. 24*C - - >\ s - - - S - - S

F1g.5(d):—3 167;trt“t"/[dx,-]/[dzk,-]‘l’qqq(xl,kl;xz,k2;x3,k3)quq(x1,k1+x1q;x2,k2+x2q—q2;x3,k3 +x3—¢q)
(27)P! / dk, o .

: S o=k, k)W 1=k, k)|S). 81
2PT z(pr_k;r)< |l//q—>qg(pl P1 g g)l//q qy(pl P1 g y)l > ( )

Because of the symmetry of this diagram under a <> b and g, <> g, its symmetry factor is 6.
The remaining diagrams are finite because the transverse momentum of the gluon shifts the arguments of Wg,.

4

. g . -
Flg6(e) = —mCFtrl tb/ [dx,] / [dzki]quq(xl,k];XZ, k2;x3,k3)
X/min(xl.l—xz)%<l z1+22+ﬂ> \/ zkg 21D —#kgz‘ zzﬁz—(l—zz)jcgz
x Xg 2 Xy X (z1P1 = k)" (2292 — (1 = 22)ky)
x ¥y (x; xg,l_c}—(l—xl)ﬁ—kg—f—xyK;xz—ﬁ—xg,kz +x2§+kg—xgl?;x3,z3 + x39), (82)
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with a symmetry factor of 6 (because the gluon may also be absorbed across the insertion by quark 3). The diagram where
the gluon is emitted by quark 2 and absorbed by quark 1 is equal to that from Fig. 6(f) and will be included in its symmetry
factor.

4

. g . e
Flg6(f) :—mCFtrt tb/[dxi]/[dzki]‘quq(xl,kl;x2,k2;x3,k3)
o /miﬂ(xl’l—xz)% (1 itz +ﬂ>\/ X \/ X /dzk uPb—ky  2(Pr—q)— (1 -2)k,
x Xg 2 6 Xp—Xg\ X2+ X ! (2101 = kg)z (22(P2—q) — (1 = Zz)kg)2
x Wy, (x) —x,, 1?1 +x,9— l;g + xgl_f;xz + Xy, 122 —(1=x)g+ lzg - xgE;x3, l_c)3 + x39), (83)

again with a symmetry factor of 6.
The diagram where both probes attach to the third quark gives

4

. g a > - -
F]g6(g) :—mCFtrt l‘b/[dxi]/[dzki]‘quq(xl,kl;xz,kz;x3,k3)
x/min(xl,l—xz)%<l_zl+Zz+ﬂ>\/ X1 \/ X /dzk Zlﬁl_kg ) Z2ﬁ2-(1—22)kg
x X, 2 6 Vm—x\Vmda ) (5 - k) (2B - (1= 22)k,)°

X W (x) =g k) +x1G = kg + x,K; x5 + X, ky + %24 4+ kg — x, K5 X3, k3 — (1 = x3)4). (84)

Here the symmetry factor is 6 to include the contribution where the gluon emission/absorption vertices are swapped.
Now we list the diagrams where two quarks exchange a gluon on one side of the p*(g,)p”(g,) insertion.

4
: g a T T T
Flg.6(e/) = mthrt lh/ [dx,] / [dzki]‘{’qqq(xl,kl,xz,kz,x3,k3)
y /min(xl.l—xz)% (1 _ 21 —+ Vo) +ﬂ)\/ X1 \/ X7 /d2k Zlﬁl — kg ) Zgﬁz — (1 — Zz)kg
x Xg 2 6 Xp—Xg\[ X+ ! (z1P1 = kg)2 (z2P2 = (1= Zz)kg)2
X W (x) = x,, l:l —(1=x))g - 1?9 + xgl_f;xz +x,, 1?2 + X,q + l;g - xgl_f;x3, 123 + Xx39). (85)
b, 3> a, ¢
s
(&
©)
b, & a,qi

@)

FIG. 6. Second set of diagrams for (pg,(4;)ph.(4>)). The cut is located at the insertion of the two color charge operators.
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The diagram where the gluon is emitted by quark 2 and absorbed by quark 1 is equal to that from Fig. 6(f”)and will be
included in its symmetry factor. However, we include here the contribution from Fig. 6(f’) with swapped emission and
absorption vertices, so the symmetry factor is 6.

There is also a diagram (not shown) where quark 2 emits and quark 1 absorbs the gluon on the other side of the insertion:

4
g a T T T
31673 Crtrr tb/[dxi]/[dzkippqqq(xhkl,xz,kz,x3’k3)

X/min(xl,l—xz)dxg<l z1+zZ Z1Z2) / / / albr=9) -k _wbh-(1-uk
. X, 1~ X x2+x Z] (P1—4) - k) (Z2ﬁ2_(1_zz)kg)2

x W7 . (x xg,kl—(1—xl)q—kg+ng;x2+xg,k2+x2q+kg—xgl(;x3,k3 + x3qG). (86)

Fig.6(e") =

Note that here z; = x,/x; and z, = x,/(x; + x,), as before. The symmetry factor for this diagram is also 6. Once again, the
diagram with swapped emission and absorption vertices is equal to diagram Fig. 6(f”) and will be included in its symmetry
factor.

4
Flg 6(f’) 3. 16 3CFtI'tatb/[d)Ci]/[dzki]q’qqq(xl,kl;.xZ,kz;X3,k3)
» /min(xhl—Xz)% <1 2 + 25 i Z]Z2>\/ X1 \/ 2k 2P — k, ) 2P — (1 —Zz)kq
=N = =2
x Xg 2 X2+ xg (z1P1 = kyg)" (2292 — (1 = 22)k,
X W, (x xg,/z] +x1§—lzg—|—ng;x2 —I—xg,kz—(l—xz)é—l—/zg—ng(;x%l% + x39). (87)

The symmetry factor is 6.
Again, there is a diagram (not shown) where quark 2 emits and quark 1 absorbs the gluon on the other side of the
insertion:

4
9 a C v T T
3. 167[3 CFtr[ tb/{d‘xi}/[dzki]q‘qqq<xl’kl’x2’k2ax3ak3)

X\/min(x,,l—n)%(] Z1—|—22 ZIZZ> Zlﬁl_kg ) ZZ(p2_ ) (1—12)]{
: %, \x v@+wg P K i) - (- k)

X W () = xg. ky +x1G — kg +ng;x2 + x4 k2 - (1=x)g+ kg —ng;x3, k3 + x3G). (88)

Fig. 6(f") =

The symmetry factor is 6.

4
. g . - - -
F]g6(g/) = mthrt tb/ [dx,-] / [dzki]\quq(xl,kl;xZ,kz;X3,k3)
X/min(xl.l—xz)%<l_21+Zz+ﬂ)\/ \/ 2k Zlﬁl—kg ) Zzﬁz—(l—zz)kg
. X 2 — % h+% "@b = k) (P2 = (1= 22)k,)’
X W, (X xg,l_él +x1§—zg+xyK;x2 +xg,k2+x2§+kg—xgl?;x3,%3—(1 - x3)q). (89)

The symmetry factor is 6.
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A

3 " g a 7 . 7 . 7
F1g6(g ) = T Crtrt tb/ [dx,] / [dzki]‘quq(xl,kl,xQ,kz,x3,k3)
X/min(xl,l—xz)%(l _ +Z2+Z122>\/ \/ 2k bk, nb-(1-2)k,
= = —
x Xy 2 X1 =XV X2 +x9 (z1p1 — kg)z (z2P2 = (1= ZZ)kg)z
X Wy, (X = x,, El +x,G - /?g + ng;xz + X, k2 + Xoq + kg - xgl_f;x3, I% - (1=x3)q). (90)

The symmetry factor is 6.
The third set of diagrams is shown in Fig. 7; all their symmetry factors are 6.

4 1 N N N
Flg7(h) 3. .?6 ( Cp>trt“tb/[dxi]/[dzki]‘l’qqq(x],kl;xz,kz;x3,k3)
Vs
» /min(xl-l—xz)% <1 s +Zz+ﬂ) [ X [ X /dzk 2101 _];q ‘ 22(Pa—qy) — (1 —Zz)lzg
x Xy 2 6 Xp—Xg | X2 + X ! (z1P1 = kg)2 (22(P2—¢1) — (1= ZZ)kg)2
X W, (x) — x4 ki +x1G— Gy — l:g +xgl_f;x2 —}—xg,l;z +xq—-q; + l_ég —xgl_f;x3,lz3 +x39). (91)
Fig. 7(i) = Fig. 7(h) (g, < §>)- (92)
N g' IR AV , L
Flg7(J) = m C[: _5_6 treet [dxi] [d ki]\quq(xhkl;xZ’kZ;x}’k3)
" /min(m,l—xZ)% (1 _Zl + 27 +ﬁ>\/ X1 \/ Xy /dzkg Z]_}?] —_]fgz' 22_1?2 - (1 _ZZ)_{CQZ
x Xg 2 6 Xy =X\ X2+ x, (z1P1 = k)" (22P2 = (1 = 22)k,
X W, (X xg,l_él —i—xl&—ijz—/;g—l-xgl?;xz+xg,Z2+x2§+lzg—xglz;x3,%3 +x34 — q1). (93)
Fig.7(k) = Fig. 7(3) (¢, < §>)- (94)

FIG. 7. Third set of diagrams for (p§,(g;)p5.(G2))-
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4

g 1., > s o
Fig. 1) = 5 (Cr =5 = et [ i) [y (51 Frono B o)

" /min()‘rl—xz)% <1 atn +ﬂ) [ X1 [ % /dzk abi—ky  2(Pr—g) = (1 —22)k
x Xy 2 6 X1 = Xg\ X2+ X e kg)2 (22(P2 = G2) = (1 = 22)k, ?
(

X T;qq( —Xgs kl +Xlé— kg +XgK;X2 +Xg, kz +X2§— 62 +kg —XgK;X3, k3 +X3a— ql)

Fig. 7(m) = Fig. 7(1)(G, <> 4») (96)

The final set of (finite) diagrams is shown in Fig. 8. Here, in |P), quark 1 emits a gluon which is absorbed by quark 2. We
will quote with double primes the diagram (not shown) where in (K| the exchange occurs from quark 2 to quark 1. All these
diagrams have a symmetry factor of 6. As before, in the following expressions z; = x,/x; and z, = x,/(x, + x,).

24 L.
Flg 8(1’1/) = —%trtatb/ [dxl-] / [dzk,-]‘I’qqq(xl, kl;x27 kz;X3, k3)
9-16x°

y /"‘i“(xl"‘x2>% <1 2 +Zz Z122> \/ 2k api -k, 2p—(1 - )k,

x Xy X2+ Xg "zpr - kg>2 (2292 = (1 = 2)k, ?
X\P:;qq( Xg,];1+xla—kg—az+ng;xZ +Xg,k2+X2§+kg—§1—Xgl_{);X:;,]_C):; +X3§). (97)

. 2g* - - -
Fig.8(h") = —Wtrt”t}’ / [dx;] / [ A2k g (1. Ky Xa. ko x5, K3)
<167

/min(xl.,l—xz) dxq < 21t 22 Z1Z2> X1 X2
y o(1- +-2
; X, 2 6 Xp = Xg\[ X2 + X,

-

o /dzk 21(P1 — 42) — k, _ 2(P2—G1) — (1 = 2)k,
g > i _ =2
(z1(p1 = ) kg)2 (22(p2—q1) — (1= Zz)kg)
X Wi, (g — x,, k1 + x4 — kg - g, + xgl?;xQ + X4 ky + X0G + ky— Gy — xgl?;x3, ks + x3q).  (98)

birg Qo a by §aai b iy gadi
S 8 S
C [, C
> Q Q
s 8 O
s b S
s g S
c 8 S
S S O
o S o S _ S
S S .
[, S
P, 8 K, P, g K*, P, K+,
(h’) (i) (@)
b.H Qo di bH g Qadi baggnd
S 88 S 8
C [=. K= S ©
C [. K=, O ©
O [o K=, S ©
O [=Ke. S ©
O (=<K= S S
O Y S O ©
= 8 S &
= & S ©
S A & oS ©
~ = o 2 _~ S ©
o ) O e ™
S g3 ‘% 3 S
2 S + S
S 83 P, 3 8
S S S
S S S
C JJ C

FIG. 8. Fourth set of diagrams for (p&,(G)p5.(42))-
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Fig. 8(7) = Fig. 8(v)(3) <> 7). (99)
Fig. 8(1") = Fig. 8(1)(d, < 7). (100)
g' 2 o e
Fig.8(j") = T3 168 <CF —3)trf“fh / [dx;] / [ A2k g (X1, K1 Xa, K x5, k3)
8 /min(xlvl_XZ)% <1 _uatan n zm)\/ \/ &k, 211 __1?92. 2P, — (1 ‘Zz)fgz
x Xy 2 Xy = Xg\ X2 + xy (z1P1 = k)" (2292 — (1 = 22)k,
X W0 (x xg,/;] +xlc7—lzg—c72—|—ng;x2 +xg,k2+x221+kg—xgl?;x3,lz3 + X3 — qy)- (101)
g' 2 7z > 7z
Fig.8(j") = BT (CF—g)trt“tb/ [dx,-]/[dzki]‘l’qqq(xl,kl;xz,kz;x3,k3)
y /min(xl,l—h)dxg <1 2 +Zz Z1Z2> \/7\/7/ 21(P1—G2) — E . 2Py — (1 _Z2)kq
x Xg — X\ X2t X (2 (P - )_’: )2 (z2P2— (1 —Zz)]zg)z
X Wi, (xy xg,l;, —|—x,c_j—kg—q2 —l—ng;xz —I—xg,k2+x2q—|—kg—ng;x3,k3 +x3g—q). (102)
Fig.8(k’') = Fig. 8(j')(q, < q»). (103)
Fig. 8(k") = Fig. 8(;")(q1 < Ga)- (104)
g' 2 7 z 7
Fig.8(1') = WS <CF —g)trt“tb / [dx;] / [ A2k )W g (1. Ky Xa, ko 23, K3)
o /min(XI-l—Xz) dx, <1 _ata Z1Zz> \/ / 21D —Eg C2p-(1- Zz)zég
x Xg 2 X+ X "(z1p —k,)? (2282 — (1 - 22)k,)
x W (x xg,lzl—&—lej—lzg—f—ng;xz+xg,k2+x2q—|—kg—q2—ng;x3,l_c)3 + X3 — G1)- (105)
Fig.8(1") = —9743 (CF—%>trt“tb/ [dxl-]/[dzki]‘I‘qqq(xl,lgl;xz,122;x3,l€3)
3-16x 3
y /mi“("l'l‘“)% (1 1+ 2 2122) \/7\/7/ 2P — . 2(Pr—q2) — (1 —Zz)]:g
. X, =3\t ) (B -k ) (22(P2=32) = (1= 22)k,)’
X W, (x; xg,la+x1cf—kg+ng;x2+xg,k2 +x2q+kg—q2—ng;x3,k3 +x3g—q1). (106)
Fig. 8(n) = Fig. () (@ < ). (107)
Fig. 8(m") = Fig. 8(1")(g; < 4»). (108)
|
C. Cancellation of UV divergences We begin with the diagrams where the charge

operators couple to either the gluon or quark 1. The

In this section we collect all UV divergent diagrams to X Vo ) )
UV divergent contribution of all these diagrams is propor-

verify that the divergent contributions to {p?(g,)p”(g»))

. 7
cancel, to leave just the finite parts. This implies that at this tional to
order {p?(g,)p”(g,)) is independent of the renormaliza-
tion scale.
We C(?n51.der the diagrams where quark 1 exchanges a "The arguments of W, may differ from Eq. (109) but will
gluon with itself. match across all canceling diagrams, of course.
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27z33_ff6”3 P / ldx;] / [d2,1C, (x1)

X lI"qqq(xl’ ky;xy, kys x5, k3)

X ‘P;qq(xl, k] — (1 —X])a;xZ,kz +X26;X3,k3 +X3§).
(109)

We now collect all the prefactors. Figure 2(a) comes with a
factor of 2 - 3/C while Fig. 3(a), plus the corresponding
diagram for g, <> ¢,, contributes —2 - 3/Cp.

From Fig. 4(a), plus the corresponding diagram where
the gluon emission and reabsorption occurs on the other
side of the insertion, we get —§-1-3- 1677 /27° = =2. On
the other hand, Fig. 5(a) contributes 4 - %

Next is the contribution where both probes couple
to the second quark. From the diagram analogous to
Fig. 4(a), with both probes attached to quark 2, we again
get —1.1.3.1673/272% = —2. Figure 5(b) contributes
4. % =2.

Now consider the diagrams where the first probe
(a,q;) attaches to quark 2 while the second probe
(b, G,) attaches either to quark 1 or to the gluon in
the proton. Figure 3(b) comes with a prefactor of
—% -3/Cr =-9/8. The prefactor of Fig. 5(c) is
2.1/Cp =1/8. Lastly, from the third term in Eq. (76),
which is a diagram like Fig. 4(a) but with the first probe
attached to quark 2, we get ;-1-1.3.167°/27° = 1.

Finally, we turn to the diagrams where the first probe
(a, g,) attaches to quark 3 while the second probe (b, g,)
attaches to quark 2. The contribution from diagrams of the
type of Fig. 4 where quark 1 exchanges a gluon with
itself on either side of the insertion [second term in Eq. (76)
with quarks 1 and 3 interchanged, multiplied by —C,(x;)]

|

we get +-1.1.3.16x%/22% = 1. Figure 5(d) contributes

D. Decoupling of gluon probes with infinite
transverse wavelength

Here we verify that (p*(g,)p’(g,)) vanishes when either
one of the transverse momenta goes to zero; we consider
g, — 0, the other case follows by symmetry. In intuitive
terms this reflects the fact that a gluon with infinite wave
length does not couple to a color singlet proton.

Since we have already verified in the previous section
that all UV divergences cancel, we may now discard the
divergent pieces of all diagrams and focus on their finite
parts.

The charge correlator at O(g?) given in Eq. (76) does
indeed vanish when g; — 0, on account of the symmetry of
the three quark wave function ¥y, under exchange of any
two quarks. For the rest of this section we consider the
contributions to {p%(g,)p"(g,)) at O(g*).

For the purpose of more compact expressions we will
split off the “prefactor”

4
31gﬂ35ab/[dxi}/[dzki]qjqqq(xl’kl;x27k2;x37k3)» (110)
which includes a symmetry factor of 3, from the following
expressions.

We collect first all the terms from the divergent diagrams
which involve W}, (x1, k; — (1 —x1)G2: X2, ky + X2G0;
X3, 123 + x3¢,): Eq. (65), Eq. (70) plus ¢, <> g,, two times
Eq. (71) plus g, <> ¢, (with quarks 1 and 2 interchanged),
Eq. (77), Eq. (78), Eq. (79) plus g, <> ¢, (with quarks 1
and 2 interchanged), and Eq. (81) (with quarks 1 and 2
interchanged):

1
2. 27z3F<21'2,0,£,m2) - 2n3F<ij, 0,£,m2) - 27:3F<§2, ﬁz,i, m2> -2 3 2n3F<ij, 0,£,m2)
X X X

1 1

X1 1

1 4 1 L 1
2 283F (0,0, m2 ) 42 Cp = 283F (G G w2 ) £ 22 Cpo = 273F( 0,0, m?
2 X 3 2 X 2 X

2
+2._._.2,I3F<;12,z,’2,i,m2> +2~—-—-27z3F(0,0,
X1

4
3 2
2 1
i’m2> —2-—'CF'_'2ﬂ3F<0,09£’m2>
X, 3 2 X2

(111)

The remaining terms which involve ¥ (x, —xg,lzl —(1 —xl)ﬁz—gg+xgﬁgx2 +xg,Ez +x2§2+gq—ng;x3,g3 +x3¢5),

999

again with the prefactor (114): Eq. (72) with g, <> ¢,, Eq. (82), (85), (91), (93), (97), (101),
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1 Br— (1 —2,)k 1 1 b - (1-2)k 1 1 2P, —(1-2)k
y. L .3. %22 ( Zz)f'z—Z'—-CF-—- Zzi’2 ( Zz)ﬁgz—l-Z-—-CF-— szz ( 22)_}92
127 (222 = (1 = 22)k,) 300 2 (;pa— (1 -2k 37 2 (2P = (1-2)k,)
1 /1 1 b —(1-2)k 1 N\ 1 25— (1-2)k
+2'—'(——CF) P2 ( Zz)_)gz_'_z._.(CF__).__ sz’z ( ZZ)_)g2
3\2 2 (z2P2 = (1= Zz)k ) 3 3) 2 (z2p2 = (1= Z2)kg)
21 np—(1-2)k, 1 2\ 1 mpy—(1-2)k
_92.2. . o =2 (Cr=2) 5 =L
92 (2292 — (1 - ZZ)kg) 3 3) 2 (2292 — (1 - ZZ)kg)
=0. (112)
There are three more contributions which involve ¥, (x xg,§ (1 =x1)q, k + x4 K:x, + Xg, k2 + X2G, + k
ng ) X3, k3 + x3¢,) but the structure
Zl(Pl ) ]_é ) Zzpz—(l _ZZ)kg (113)
(21(P1 = 2) —ky)?* (22P2 — (1 = 22)k,)?
These are Eq. (86) with a prefactor of 4/9, and Egs. (98), (102) each with a prefactor of —2/9. . R

l\iext we collect terms which involve W, (x; =X, k; +x1G, — ky + x,K; x5 + x5, ky — (1 = X3) G + kg — x,K;
x3, k3 + x3G,). Here, we split off the prefactor

3165ub/[dxi]/{dzki]‘yqqq(xlv]_él;xz’]_éz;x.%I_C)S)

/mm x1,1=x3) /d2 \/ \/ ( 21t 22 +ﬂ> L__{ng-’ (114)
Xp— X +x, 2 6 (z1p1 — k)

which includes a factor of 3 out of the symmetry factors of the diagrams. These are Egs. (68), (72), Eq. (73) plus g, <> §»,
Egs. (83), (87), (88), (92), (95), (99), (100), (105), (106)

1 5, —(1—2,)(k, — G 1 5, —(1—2,)(k,— G 1 5y —(1—2)(k,— G
PPN 2 (1= 2)(k 32)2+2.7.3' b2 (1= 2) (K, fz)2+2_7_3 2Pz = (1= 20) (K fh)z
(2202 — (1 = 22)(ky — G2)) 12 (2P — (1 = 22)(ky — G2)) 12 (2P0 — (1 = 22)(ky — G2))
1 5y —3,) — (1 —2,)k 1 1 Py —G,) — (1 =2,k
1.3, 22(P2 = G2) — ( Z2)4g2—2-—-CF-—- (P2 2) = ( Zz)_)gz
12 (Zz(Pz—(h)—(]—Zz)k) 3 2 (Zz(Pz—fI2)—(1—Zz)k)
1 1 —(1=-20)k 1 1 - —(1=20)k
£250Cpes szz ( ZZ)Q S H203Cpoy Z2(f’2 jh) ( 22)}2
(z2P2 = (1 = Zz)kg) (22(P2 = G2) = (1 = 22)ky)
1/1 1 - 1—2)k 1/2 1 By —G2) — (1 —2)k
+2'—<——CF>'—' 22(P2 = 42) = ( Zz)f’z—Z-—<——CF>-—~ Zz(f?z ) — ( Zz)qu
3\2 2 (Zz(Pz—%) (1- Zz)k) 3\3 2 (22(P2 512) (1- Zz)k)
.21 2p2 — (1 - 20k, _,.2 1 2P - @) - (1-2)k,

2 (mbr-(1=2)k) 92 (2(pr— ) - (1 - 22)k,)°
1 2\ 1 —(1-2)k 1 2\ 1 5y —3,) — (1 = 2,)k
—2‘—-<CF——>~—‘ 2P2 — ( Zz)jg-z---(cF——)-—- Zz(fz flz) ( ZZ)_)yz
3) 2 (z2pr— (1 - 2)k, 3 2 (z22(Pr— o) = (1 = 20)k,
—0. (115)
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Lflstly, we collect terms which involve ¥, (x;

_-xgv ]_él +X162 - ]_ég +xgi();-x2 +-xgal_<)2 +x2é'2 + ]_ég _-xgl?;

x3, k3 — (1 = x3)q»), with the prefactor (114): Egs. (84), (89), (90), (94), (96), (103), (104), (107), (108),

_,.Cr 1 202 — (1 - 22)k, .6 1 202 — (1 - 22)k, Cr 1 np—(1-2)k
2 (b —(1-2)k)" 3 2 (h-(1-2n)k) 3 2 (2p—(1-2)k)’
1 2\ 1 mp—(1-2)k 1 2\ 1 —(1=2)k
+2'—‘<CF__>'_‘ b ( ZZ)fquz = <CF—_>._ P2 = 12)}2
3 3/ 2 (Zzpz—(l—zz)kg 3 3) 2 (Zzpz—(l—zz)kg
1 2\ 1 2P —(1=2)k 1 2\ 1 —(1=2)k
(el s (e ) S R
3 3) 2 (Zzpz—(l—Zz)kg) 3 3) 2 (Zzpz—(l—Zz)kg)
1 2\ 1 zmpr—(1—z)k 2\ 1 — (1 =2k,
(el s (o) S R
3 3/ 2 (2082 — (1 = 2k, 3/ 2 (2082 — (1 = 22)k,)
=0. (116)
|
V. OUTLOOK Furthermore, the present calculation should be

Reference [1] showed ‘“subfemtometer” scale color
charge correlations in a proton composed of three quarks.
These correlators were found to display interesting depend-
ence on the impact parameter and on the relative momen-
tum of the gluon probes, rather than being simply
proportional to the one-body particle density in the proton.

Here, we have computed the expressions for the
{p°(g1)p"(g>)) correlator in a proton made of three quarks
and a perturbative gluon (which is not required to carry a
small light-cone momentum). These results may be used to
obtain a more realistic picture of color charge correlations
in the proton at moderate x 2 0.01. Also, they could be
used to “‘jump-start” small-x BK evolution, in particular
impact parameter dependent evolution [45-48], towards
x < 0.01 from a better constrained and perhaps more
realistic initial condition.

It would be very interesting to obtain numerical results for
the color charge correlator as a function of impact parameter

b and relative transverse position 7 of the probes. For
numerical estimates one could employ a model for the
nonperturbative valence quark wave function such as the
one of Refs. [38,49]; it encodes the proper proton radius and
average quark longitudinal and transverse momentum, as
well as momentum correlations among the valence quarks.

extended to the correlator of three charge operators,
{p*(G,)p"(g2)p°(G)); the contribution of the |gqq) Fock
state has been analyzed in Ref. [1]. C-odd three-gluon
exchange gives an imaginary contribution to the dipole
scattering amplitude [or a real part, respectively, if 7 — i7
in Eq. (2)]. Itis related to various spin dependent transverse
momentum dependent (TMD) distributions such as the
(dipole) gluon Sivers function of a transversely polarized
proton [50]. This amplitude is also relevant for charge
asymmetries in diffractive electroproduction of a "z~ pair
[51,52] or for exclusive production of a pseudoscalar
meson [6,53-55]. Work is in progress to account for
corrections to the three-gluon exchange amplitude due to
a perturbative gluon in the proton, and will be reported
elsewhere.
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APPENDIX: REGULARIZATION OF THE INTEGRAL OVER /,_ ;..

Consider the following integral [see Eq. (43)]

dk

g

(27)P! N . o
I = zpir 2(pfr_k+)l//q—>qg(pl’pl _kgvkg)l//qﬁqg(pl _lvpl _ky_llvkg_l+ll)’
g

(A1)
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where [T = I = 0. The quark and gluon helicities are conserved, and the gluon is emitted and absorbed by the same quark
1. Therefore, sandwiching I between helicity wave functions gives (S|I|S) = I(S|S) = 1.
The reduced LCwf’s are given by

o]

. z ; n'e;

a1t~ hky) = | (1=, 1 = ), (0000 = 5, = K)o ()| P2 (82
and

Whmge(P1 = Lpy —ky =11 ky =1+ 1)) = [( )”hl( 1= Dytug, (py — kg — 1;)8M
, mkel
2 = O (k=) (A3)
m
where z; =k} /pT, 7 :1: — z;p and similarly
kif—I"+1f  kf

PT‘ZJF _Pl
and m=7+hwith h=1, — (1-2,)L.

In order to simplify the spinor algebra, we first note that the following relation between the complete spinors

uy(p), ity (p) and the good component of the spinors u$(p), ¥ (p) is satisfied,”

wn(p)yun(k) = (p )y uf (k) = /2p™ V2K, (A5)

where the good components depend only on p*, k" and helicity. For the good components one has the completeness
relation

2 (P (Pt =2 A (A6)

where the projection operator’ A, = (yy)/2.
By using Eq. (A6) and noting that /* = [ = 0, the product of W g qqW g—qq Simplifies to

71\2_ ; 71\ 21 -
amaiean =207 (1-5 ) 08 07 =0 07 = k08 = (1) 2 07 =) 0 0 - K5)
2N 6 (ot 1y iy 1k i1G (ot gy L R
- wy (P =k )yl Pl vy (P —kg) ¢ =5
<4> hy 1 g hy 1 g ﬁz(fi—f—h)z
i k
:2p+MUM (A7)
U i+ h)?
where the product of two commutators yields
o . . D-4) .
ol = =40 -3) = L2 ) (A8)

and thus the spinor structure in M gives

¥See the discussion e. g., in Refs. [39,57]. Also note that the spinor structure i, (p)y* [y, y/]u, (k) can be expressed in terms of the
good component of the spinors.
°Note that (y*)2 =0 and y* A,
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. 21\ 2. ; 21\ 21 - ;
w0 = (1= 0 = ke, o = k0% = (1) D, 0 = kT o = )

2

Z _ . _ .

+4 ((D = 3)a (pi = k) )y uf (p = k) =20 (0} = k) 1 u (i - k;)). (A9)
To simplify the integral I in Eq. (A1) further, we note that the spinor structure in Eq. (A9) is independent of transverse

momenta, i.e., MY = MUY(p{, k}). Therefore we can write

pi dk* 3 dP2n nin* + nihk
I = (2m)P2 / W Mi(pt k) ()P / ! e (A10)
0o 2k;2(p} —kJ) b (2m)P=2 72(7i + h)?

where we have changed the integration variable from I;Q to 7. As discussed in Sec. III B, we regulate the collinear IR
divergence by rewriting

nin* + n'h* nin* 4+ n'n* (ALD)
=Y g - )
i+ h)? (P4 A)((+ h)?+A)
where A = (1 — z;)?>m? with m?> > 0. Consequently, the transverse integral can be rewritten as
dP2n nin* 4 nink 1 . - . -
(w Z)M/z/ Qo2 R+ by Ax BEHA, &, h) + HEBY(A, A, h)} (A12)
Here we have introduced the following notation (see e.g., Ref. [57]):
dP2n 1
An(A) = 4 2 2—D/2/ ,
0( ) 7[(/" ) (271->D—2 ﬁ2 + A
> dP~2n 1
Bo(A, A, h*) = dx(u?)>P/ / —— — :
(27)°72 (72 + A) (7 + ) + A)
) . dD—Z i
BI(A, A1) = dn(u2) PP / o —— :
(22)°72 (2 4+ A)((7i + h)? + A)
i N dD—2 i,k
BY(A, A K) = da(p?) P / s , (A13)
(27)P72 (2 + A) (7 + h)* + A)

where the scalar integrals Ay and B, are UV divergent and UV finite, respectively. Then, due to rotational symmetry in
D — 2 dimensions, the rank-one and rank-two tensor integrals satisfy

BI(A, AR = hiB, (A, A ),
B (A, A, k) = 6*Byy (A, A, h*) + WK Bay (A, A, ), (A14)
where the coefficient B, is given by (note that we take the limit m?> — O whenever it appears as a prefactor)

- 1 - - 1 -
B (A A ) = e Ag(A) = Ag(A) + (2A — B)By(A, A B | — —5Bo(A. A, ) (A15)
N e’

UV part cancel out

and the coefficients B,; and B,, satisfy

(D =2)By (A, A, B?) + KBy (A, A h) = Ag(A) — ABy(A, A, 1) — Ay(A). (A16)

It is then easy to show that the antisymmetric part o [y?, y¥] in M contracted with §'* or h’h* vanishes. Therefore the
remaning part in Eq. (A9) can be easily simplified to
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Mffzz(pr—k;){(1—%> + (D -3) }5* (pf’—k;)%{l—k(l—11)2+(D—4)§}5”‘. (A17)

All in all, the integral 7 in Eq. (A10) can be cast into the following form:

=20 /aldz‘{w(l—zl) (D—4)%%}[AO(A)—?BO(A,A,}?)}, (A18)

167 <1

where we have changed the integration variable from & to z; and regulated the soft IR divergence z; — 0 by a cutoff
a; = x/x,. Furthermore, by using the Feynman parametrization, one can easily show that the coefficient B, can be written
as [57]

- 1 dx
Bo(A, A, K :/ L O(D-4). A19
of ) 0 x(l—x)h2+A ( ) ( )

Finally, noting that the quark renormalization factor C,, computed in Sec. Il B, can be written as

Cylpi) _ 1 / dz; zf
=— 14 (1- + (D —-4)=rAp(A A20
EroRa vl (1=21)* + (D =4)7 pAo(A) (A20)
we obtain for our integral I in Eq. (Al) a very compact final result
C,(pf -
[ =27 q2(p1)+F(l, Iy;ay, m?) ¢, (A21)
g Cr

where we have introduced the UV finite integral

- 1 [1d > -
F(LIa,m?) = —— [ =11+ (1 - 2)% = Bo(A, A, 1) (A22)
8w a <1 2
with i* =TI} + P(L—12,)2 =2(I, - )(1 —z).
For example, if [ = §, + g, = g and [, = 0, then h* = §*(1 — z;)? and hence
F(4.0;a mz)——L ]%[1+(1—z)2]§2(1_Z1)2/ &
e 87 Joy, 2 S ) e e A (e s
1 [1dg 52/1 dx
S (IR By . A23
872 Jo, 71 1+ -2)] 2 Jo x(1 =x)g* +m? (A23)
Since g2, m* > 0, the remaining x integral gives
1 dx 2 2m?
/ A — log<ﬁ L > (A24)
o x(1-x)g"+m (g +4m?) T\G* +2m* + /G (¢* + 4m?)

This exhibits the “DGLAP logarithm” [40—43] which emerges from the collinear divergence.
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