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Abstract. The CERN Batch Service faces many challenges in order to get ready
for the computing demands of future LHC runs. These challenges require that
we look at all potential resources, assessing how efficiently we use them and that
we explore different alternatives to exploit opportunistic resources in our infras-
tructure as well as outside of the CERN computing centre. Several projects, like
BEER, Helix Nebula Science Cloud and the new OCRE project, have proven
our ability to run batch workloads on a wide range of non-traditional resources.
However, the challenge is not only to obtain the raw compute resources needed
but how to define an operational model that is cost and time efficient, scalable
and flexible enough to adapt to a heterogeneous infrastructure. In order to tackle
both the provisioning and operational challenges it was decided to use Kuber-
netes. By using Kubernetes we benefit from a de-facto standard in container-
ised environments, available in nearly all cloud providers and surrounded by
a vibrant ecosystem of open-source projects. Leveraging Kubernetes’ built-in
functionality, and other open-source tools such as Helm, Terraform and GitLab
CI, we have deployed a first cluster prototype which we discuss in detail. The
effort has simplified many of the existing operational procedures we currently
have, but has also made us rethink established procedures and assumptions that
were only valid in a VM-based cloud environment. This contribution presents
how we have adopted Kubernetes into the CERN Batch Service, the impact its
adoption has in daily operations, a comparison on resource usage efficiency and
the experience so far evolving our infrastructure towards this model.

1 Introduction

The Batch Service, part of CERN’s IT department, is responsible for providing Tier-0 com-
pute power to the Worldwide LHC Computing Grid (WLCG). The principle goals are to
process CPU and I/O intensive workloads, ensure fair-share among various user groups, and
to maximize the utilisation, throughput and efficiency of the available resources.

Using HTCondor [[1] as the job scheduling system the service currently offers more than
200K cores of compute power to 500 monthly unique users. These resources are provi-
sioned in 20K virtual machines, belonging to more than 40 OpenStack projects, and located
in multiple data centers. In addition to these resources hosted on-premises, extra capacity is
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spawned in external clouds. This forms a heterogeneous pool with different available config-
urations —hardware, operating systems, kernel versions, virtualisation technologies, physical
location—.

This complex infrastructure is managed using a tool-set initially designed in 2012 [2]]. The
primary goal at the time was to redesign the toolkit used in the CERN Computer Centre, to
benefit from open source technologies as well as adopting cloud technologies. The outcome
of this effort was the Agile Infrastructure project; the ecosystem of tools and procedures that
have been the basis of efficient IT operations ever since.

However, in the intervening years, the technological context has changed significantly.
Container technologies, such as Docker [3]], have revolutionised how the IT community thinks
about many of its traditional established processes and workflows. A vibrant ecosystem of
tools has emerged, with Kubernetes becoming de-facto standard for resource orchestration,
and many other projects filling operational or functional gaps in this new IT paradigm. In the
context of the IT department, the infrastructure functionality has grown during these years,
from container orchestration engines with OpenStack Magnum [4, 5] to ()api for baremetal
provisioning with OpenStack Ironic [6l [7]. Finally, the Batch Service has faced not only
the challenge of scaling-up the pool but to integrate opportunistic resources [8] and to also
explore the exploitation of external clouds to expand capacity [9,[10]. In a rapidly changing
environment, some constants remain: the compute demand keeps growing, and the IT budget
is still tight.

Given this new scenario it was decided to evaluate how the Batch Service could leverage
the new technology context to better tackle its main challenges. On the one hand, given that
the mandate of the service is to make an efficient usage of the resources, would it be possible
to optimise the compute capacity by provisioning baremetal nodes? The current deployment
based on virtual machines was driven by the functionality available in the cloud api back
in 2012, but new baremetal cloud apis could bring extra performance without operational
overheads. On the other hand, could the service benefit from adopting Kubernetes to improve
operations? Leveraging Kubernetes built-in features could simplify homegrown tooling, as
well as provide a deployment model more suitable for provisioning extra capacity in external
clouds.

With the aim of answering these questions and exploring how such provisioning model
would impact the service, a prototype cluster has been designed, deployed and tested. The
details of such prototype are described in this article.

2 Prototype

In order to evaluate the new provisioning model —Kubernetes on baremetal— for compute
capacity, a new HTCondor cluster was built, independent from the main production sys-
tems. The cluster comprises 100 Intel®Xeon®ES5-2630 machines with Simultaneous Multi-
Threading (SMT) enabled, providing a total of 3200 logical cores.

The machines, as shown in figure [I] are provisioned in two different ways: 50% of the
capacity is provisioned as Puppet-managed virtual machines, while the other half is provi-
sioned as a Kubernetes baremetal cluster. Given the goal of these tests to measure the impact
on compute resources utilisation and operation, the control plane deployment —HTCondor
schedds and central managers— is left untouched.

e Puppet managed nodes are provisioned using 8 core OpenStack Nova virtual machines, this
flavor keeps the ratio of 4 machines per hypervisor that is used in the vast majority of the
infrastructure. Among other configuration, Puppet installs and configures condor_startd,
the daemon that connects to the HTCondor pool.
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e Kubernetes clusters are created using OpenStack Magnum. The Kubernetes nodes take
the full host and run condor_startd as a DaemonSet. In addition to this main components,
HashiCorp Consul [11] is deployed to register all the nodes in this model, as well as the
control plane.
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Figure 1. Overview of the resource configuration used in the prototype HTCondor pool

The proposed prototype has all the elements that a production cluster would have, allow-
ing the evaluation of the impact on operations. Additionally, having a homogeneous hardware
platform for all nodes simplifies the task of comparing benchmark results. Both operations
and benchmark results are discussed in the following sections.

3 Operations

Operations is the main area impacted while transitioning to this model, not only because
of the new tooling but because there is a paradigm shift on how the system is deployed.
Changing the operational model should lead to efficiency gains, by reducing friction between
components, increasing automation capabilities and reducing technical debt [[12] in the sys-
tems. Operational tasks are defined by the life-cycle of resources, from provisioning and
maintenance to decommissioning. In these sub-sections, the most important operations that
are impacted by this new setup will be described.

3.1 Bootstrap

Bootstrapping the compute nodes in the current deployment based on Puppet, relies on home-
grown tooling that plugs together the different components of the infrastructure: OpenStack,
Foreman, Puppet and other CERN-specific services.

While evaluating Kubernetes, there was also an opportunity to explore the alternatives
available to follow an Infrastructure as Code (IaC) approach in the deployment. The land-
scape of IaC tools is dominated by Terraform [[13]] and AWS CloudFormation [14], with new
tools also gaining some traction recently, such as Pulumi [[15]]. Given previous experience at
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CERN with Terraform, and the availability of providers for all required components, it was
chosen as the tool to automate the new deployment.
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Figure 2. Terraform providers involved in cluster boostrapping

Figure [2] shows the main Terraform providers used during cluster bootstrapping. Ter-
raform manifests are stored in GitLab and executed from GitLab Continuous Integra-
tion/Continuous Deployment (CI/CD) when there is a change to the manifests. It is respon-
sible for interacting with OpenStack Magnum to create the Kubernetes cluster, adding the
required dependencies in the newly created cluster, as well as creating the tokens for the clus-
ter in order to be able to join Consul. Once the cluster is ready, Helm [16] is used to deploy
the applications required: the Consul agent DaemonSet and the HTCondor startd DaemonSet.

This approach should introduce more flexibility while working on other clouds. On the
one hand, it makes a clear distinction on what is used to provision the Kubernetes cluster —
the only component that would end-up being cloud dependant—, and what is used to deploy
the application —Helm charts, that should remain cloud independent—. On the other hand,
having an infrastructure not depending on CERN provided services, such as Puppet masters
or PuppetDB instances, ensures components and procedures are more adaptable to deploy
services on other clouds and locations, improving the scalability of the service.

3.2 Node discovery and authentication

The second set of operations that was important to evaluate, is discovery and authentication of
worker nodes in the infrastructure. In the current model the discovery is done by querying the
central PuppetDB service, getting a fresh list of nodes on every Puppet run. In Kubernetes,
it was decided to register all the nodes in Consul, registering a condor_startd services from
every worker and making the control plane query Consul to populate the list of valid nodes
using consul-template [[17]. The choice of Consul is based on its high-level abstractions
for service discovery, as well as functionality such as distributed locking that could help
improve other areas of infrastructure automation. The result is a discovery mechanism that is
updated immediately after a node joins the cluster, rather than waiting for a period of time,
in the old system, before Puppet runs added the necessary config asynchronously. Another
positive aspect of this approach is the Consul federation capabilities, having the possibility
of spawning them in the public cloud to federate later with a CERN central instance. Further
improvements to the prototype would require testing the right architecture to scale-out the
Consul cluster.

Authentication is left untouched, relying on x509 certificates. This mechanism is still
applicable as the CERN OpenStack Magnum instances are capable of issuing Grid certifica-
tions for the minions. In future iterations of this prototype other mechanisms such as token
authentication [[18]] will be evaluated.
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3.3 Draining

Through the life-cycle of compute nodes in the Batch Service, there is a dominant recur-
rent task: draining. There are many scenarios where draining of nodes is required, such as:
security patching, kernel upgrades, hardware replacement and hardware decommissioning.

Draining events which require more coordination are hardware interventions, as they in-
volve other teams and occur more often. Up to now, the communication of a hardware inter-
vention would follow these steps:

1. The repair team responsible of the hardware at CERN data centres would identify an
issue in the hypervisor. At this level, the monitoring tooling would be provided by the
central monitoring service in the IT department.

2. Using a Rundeck [19], the repair team interacts with the Cloud team to disable the
hypervisor in OpenStack and triggering a notification of the affected virtual machines.
This is a planned intervention.

3. The Batch team listens to those notifications and marks the selected nodes as broken.

Running on baremetal implies that the Cloud layer is partially gone and the repair team
should interact differently with the service managers in order to make sure that a machine is
drained before they start their interventions. In such scenarios, the sequence of events would
be as follows:

1. The repair team receives an alert from a baremetal minion in Kubernetes. This mech-
anism could be implemented using Collectd [20] as it is done at the moment or im-
plementing new probes based on tools that are part of the Kubernetes ecosystem, for
example a combination of Prometheus [21] and Alertmanager [22], as well as node-
problem-detector [23]].

2. The notification which in this case is used to trigger the draining could just rely on the
built-in Kubernetes command "drain". This command starts the draining process for
the given minion, sending a signal to the containers that can be captured by HTCon-
dor to start draining the slots. It uses the parameter "terminationGracePeriodSeconds"
defined by the application to set the maximum time it will wait before killing the ap-
plications.

Further automation can be implemented as well with other tools such as draino [24]. This
tool is capable of draining nodes automatically based on the information provided by the
node-problem-detector. In this case, no access to the cluster would be required for the repair
team, and an implicit contract could be made such that they can perform the intervention one
week after the alarm has been raised.

As stated above, the Cloud team is partially unaware of the new model. However, these
default configurations could be provided as default settings in the cluster provisioning system
such as OpenStack Magnum.

3.4 Upgrades

Keeping the nodes up to date is another important implicit operation while running such a
system at large scale. At the moment, nodes are kept up to date based on a combination of
updated base images [25]], automated package upgrades and the Puppet configuration man-
agement system to provide new changes as they are required.
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In the new model, container images can be maintained in a similar automated fashion.
The Kubernetes DaemonSet deploying condor_startd uses an image containing all the de-
pendencies provided in standard worker nodes. This approach has the impact on requiring a
full draining of the jobs when a new image needs updating, leading to resource usage ineffi-
ciencies. However, it could be mitigated by reducing the condor_startd image to a minimal
image, and wrap the jobs in containers automatically via the HTCondor Docker Universe.
This approach would mean that jobs will pick-up always the latest image available without
impacting on capacity. Only upgrades to HTCondor itself would require draining of the nodes
as it happens today.

Additionally, for configuration changes, a combination of Helm and Consul could be used
to provide dynamic configuration changes to the application. Tools like envconsul [26] can
propagate automatically new changes to configuration files and trigger the configuration of
the daemons running.

4 Benchmarking

Evaluating the impact on operations is critical, as it is directly related to how much time
the team spends doing operations, and thus how efficient the staff dedicated to the service
is optimised. On the other hand, a concern running a batch service is how efficiently the
resources given are being used: when running at this scales getting a few percent more out of
the machines can have a significant overall impact.

In the proposed prototype, the element bringing the potential improvement in efficiency
is the baremetal provisioning of the Kubernetes minions. This transition should remove the
virtualisation overhead, estimated by the Cloud team in the past to be around 3-4 percent
[27], but there are other factors that could impact efficiency as many components in the pro-
visioning stack change, thus it is important to define a systematic benchmark process to spot
potential sources of inefficiency.

While defining benchmarking plans, it was decided to mimic as much as possible the
workflow a normal user would follow and run the benchmarks via HTCondor, with the only
simplification that there would be only a single client in the whole cluster running the same
type of jobs. The job payload is created based on the effort from the Benchmark working
group on their hep-workloads [28] project. The jobs are configured to run on 8 core slots,
running 8 copies and 1 thread if the payload is single-threaded, or 1 copy and 8 threads if
multi-threaded.

The cluster is configured to allow jobs to specify which subset of resources to target
by the means of a boolean attribute named "+WantKubernetes" in its submission file. The
execution of the benchmarks is wrapped in a script that takes care of reading the input from
the arguments, launching the benchmarks and sending the output to a central ElasticSearch
instance in the IT department. Apart from the default tags provided by the workloads, extra
information is added to enrich (e.g: cluster id, job id, project and infra). The data can be then
easily processed for visualization with tools like Grafana or exported for further analysis with
tools like R.

4.1 Fine-tuning the deployment

The first results obtained showed some discrepancies with the initial expectations running
on baremetal. Baremetal nodes showed very spread scores compare to virtual machines,
and lower throughput. These initial results were obtained running Compact Muon Solenoid
(CMS) digitization benchmarks and can be seen in table|T]
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Table 1. Initial results for CMS digitization benchmark. The throughput is expressed as "mean +
standard error"

Type Events  Job Throughput (events/s)
Virtual Machines 64000  0.8178+3.7x107~*
Baremetal 64000  0.7294+8.3x1073

These results prompted a detailed review into the configuration of the baremetal deploy-
ment, to identify the cause of this loss performance degredation. Having both type of nodes
on very same hardware helped link the issue with the configuration, rather than a platform
specific performance issue.

This investigation led to the conclusion that the Non-Uniform Memory Access (NUMA)
[29] topology was playing an important role in the way the kernel was running the bench-
marks. As mentioned in the introduction, the virtual worker nodes were provisioned using
standard 8 core flavours. The OpenStack flavors defined in projects assigned to the batch
service are configured with extra meta-data to ensure the virtual machines are pinned to dif-
ferent NUMA nodes, as it was previously found that not doing so would incur a performance
penalty [27]. Having the VMs pinned to a single NUMA node ensures that its data will be
located in the memory node available in that NUMA node, without incurring in the penalty
of accessing the memory located in a different NUMA node.

In order to apply the same principles to the baremetal deployment, and help the ker-
nel scheduling jobs pinned to the same NUMA node, it was decided to spawn multi-
ple HTCondor startd daemons and link them per NUMA node. The schema is shown in
fig[3} Using HTCondor ability to spawn multiple daemons of the same type, the baremetal
nodes have been split in two halves, then exposed in the cluster with the naming pattern
"slot]l @numa(0]1]@ <hostname>".

Virtual Machines Physical

condor_startd condor_startd

condor_startd

condor_startd

NUMA Node 0

NUMA Node 1

Figure 3. NUMA pinning is done at the virtualization layer on virtual nodes, and at the process daemon
level on baremetal.

The results obtained after applying the aforementioned modifications are shown in the
following section.
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4.2 Results

After applying the modifications to pin the daemons to different NUMA nodes, the results
started to be less spread and the results matched the initial expectations, i.e. that the perfor-
mance on baremetal should be better.

Table 2. Job throughput (events/second) improvements running the hep-workloads on baremetal
compared to virtual machines. The throughput is expressed as "mean =+ standard error"
(ST=Single-Thread, MT=Multi-Thread)

Benchmark Type Virtual Baremetal Increase
Machine
ALICE GEN-SIM ST  0.1494+9.9x1072  0.1531+2.1x107* 2.44%
ATLAS SIM MT  0.0120+£5.9x107° 0.0128+6.1x107° 5.98%
CMS GEN-SIM ST  0.1681+£9.9x107>  0.1777+1.2x107* 5.37%
CMS DIGI MT  0.8178+3.7x10™*  0.8562+2.7x10~* 4.49%
CMS RECO MT  0.4635+1.4x10™*  0.4853+1.4x107* 4.49%
LHCb GEN-SIM ST  0.0176+7.0x10®  0.0188+1.3x107° 6.38%

LHCb GEN-SIM (CVMFS) ST  0.0173+6.9x10™®  0.0189+7.3x107° 8.48%

The performance improvements obtained in the benchmarks that were executed is shown
in Table[2} The results show improvements over the 4% attributed to the virtualisation over-
head. In one particular case —LHCb GEN-SIM— it was possible to run the benchmark
without relying on the image with cached data and access directly CernVM File System
(CVMES) to get the required data. In this particular case, the gain reached 9%. Due to the
scope of this prototype, there was no time to explore this scenario more in detail, but it can
be potentially connected to the impact on having multiple CVMFES caches when running on
virtual machines —remember that on a 32 CPU node it is usual to run 4 machines of 8 cores,
leading to 4 CVMEFS caches to be filled—.

5 Conclusions

Exploring the adoption of Kubernetes on the service by deploying a prototype similar to the
production cluster has helped to focus on existing procedures, to have a better understanding
of what it would entail when migrating the infrastructure to such model. From an operations
point of view, there is now a better picture of the ecosystem of tools around Kubernetes that
could help tackle some of the main procedures in the life-cycle of the infrastructure. Fur-
thermore, it has been possible to identify the dependencies within the organisation that would
require adaption of dependent procedures to conform with this new setup. At the performance
level, the results obtained in the benchmarking of the prototype show that moving towards a
baremetal service would gives a potential boost of performance in the order of 4% and 9%,
for an amount that could satisfy the compute demands in the next LHC run.

Taking into consideration all these points, this new model — baremetal Kubernetes clus-
ters — for provisioning resources has proved to be operationally feasible and could help to
tackle some of the new challenges the service will be facing. The next steps to take in order to
validate these initial conclusions are: to deploy a similar setup within the production cluster
and route part of the WLCG jobs to confirm the results obtained, as well as keep improving
the deployment model.

Moving towards such a model can be challenging, in particular in big IT organisation
like CERN where many dependent units work together and adapting existing workflows and
procedures might have a higher impact due to existing expertise or manpower available.
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