
 

Large-scale HPC deployment of Scalable 
CyberInfrastructure for Artificial Intelligence 
and Likelihood Free Inference (SCAILFIN) 
 
Michael Hildreth1,*, Kenyi Paolo Hurtado Anampa2, Cody Kankel2, Scott Hampton2, Paul 
Brenner2, Irena Johnson2, and Tibor Simko3 

1Department of Physics, University of Notre Dame, Notre Dame, IN, USA 
2Center for Research Computing, University of Notre Dame, Notre Dame, IN, USA 
3IT/CDA Division, CERN, 1211 Meyrin, Switzerland 

Abstract. The NSF-funded Scalable CyberInfrastructure for Artificial 
Intelligence and Likelihood Free Inference (SCAILFIN) project aims to 
develop and deploy artificial intelligence (AI) and likelihood-free 
inference (LFI) techniques and software using scalable cyberinfrastructure 
(CI) built on top of existing CI elements. Specifically, the project has 
extended the CERN-based REANA framework, a cloud-based data 
analysis platform deployed on top of Kubernetes clusters that was 
originally designed to enable analysis reusability and reproducibility. 
REANA is capable of orchestrating extremely complicated multi-step 
workflows, and uses Kubernetes clusters both for scheduling and 
distributing container-based workloads across a cluster of available 
machines, as well as instantiating and monitoring the concrete workloads 
themselves. This work describes the challenges and development efforts 
involved in extending REANA and the components that were developed in 
order to enable large scale deployment on High Performance Computing 
(HPC) resources. Using the Virtual Clusters for Community Computation 
(VC3) infrastructure as a starting point, we implemented REANA to work 
with a number of differing workload managers, including both high 
performance and high throughput, while simultaneously removing 
REANA's dependence on Kubernetes support at the workers level.  

1 Introduction and Motivation  
The National Science Foundation (NSF) has made significant investments in major multi-
user research facilities (MMURFs), which are the foundation for a robust data-intensive 
science program. Extracting scientific results from these facilities involves the comparison 
of “real” data collected from the experiments with “synthetic” data produced from 
computationally-intensive simulations. This is the modus operandi of MMURFs such as 
the Large Hadron Collider (LHC), IceCube Neutrino Observatory, and the Laser 
Interferometer Gravitational Wave Observatory (LIGO). 

Comparisons of experimental data and predictions from simulations are abstractions of 
the specific data analysis techniques developed by the respective communities over several 
decades. In recent years there has been a tremendous amount of interest in leveraging 
machine learning (ML) and artificial intelligence (AI) techniques to enhance the analysis of 
data from these facilities. 
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While these facilities have highly-engineered systems for data acquisition and there are 
corresponding systems for generating simulated data, several data analysis tasks are often 
shepherded manually or through ad hoc scripts that are not well maintained. Many of these 
tasks involve well-defined workflows amenable to automation that would free up time 
which could be directed at data analysis innovations and insights. The scientific potential of 
these facilities can be significantly enhanced by developing cyberinfrastructure (CI) that 
streamlines specific high-impact use cases. 

Through NSF funding to DASPOS [1] and DIANA [2] and in collaboration with 
CERN, we have developed CI components such as REANA [3] that can run large scale 
data-intensive analysis workflows in high energy physics (HEP) and bioinformatics on 
cloud computing resources. REANA is designed to enable reproducibility, reusability, and 
optimization of the analysis pipeline. 

In parallel, NSF has supported the development of a new class of data analysis 
techniques that leverage ML to improve the discovery potential of MMURFs. Particularly 
significant is the emergence of a class of likelihood-free inference (LFI) techniques that are 
needed when the predictions for the data are implicitly defined by simulation, which often 
leads to an intractable likelihood function. This formulation applies to analysis of data from 
the LHC, LIGO, radio astronomy, cosmology, phylogeny, epidemiology, and condensed 
matter physics. It has also become a hot topic in ML and has emerged as a lingua franca 
for data analysis that accelerates convergent research. 

Thus far, likelihood-free algorithms have been implemented only on individual 
machines and in ad hoc scripts. Thus, a scalable implementation for data-intensive 
applications where the simulation is computationally intensive (e.g. LHC) is needed. The 
Scalable Cyberinfrastructure for Artificial Intelligence and Likelihood Free Inference 
(SCAILFIN) project will implement the recently developed algorithms on top of the 
REANA system with specific LHC science topics driving the initial effort. The resulting 
applications will run on large (e.g. cloud/HPC) resources to analyze LHC data. 

1.1 Likelihood-Free Inference 

Recent work in particle physics has focused on extracting maximal information from the 
large data sets that have been and will be accumulated at the LHC.  Many simple inference 
techniques cannot be easily extended to higher-dimensional realizations due to the need to 
populate all regions of parameter space with sufficient simulated data in order to estimate 
the behaviour of, for example, signatures of signal and background processes in each “bin”. 
One effort to address these shortcomings uses Machine Learning (ML) classifiers to 
estimate likelihood ratios for the purposes of inference. These Likelihood-Free Inference 
techniques can “teach” algorithms the behaviour of a multi-scale physics simulation where 
an analytical form of the likelihood is impossible to obtain [4-6].  More recent versions of 
this work have incorporated additional information (such as gradient densities) that are 
available in the simulation to improve the accuracy of the estimators and to dramatically 
lower the quantity of training data needed for good results [7-9]. 

1.2 The REANA System 

The REANA[3] system was developed by the DASPOS and DIANA-HEP projects in 
conjunction with CERN IT. Built from commodity elements, REANA encapsulates the 
technology for preserving, composing, and orchestrating the processing of the different 
workflow steps. Within REANA, the preserved executables can be reinstantiated according 
to the instructions in the workflow scripts by a job scheduler and workflow system that can 
be attached to any generic computing resource that supports container execution. A 
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diagram of the REANA system is shown in Figure 1. In this framework, an analyst can 
preserve individual workflow steps in containers and string them together with a series of 
scripts that enable extremely complex workflows.  Workflow segments and individual 
steps can be shared and re-composed in different workflows. The characteristics of each 
workflow step, including inputs and outputs, execution environment, etc., are specified in 
YAML/JSON format. Linux containers that execute the individual steps of a workflow are 
orchestrated by the yadage workflow language[10] and execution engine with Kubernetes 
as the job execution controller.  Common Workflow Language (CWL)[11] is also 
supported. 
 

 
 

Figure 1.  The REANA system architecture 
 
 
2 SCAILFIN 
 
The SCAILFIN project [12] aims to create the CI necessary to deploy workflow systems 
like REANA on large-scale HPC centers in order to facilitate the ML necessary to use 
Likelihood-Free Inference techniques or other methods needing large-scale simulated 
samples for training.  The subject of this paper is a description of how REANA has been 
modified for deployment on these large-scale systems and tested with complex workflows. 

2.1 Initial Development 

A critical design decision was to run REANA as an edge service. All of the elements of the 
“reana-cluster” component of REANA that handles workflow orchestration, job 
submission, etc., can be provisioned using infrastructure developed by the Virtual Clusters 
for Community Computation (VC3) project[13].  This infrastructure allows a user to 
provision and distribute a pre-defined “cluster” environment over heterogeneous resources 
with all configuration accomplished in “user” space; no root access is needed.  The “reana-
cluster” has been established as a template cluster configuration option for VC3, enabling a 
template VC3 headnode that contains all of the necessary functional pieces of REANA to 
be deployed at HPC sites. A symbolic representation of the different components of the 
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reana-cluster as originally developed by the CERN team is shown in Figure 2. As 
mentioned above, note that almost all of the pieces are commodity components, readily 
available from outside developers.  This makes the REANA infrastructure readily portable.   
 One component of the VC3 infrastructure that has made the deployment of this system 
is the existence of a job-submission translation layer that already exists in VC3.  VC3 is 
capable of submitting tasks to a wide variety of schedulers: Torque (Blue Waters), SLURM 
(NERSC, PSC-Bridges, Stampede2), HTCondor, LSF, SGE, PBS. This functionality has 
provided a great deal of flexibility as to where VC3 can be used. 
 

 
 
Figure 2. Reana-cluster components. Each component runs in an individual container, with 
orchestration provided by Kubernetes. 

As seen in Figure 1, the original REANA system uses yadage to assemble sequence of job 
steps based on containerized executables which are instantiated by a Kubernetes cluster for 
job orchestration. In order to facilitate the conversion to running on large HPC systems, the 
SCAILFIN team developed an HTCondor[14] backend for REANA. This required 
modifications to the reana-job-controller and providing a job wrapper for each workflow 
step so that it could be submitted to HTCondor.  The modified reana-job-controller submits 
each workflow step to a local Condor scheduler. Kubernetes, set up via Minikube in the 
VC3 headnone, is still used to coordinate the containers running the other services that 
comprise the reana-cluster. 

2.2 Deployment  

The VC3/REANA system has now been deployed and tested at a variety of sites with a 
wide range of operational configurations.  Once the REANA VC3 cluster template was 
implemented, deployment on local HPC infrastructure at the University of Notre Dame, 
and on, for example the Bridges machine at the Pittsburgh Super Computing Center was 
quite straightforward; the system worked essentially “out of the box”.  The REANA system 
has also been deployed on Blue Waters, before it was decommissioned, and CORI at 
NERSC.  That required some additional modifications to both the REANA and the VC3 
architectures. In particular, support for GSI-SSH authentication had to be added to the VC3 
infrastructure and the capability to renew proxies through the VC3 website was enabled. 
Other patches to support Cray linux environments were also made.  In addition, automatic 
local configuration detection and support for Shifter and Singularity were added so that 
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linux containers would run on the appropriate local systems[15]. Figure 3 shows the 
configuration that was deployed on Blue Waters.  The translation layer for job submission 
used in this case is BOSCO[16].  Performance and scale-out tests are ongoing. 
 

 
 
Figure 3. VC3/REANA configuration as deployed on Blue Waters. The MOM nodes host 
the local PBS batch system that distributes tasks to the compute nodes.  

2.3   Workflows 

In order to test the implementation, a complex workflow was run to completion using this 
infrastructure on Blue Waters. This particular workflow, whose description can be found at 
https://github.com/reanahub/reana-demo-bsm-search, performed a complete analysis 
searching for physics beyond the Standard Model, comparing simulated samples to data, 
doing normalizing fits, and extracting limits.  The workflow contains thousands of 
individual steps and involves data, signal, simulation, merging, fitting and plotting steps, all 
of which are executed in linux containers.  Complex workflows such as these are expected 
to be necessary for training LFI models at scale and thus represent an appropriate test 
algorithm that exercises all features of the REANA platform on an HPC system. 

3. Future Evolution 
SCAILFIN is a two-year project now entering its last six months of funding. In the 
remaining time, scale-out studies of complex workflows will be performed on a variety of 
HPC machines. Integration of SCAILFIN modifications to the REANA platform will be 
complete, rendering REANA capable of deployment on a much wider variety of systems. 
This work is supported by the Office of Advanced Cyberinfrastructure of the US National Science 
Foundation with grant OAC-1841448.  We would like to thank our colleagues in CERN IT and the 
rest of the SCAILFIN team for their support and collaboration. 
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