

Fast Inference for Machine Learning in ROOT/TMVA

Kim Albertsson1,2, Sitong An1,3, Lorenzo Moneta1, Stefan Wunsch1,4 and Luca Zampieri5

1CERN
2Lulea University of Technology
3Carnegie Mellon University
4Karlsruhe Institute of Technology
5École polytechnique fédérale de Lausanne

Abstract. ROOT provides, through TMVA, machine learning tools for
data analysis at HEP experiments and beyond. However, with the rapidly
evolving ecosystem for machine learning, the focus of TMVA is shifting.
We present the new developments and strategy of TMVA, which will
allow the analyst to integrate seamlessly, and effectively, different
workflows in the diversified machine-learning landscape. Focus is put on a
fast machine learning inference system, which will enable analysts to
deploy their machine learning models rapidly on large scale datasets. We
present the technical details of a fast inference system for decision tree
algorithms, included in the next ROOT release (6.20). We further present
development status and proposal for a fast inference interface and code
generator for ONNX-based Deep Learning models.

1 Introduction

The Toolkit for Multivariate Analysis (TMVA) [1] is part of the ROOT Data Analysis

Framework [2] since 2005. It provides a one-stop solution for the development, deployment

and validation of machine learning methods for data analysis in the High Energy Physics

community, long before the gain in popularity in machine learning in the recent years. One

of the most popular machine learning methods supported by TMVA is the Boosted

Decision Trees (BDTs), which is widely used in the community for a myriad of analyses

[3-6]. There have been multiple efforts to implement efficient BDT inference at trigger

level, such as by CMS at L1 Muon Endcap Trigger [7], Track Trigger [8], and the hls4ml

group [9].

With the rapidly evolving machine learning landscape and the rise of popular machine

learning frameworks supported by large technology companies, the focus of TMVA is

shifting. Specifically, we aim to provide, within TMVA, methods that allow fast and

convenient deployment of popular machine learning methods in the production

environment.

This proceeding presents our recent development in fast inference engine for decision

trees, discusses its technical features as well as a plan for supporting similar fast inference

methods for neural network models for deep learning.

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 245, 06008 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024506008

2 Fast Inference Engine for Decision Trees

2.1 Introduction

Decision tree-based algorithms have been widely popular both within the high energy

physics community and in the data science industry for many years. This is a family of

machine learning algorithms united by their use of tree-like model with a “test” at a certain

“cut point” at each of the node of the tree. Some of the most popular decision tree

algorithms include Boosted Decision Trees (BDTs) and XGBoost [10]. They use different

strategies during training of the algorithms, but for deployment the structure of the model

and the logic of the inference is the same. Their deployment thus can be done via a single

inference engine.

 The ability to deploy such algorithms in a fast and lightweight manner is of particular

importance for applications in high energy physics. For example, low-latency inference is

critical for some use cases applying decision-tree algorithms, such as BDT-driven high-

level triggers [11]. Furthermore, in high energy physics the emphasis is usually put on

event-loop inference rather than batch inference. This means that many of the existing

inference engines for decision-tree based algorithms, developed by the data science

industry and focusing on batch inference, might not suit the purpose of high energy physics

community.

In the following sections we present the techniques used and the results achieved for a

fast inference engine for decision trees within TMVA. This work was initiated as a CERN

summer student project by Luca Zampieri [12].

2.2 Just-in-time (JIT) Compilation

Cling [13], the interactive compiler in ROOT, allows the use of just-in-time compiler for

compilation. In practice, this means that we can compile hard-coded evaluation logic parsed

from the decision-tree models. See figure 1 for a code snippet which demonstrates how this

is done in the TMVA fast decision tree inference engine. Normally without the support of a

just-in-time compiler, we have to code the generic logic for the inference of a decision-tree

based algorithm for the C++ static compiler. However, with Cling, it is possible to read the

model file, parse the tree structure, and compile and run the generated code snippet for

inference at run time.

2

EPJ Web of Conferences 245, 06008 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024506008

Fig. 1. Code snippet demonstrating the use of just-in-time compilation for the TMVA fast inference
engine for decision-tree based algorithm. Conventional generic implementation is presented on the
left, and the code snippet generated and compiled at runtime after reading the model file and parsing
the tree is presented on the right.

The advantage of using the Cling just-in-time compiler in this case is that it allows us to

exploit the powerful C++ compiler optimization dynamically, that is, at run time. With this

technique, we are able to demonstrate significant speedup of the inference. The results are

presented in figure 3, in the next section.

2.3 ”Branchless” representation of trees

Another technique that we adopted is the “branchless” representation of trees [14]. Here,

we “unroll” the tree from linked nodes into a long sequential array, using the array

representation of binary tree in classical computer science. This of course assumes that the

tree we are unrolling is a full binary tree, which is certainly not always true for the models

trained with decision-tree based algorithms. To address this, we fill in the missing values in

sparse trees to create full binary trees. See figure 2 for an example of this filling procedure,

as well as a code snippet demonstrating how such an array can be traversed.

Fig. 2. Demonstration of the process that fills a sparse tree into a full tree and its corresponding array
representation. On the top right is the code snippet for traversing the array representation of the tree.

While this seems to complicate the representation of the model, it has the advantage that

tree traversal is now a mathematical operation (see the code snippet in figure 2), which is

cheaper than an if operation. Together with JITting, we discovered that these two

techniques combined gives rise to significant speedup in inference (see figure 3). While no

conclusive study has been done on the exact cause of this speedup, we hypothesise that this

might come from the better branch prediction of CPUs on mathematical operations.

3

EPJ Web of Conferences 245, 06008 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024506008

Fig. 3. Speedup in inference by adopting the JIT and the branchless representation techniques, in
comparison to vanilla XGBoost implementation.

The branchless implementation assumes shallow, nearly full trees. If the tree is very

deep and sparse, this implementation might not perform as well as the conventional

“branched” (linked nodes) implementation, as it cannot stop early in case of a leaf at a very

shallow level, having to traverse each level of the tree regardless of the model and the data.

Figure 4 demonstrates this effect. Fortunately, most decision-tree based machine learning

algorithms produce shallow, nearly full trees that branchless implementation works well on.

This is partly due to the fact that with a deep tree the machine learning algorithm is usually

more prone to overfitting. We will also integrate the branched (linked nodes)

implementation for deep trees in the future so that the inference engine in TMVA will

perform optimally regardless of the depth of the tree.

Fig. 4. Performance worsens for branchless implementation for greater depth of the tree, both for the
jitted and non-jitted versions.

2.4 Tree ordering

4

EPJ Web of Conferences 245, 06008 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024506008

Inspired by the exploitation of branch prediction in the branchless implementation, we also

investigated the effect of changing the ordering of the trees. We ordered the trees such that

they are evaluated in the order of feature and cut value of the root node. The rationale is

that it could improve dynamic branch prediction and reduce branch misses. Again, this

technique achieved significant speedup when coupled with JITting, as demonstrated in

figure 5.

Fig. 5. Speedup in inference by adopting the JIT and the tree ordering techniques.

2.5 Loop nest optimization

Loop nest optimization is another classical optimization technique usually used in compiler

design. Here, we chunk iteration space (over trees and events) into small blocks. The idea

behind this technique is that it might improve data and instruction locality, thus potentially

reducing cache misses. See figure 5 for an example code snippet that demonstrates how

loop nest optimization is implemented in our decision tree inference engine, and figure 6

for its speedup with and without JITting.

Fig. 6. Speedup in inference by adopting the JIT and the tree ordering techniques, in comparison to
vanilla XGBoost implementation.

5

EPJ Web of Conferences 245, 06008 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024506008

Fig. 6. Speedup in inference by adopting the JIT and the loop nest optimization.

Interestingly, here we find that if JITting is not used, then loop nest optimization can

achieve a speedup. However, with JITting enabled, whether loop nest optimization is used

does not make a difference on the inference speed, regardless of the batch size. This

demonstrates that JITting is an effective way to exploit potential of compiler optimization

at run time that is otherwise not possible. However, for implementations where JITting is

not available, we demonstrated that loop nest optimization is still helpful in improving the

inference speed.

2.6 Outlook on potential application to HLT

A preliminary study into the memory footprint of the Branchless method, running the

inference of a 100-tree 3-depth XGBoost-trained model on the complete toy Iris dataset

from scikit learn, suggested a result of 4.58 Mb. For future work, a more comprehensive

study into the memory footprint from both the Python and C++ interface and for other

inference implementations pending their integration into TMVA is warranted. A

comparison study between current implementations used at LHC experiments and the

methods reported in this proceeding should also be done once this integration is complete,

so as to give better insights into the potential application of these methods to HLT.

3 Inference of ONNX Deep Learning Models

With the rapidly evolving landscape of modern machine learning software tools, TMVA is

focusing on not only on supporting the inference of traditional machine learning algorithms

like BDTs, but also deep learning models based on neural networks. Here, we outline a

future proposal for how TMVA plans to achieve this.

ONNX [15] is an open format for deep learning models. It aims to create a set of open,

future-proof rules and standards for the definition of deep learning models and

interoperability of these models between different deep learning frameworks. It currently

supports most of the popular deep learning operators and layers, and there are convertors

available for the conversion of models files produced from major deep learning framework

into ONNX format.

In parallel, an open source inference engine based on ONNX standard, named ONNX

Runtime, is developed. It is supported by the Microsoft open source and in fast

6

EPJ Web of Conferences 245, 06008 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024506008

development. Highly optimised for low-latency inference, it supports multiple backends

and optimization methods.

While there has already been some success at integrating ONNX Runtime into the

analysis frameworks of some of the large experiments at CERN, the goal of TMVA in this

area is not to directly compete with it. Instead, we propose an inference engine based on the

code generator model. It would take ONNX models as input and compiles it into a piece of

static C++ code providing functional APIs for the inference of the model. See figure 7 for a

demonstration of this process. The user would train their deep learning models in a Python-

based, GPU-dominated environment, convert the trained model into ONNX Models. As the

next step, TMVA will convert the ONNX Model into a snippet of C++ code, ready for

deployment in the C++ production environment.

Fig. 7. Proposed work process for deploying deep learning models in C++ analysis frameworks with
TMVA

Compared with the use of ONNX Runtime, this approach has the advantage of having

minimal external dependency. In cases where the neural network is only a relatively small

and simple part of the entire analysis workflow, it gives users the option to keep the

inference code in-house instead of adding external dependency.

Currently, we have completed the ONNX operator-based infrastructure. We are able to

explore and manipulate ONNX models, paving the road for potential future customized

optimization of the models specifically for high energy physics purposes. We plan to

further develop this with the code generation component and trial it in a few months. This is

an ongoing work, and the ROOT/TMVA team warmly welcomes any request, suggestion,

recommendation or complaint over this topic.

Luca Zampieri is a CERN summer student in 2019 working on the decision tree inference engine

project under the supervision of Kim Albertsson, Sitong An, Lorenzo Moneta and Stefan Wunsch.

Sitong An gratefully acknowledges the support of the Marie Sklodowska-Curie Innovative Training

Network Fellowship of the European Commission Horizon 2020 Programme, under contract number

765710 INSIGHTS.

References

7

EPJ Web of Conferences 245, 06008 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024506008

1. A. Hoecker, P. Speckmayer, J. Stelzer, J. Therhaag, E. von Toerne, H. Voss, M.
Backes, T. Carli, O. Cohen, A. Christov et al., TMVA - Toolkit for Multivariate Data
Analysis (2007), physics/0703039

2. R. Brun, F. Rademakers, ROOT - An object oriented data analysis framework (1997)
3. V. M. Abazov et al. (The D0 Collaboration), Evidence for production of single top

quarks, Phys. Rev. D 78, 012005 (2008)
4. G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 717 89-108 (2012)
5. The CMS Collaboration, CMS-PAS-HIG-13-001 (2013)
6. The ATLAS Collaboration, ATL-PHYS-PUB-2015-022 (2015)
7. D. Acosta et al. (CMS Collaboration), J.Phys.Conf.Ser. 1085 (2018) 042042, Boosted

Decision Trees in the Level-1 Muon Endcap Trigger at CMS
8. S. Summers et al., JINST 15 P05026 (2020), Fast inference of Boosted Decision Trees

in FPGAs for particle physics
9. J. Duarte et al., JINST 13 P07027 (2018), Fast inference of deep neural networks in

FPGAs for particle physics
10. T. Chen, C, Guestrin, XGBoost: A Scalable Tree Boosting System, Proceedings of the

22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining - KDD ’16, (2016)

11. V.V.Gligorov, M. Williams, JINST 8 P02013 (2013)
12. L. Zampieri, CERN-STUDENTS-Note-2019-183 (2019)
13. V. Vasilev, Ph. Canal, A Naumann, P Russo, Cling – The New Interactive Interpreter

for ROOT 6, J. Phys.: Conf. Ser., 396 052071 (2012)
14. T. Keck, FastBDT: A speed-optimized and cache-friendly implementation of stochastic

gradient-boosted decision trees for multivariate classification, 1609.06119 [cs.LG]
(2016)

15. B. Junjie, L. Fang, Z. Ke et al, ONNX: Opern Neural Network Exchange (2019)

8

EPJ Web of Conferences 245, 06008 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024506008

