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Abstract. ROOT provides, through TMVA, machine learning tools for 
data analysis at HEP experiments and beyond. However, with the rapidly 
evolving ecosystem for machine learning, the focus of TMVA is shifting. 
We present the new developments and strategy of TMVA, which will 
allow the analyst to integrate seamlessly, and effectively, different 
workflows in the diversified machine-learning landscape. Focus is put on a 
fast machine learning inference system, which will enable analysts to 
deploy their machine learning models rapidly on large scale datasets. We 
present the technical details of a fast inference system for decision tree 
algorithms, included in the next ROOT release (6.20). We further present 
development status and proposal for a fast inference interface and code 
generator for ONNX-based Deep Learning models. 

1 Introduction 

The Toolkit for Multivariate Analysis (TMVA) [1] is part of the ROOT Data Analysis 

Framework [2] since 2005. It provides a one-stop solution for the development, deployment 

and validation of machine learning methods for data analysis in the High Energy Physics 

community, long before the gain in popularity in machine learning in the recent years. One 

of the most popular machine learning methods supported by TMVA is the Boosted 

Decision Trees (BDTs), which is widely used in the community for a myriad of analyses 

[3-6]. There have been multiple efforts to implement efficient BDT inference at trigger 

level, such as by CMS at L1 Muon Endcap Trigger [7], Track Trigger [8], and the hls4ml 

group [9]. 

 

With the rapidly evolving machine learning landscape and the rise of popular machine 

learning frameworks supported by large technology companies, the focus of TMVA is 

shifting. Specifically, we aim to provide, within TMVA, methods that allow fast and 

convenient deployment of popular machine learning methods in the production 

environment.  

 

This proceeding presents our recent development in fast inference engine for decision 

trees, discusses its technical features as well as a plan for supporting similar fast inference 

methods for neural network models for deep learning. 

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 245, 06008 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024506008



 

 

 

2 Fast Inference Engine for Decision Trees 

2.1 Introduction 

Decision tree-based algorithms have been widely popular both within the high energy 

physics community and in the data science industry for many years. This is a family of 

machine learning algorithms united by their use of tree-like model with a “test” at a certain 

“cut point” at each of the node of the tree. Some of the most popular decision tree 

algorithms include Boosted Decision Trees (BDTs) and XGBoost [10]. They use different 

strategies during training of the algorithms, but for deployment the structure of the model 

and the logic of the inference is the same. Their deployment thus can be done via a single 

inference engine. 

 

 The ability to deploy such algorithms in a fast and lightweight manner is of particular 

importance for applications in high energy physics. For example, low-latency inference is 

critical for some use cases applying decision-tree algorithms, such as BDT-driven high-

level triggers [11]. Furthermore, in high energy physics the emphasis is usually put on 

event-loop inference rather than batch inference. This means that many of the existing 

inference engines for decision-tree based algorithms, developed by the data science 

industry and focusing on batch inference, might not suit the purpose of high energy physics 

community. 

 

In the following sections we present the techniques used and the results achieved for a 

fast inference engine for decision trees within TMVA. This work was initiated as a CERN 

summer student project by Luca Zampieri [12].  

 

2.2 Just-in-time (JIT) Compilation 

Cling [13], the interactive compiler in ROOT, allows the use of just-in-time compiler for 

compilation. In practice, this means that we can compile hard-coded evaluation logic parsed 

from the decision-tree models. See figure 1 for a code snippet which demonstrates how this 

is done in the TMVA fast decision tree inference engine. Normally without the support of a 

just-in-time compiler, we have to code the generic logic for the inference of a decision-tree 

based algorithm for the C++ static compiler. However, with Cling, it is possible to read the 

model file, parse the tree structure, and compile and run the generated code snippet for 

inference at run time. 
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Fig. 1. Code snippet demonstrating the use of just-in-time compilation for the TMVA fast inference 
engine for decision-tree based algorithm. Conventional generic implementation is presented on the 
left, and the code snippet generated and compiled at runtime after reading the model file and parsing 
the tree is presented on the right. 

The advantage of using the Cling just-in-time compiler in this case is that it allows us to 

exploit the powerful C++ compiler optimization dynamically, that is, at run time. With this 

technique, we are able to demonstrate significant speedup of the inference. The results are 

presented in figure 3, in the next section. 

2.3 ”Branchless” representation of trees 

Another technique that we adopted is the “branchless” representation of trees [14]. Here, 

we “unroll” the tree from linked nodes into a long sequential array, using the array 

representation of binary tree in classical computer science. This of course assumes that the 

tree we are unrolling is a full binary tree, which is certainly not always true for the models 

trained with decision-tree based algorithms. To address this, we fill in the missing values in 

sparse trees to create full binary trees. See figure 2 for an example of this filling procedure, 

as well as a code snippet demonstrating how such an array can be traversed. 

 

Fig. 2. Demonstration of the process that fills a sparse tree into a full tree and its corresponding array 
representation. On the top right is the code snippet for traversing the array representation of the tree. 

 

While this seems to complicate the representation of the model, it has the advantage that 

tree traversal is now a mathematical operation (see the code snippet in figure 2), which is 

cheaper than an if operation. Together with JITting, we discovered that these two 

techniques combined gives rise to significant speedup in inference (see figure 3). While no 

conclusive study has been done on the exact cause of this speedup, we hypothesise that this 

might come from the better branch prediction of CPUs on mathematical operations. 
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Fig. 3. Speedup in inference by adopting the JIT and the branchless representation techniques, in 
comparison to vanilla XGBoost implementation. 

 

The branchless implementation assumes shallow, nearly full trees. If the tree is very 

deep and sparse, this implementation might not perform as well as the conventional 

“branched” (linked nodes) implementation, as it cannot stop early in case of a leaf at a very 

shallow level, having to traverse each level of the tree regardless of the model and the data. 

Figure 4 demonstrates this effect. Fortunately, most decision-tree based machine learning 

algorithms produce shallow, nearly full trees that branchless implementation works well on. 

This is partly due to the fact that with a deep tree the machine learning algorithm is usually 

more prone to overfitting. We will also integrate the branched (linked nodes) 

implementation for deep trees in the future so that the inference engine in TMVA will 

perform optimally regardless of the depth of the tree. 

 

 

 
 

Fig. 4. Performance worsens for branchless implementation for greater depth of the tree, both for the 
jitted and non-jitted versions.  

2.4 Tree ordering 
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Inspired by the exploitation of branch prediction in the branchless implementation, we also 

investigated the effect of changing the ordering of the trees. We ordered the trees such that 

they are evaluated in the order of feature and cut value of the root node. The rationale is 

that it could improve dynamic branch prediction and reduce branch misses. Again, this 

technique achieved significant speedup when coupled with JITting, as demonstrated in 

figure 5. 

 

 
 

Fig. 5. Speedup in inference by adopting the JIT and the tree ordering techniques. 

 

2.5 Loop nest optimization 

Loop nest optimization is another classical optimization technique usually used in compiler 

design. Here, we chunk iteration space (over trees and events) into small blocks. The idea 

behind this technique is that it might improve data and instruction locality, thus potentially 

reducing cache misses. See figure 5 for an example code snippet that demonstrates how 

loop nest optimization is implemented in our decision tree inference engine, and figure 6 

for its speedup with and without JITting. 

 

 

Fig. 6. Speedup in inference by adopting the JIT and the tree ordering techniques, in comparison to 
vanilla XGBoost implementation. 
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Fig. 6. Speedup in inference by adopting the JIT and the loop nest optimization. 

 

Interestingly, here we find that if JITting is not used, then loop nest optimization can 

achieve a speedup. However, with JITting enabled, whether loop nest optimization is used 

does not make a difference on the inference speed, regardless of the batch size. This 

demonstrates that JITting is an effective way to exploit potential of compiler optimization 

at run time that is otherwise not possible. However, for implementations where JITting is 

not available, we demonstrated that loop nest optimization is still helpful in improving the 

inference speed. 

 

2.6 Outlook on potential application to HLT 

A preliminary study into the memory footprint of the Branchless method, running the 

inference of a 100-tree 3-depth XGBoost-trained model on the complete toy Iris dataset 

from scikit learn, suggested a result of 4.58 Mb. For future work, a more comprehensive 

study into the memory footprint from both the Python and C++ interface and for other 

inference implementations pending their integration into TMVA is warranted. A 

comparison study between current implementations used at LHC experiments and the 

methods reported in this proceeding should also be done once this integration is complete, 

so as to give better insights into the potential application of these methods to HLT. 

3 Inference of ONNX Deep Learning Models  

With the rapidly evolving landscape of modern machine learning software tools, TMVA is 

focusing on not only on supporting the inference of traditional machine learning algorithms 

like BDTs, but also deep learning models based on neural networks. Here, we outline a 

future proposal for how TMVA plans to achieve this. 

 

ONNX [15] is an open format for deep learning models. It aims to create a set of open, 

future-proof rules and standards for the definition of deep learning models and 

interoperability of these models between different deep learning frameworks. It currently 

supports most of the popular deep learning operators and layers, and there are convertors 

available for the conversion of models files produced from major deep learning framework 

into ONNX format. 

 

In parallel, an open source inference engine based on ONNX standard, named ONNX 

Runtime, is developed. It is supported by the Microsoft open source and in fast 
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development. Highly optimised for low-latency inference, it supports multiple backends 

and optimization methods. 

 

While there has already been some success at integrating ONNX Runtime into the 

analysis frameworks of some of the large experiments at CERN, the goal of TMVA in this 

area is not to directly compete with it. Instead, we propose an inference engine based on the 

code generator model. It would take ONNX models as input and compiles it into a piece of 

static C++ code providing functional APIs for the inference of the model. See figure 7 for a 

demonstration of this process. The user would train their deep learning models in a Python-

based, GPU-dominated environment, convert the trained model into ONNX Models. As the 

next step, TMVA will convert the ONNX Model into a snippet of C++ code, ready for 

deployment in the C++ production environment. 

 

 

Fig. 7. Proposed work process for deploying deep learning models in C++ analysis frameworks with 
TMVA 

 

Compared with the use of ONNX Runtime, this approach has the advantage of having 

minimal external dependency. In cases where the neural network is only a relatively small 

and simple part of the entire analysis workflow, it gives users the option to keep the 

inference code in-house instead of adding external dependency. 

 

Currently, we have completed the ONNX operator-based infrastructure. We are able to 

explore and manipulate ONNX models, paving the road for potential future customized 

optimization of the models specifically for high energy physics purposes. We plan to 

further develop this with the code generation component and trial it in a few months. This is 

an ongoing work, and the ROOT/TMVA team warmly welcomes any request, suggestion, 

recommendation or complaint over this topic. 
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