EPJ Web of Conferences 245, 06019 (2020) https://doi.org/10.1051/epjconf/202024506019
CHEP 2019

Machine Learning with ROOT/TMVA

Kim Albertsson'2, Sitong An'3, Sergei Gleyzer*, Lorenzo Moneta!, Joana Niermann', Stefan
Wunsch">* Luca Zampieri', and Omar Andres Zapata Mesa'

'CERN

Lulea University of Technology
3Carnegie Mellon University
4University of Alabama
SKarlsruhe Institute of Technology

Abstract. ROOT provides, through TMVA, machine learning tools for data
analysis at HEP experiments and beyond. We present recently included features
in TMVA and the strategy for future developments in the diversified machine
learning landscape. Focus is put on fast machine learning inference, which en-
ables analysts to deploy their machine learning models rapidly on large scale
datasets. The new developments are paired with newly designed C++ and
Python interfaces supporting modern C++ paradigms and full interoperability
in the Python ecosystem. We present as well a new deep learning implemen-
tation for convolutional neural network using the cuDNN library for GPU. We
show benchmarking results in term of training time and inference time, when
comparing with other machine learning libraries such as Keras/Tensorflow.

1 Introduction

The ROOT data analysis toolkit [1] provides, through TMVA [2], a large amount of machine-
learning methods for data analysis in HEP (high-energy particle physics) and beyond, which
are collected in the package since 2005. Boosted decision trees (BDTs) have been a popu-
lar choice until today, for example as important tool contributing to the Higgs discovery in
2012 [3-6]. However, since early in the decade of 2010, the rise of modern neural network
architectures changed the field rapidly, for example visible in the improvements achieved in
the ILSVRC challenge [7]. Not only did the academic field change, due to the applicability of
these methods in industry, the software landscape evolved quickly and is today dominated by
products maintained by large technology companies [8—10]. These modern machine-learning
methods and software tools have been adopted by the HEP community since early on [11]
and is today successfully in production, for example in the CMS DeeplJet tagger [12] or the
ATLAS quark-gluon tagger [13].

This work presents the new developments in ROOT/TMVA and discusses how the project
positions itself in the machine-learning landscape of today.

*e-mail: stefan.wunsch@cern.ch

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 245, 06019 (2020) https://doi.org/10.1051/epjconf/202024506019
CHEP 2019

2 Interoperability with the machine learning ecosystem

Because of the recent explosion in research on machine-learning methods, the pace of novel
developments has seen a rapid increase. This imposes a high work load on library maintainers
implementing these methods, as they have to keep up with the fast development cycles. The
requirements in terms of person power to stay up-to-date can only be managed by large
technology companies, which differs significantly from the situation before the rise of modern
neural network architectures.

This changes the focus of ROOT/TMVA for modern neural network architectures from
providing the algorithms itself to being the glue between the third-party machine learning
libraries and the software environment in HEP experiments. Interoperability with the machine
learning ecosystem is achieved by supporting the common data interface for these packages,
namely NumPy arrays in Python [14]. Since the data used in HEP analysis is commonly
stored in ROOT files, the crucial feature for interoperability with machine learning packages
is the conversion of this disk format to that of in-memory NumPy arrays. The functionality
of the machine learning libraries is then fully accessible for analysis. ROOT implements
this feature on top of the RDataFrame [15] infrastructure with the method AsNumpy, which
allows the analyst to perform computational expensive preprocessing of the data in compiled
C++ code and load only the required data to memory. See figure 1 for a code example which
shows the loading of data from a ROOT file to memory and subsequently pushing the data to
common Python based data analysis facilities such as Pandas [16].

Heavy-1lifting in C++ and remote access of data

df = ROOT.RDataFrame("Events", "http://file.root")
.Filter("x1 > 0")
.Define("x3", "x1 * x2")

Read-out as numpy arrays

vars = ("x1", "x2", "x3")
cols = df.AsNumpy(vars)

Create typical ML input data structure
x = numpy.stack([cols[v] for v in vars])

Push data to scipy ecosystem
pdf = pandas.DataFrame(cols)

Figure 1. Usage of the AsNumpy feature as part of the RDataFrame infrastructure to load data in ROOT
files to memory as NumPy arrays.

The feature is available in ROOT since version 6.18. Moreover, we provide in the exper-
imental Python bindings for ROOT the feature to write data from NumPy arrays to ROOT
files with the factory function MakeNumpyDataFrame. More details can be found in [17].

3 Modernization of TMVA

Because the primary design decisions for TMVA were taken around 2005, the package is
missing features expected by modern software. First, the interfaces do not seamlessly support
common C++ data containers such as std: :vector but requires handling of raw pointers
to data in memory, which, for example, complicates ownership in modern C++. Second,
the API does not ensure thread-safety, which is highly important in today’s computing envi-
ronments and for data analysis with steadily increasing dataset sizes. The new API design

EPJ Web of Conferences 245, 06019 (2020) https://doi.org/10.1051/epjconf/202024506019
CHEP 2019

for TMVA follows concepts of the sklearn API [18] and strives for elements of functional
programming such as pure functions with no internal state to support thread-safety and code
correctness. Figure 2 shows an example workflow constructing a BDT from existing model
parameters and the application on data in C++. The new RTensor class serves as a NumPy-
like container for multi-dimensional arrays in C++ as long as the C++ standard does not
provide a comparable container. The introduction of such a container in the standard is under
discussion in the study group 19 of the ISO C++ committee [19]. In Python, the API fully
supports NumPy arrays as replacement for the RTensor class to allow seamless interoper-
ability with the machine learning ecosystem.

// Construct model
TMVA: :RBDT bdt("myBDT", "model.root");

// Single-event inference
auto y = bdt.Compute({1.06, 2.0, ...});

// Batch inference
TMVA: :RTensor<float> x(data, shape);
auto y2 = bdt.Compute(x);

Figure 2. Example for the modernized TMVA interfaces in C++

Further modernization is performed by integrating the new TMVA features closely with
ROOT’s modern facilities for parallelism and data processing. Due to thread-safety, the im-
plicit multi-threading paradigm in ROOT is fully supported and we provide native interfaces
for the model inference in RDataFrame workflows such as shown in figure 3.

// Run workflow on multiple threads
ROOT : :EnableImplicitMT();

// Construct model
TMVA: :RBDT bdt("myBDT", "model.root");

// Process data in parallel using RDataFrame
ROOT: :RDataFrame df("Events", "file.root");
auto df2 = df.Define("bdt_output”
TMVA: :Compute<2, float>(bdt),
{"var1", "var2"});

Figure 3. Usage of new TMVA interfaces together with RDataFrame workflows

The feature is in an experimental stage and available with the ROOT release 6.20.

4 Fast decision tree inference

Following the change of strategy for TM VA such as discussed in section 2, new developments
focus less on the training of models but the integration of machine-learning in the data anal-
ysis workflow. Besides moving data from ROOT files to a readable format in memory, this
includes the application of machine-learning models in data analysis workflows provided by
ROOT. A crucial feature for the inference of such models on large datasets is the performance

EPJ Web of Conferences 245, 06019 (2020) https://doi.org/10.1051/epjconf/202024506019
CHEP 2019

in terms of runtime. While thread-safety is important to parallelize efficiently the full work-
flow, a fast inference is key to speed up the data analysis further. Therefore, TMVA aims to
provide fast inference facilities for commonly used machine-learning methods starting with
BDTs.

The TMVA workflow is modularized to allow training of models externally, for example
with XGBoost [20] for BDTs, and the subsequent application using the inference implemen-
tation of TMVA. For the BDT inference, we provide an inference engine, which is thread-
safe, zero-copy and fully accessible in C++ and Python. For the implementation, we take care
to ensure minimal latency for an efficient event-by-event inference since this is important in
online systems like triggers or in branched data analysis workflows, which cannot gain from
batch computation. Figure 4 shows this workflow using XGBoost for training and TM VA for
the application in C++ and Python.

C++ application

TMVA: :RBDT bdt("myBDT", "model.root");
auto y1 = bdt.Compute({1.0, ...});

External training and model conversion auto x = TMVA: :RTensor<float>(data, shape);

xgb = xgboost.BDTClassifier(options) auto y2 = bdt.Compute(x);

xgb.fit(x, y)
ROOT .TMVA .SaveXGBoost(xgb, "myBDT", "model.root") Python app|ication

bdt = ROOT.TMVA.RBDT("myBDT", "model.root")
X = numpy.array(...)
y = bdt.Compute(x)

Figure 4. TMVA workflow with externally trained model and application in C++ and Python

Figure 5 shows the runtime for XGBoost and two different BDT inference backends.
Since ROOT comes with the C++ interpreter cling [21], we are able to just-in-time compile
(jit) code at runtime, which is useful for the optimization of inference code to static runtime
parameters such as the depth of the trees. TMVA provides two backends, one which com-
piles the inference code using cling and a second backend computing the predictions without
jitting. Using jitting, TMVA is able to perform the inference up to six times faster than XG-
Boost. We expect further improvements by parallelizing the batched inference on multiple
threads, which is a target of future developments.

Full technical details can be found in [22]. The feature is in experimental stage and
available with the ROOT release 6.20.

5 Fast neural networks

TMVA is investigating the implementation of a fast inference engine for neural networks.
We have already shown [23] that a specialized implementation for dense neural networks can
outperform commonly used setups like TensorFlow [8] interfaced by Keras [24] in terms of
training and application time. Further investigations have been done by benchmarking the
implementation of convolutional neural networks in TMVA. The backend in TMVA is using
similar to TensorFlow the library CuDNN [25], which implements primitives for modern neu-
ral network architectures for GPU, though we are able to reduce the time spent for training
and application for small batch sizes and architectures. Figure 6 shows that TensorFlow has
an overhead for smaller computations and both implementations converge to the same run-
time for larger batches when the processing time is dominated by CuDNN. We interpret these

EPJ Web of Conferences 245, 06019 (2020) https://doi.org/10.1051/epjconf/202024506019
CHEP 2019

T XGBoost
New BDT inference
T New BDT inference (jitted)

e
(2]
T

Time / eventin 10°s
A
(2] (o] o N B
S M NN AN, M

EN
T

N
T

10 10°

o

6
Number of e1v%nts

Figure 5. Benchmark of fast BDT inference in TMVA using model with 500 trees, maximum depth of
three and ten input variables

results to mean that the larger complexity of TensorFlow comes at the cost of an increased
overhead for issuing small computations and that TensorFlow is optimized for large machine
learning models such as studied in most of the recent literature.

The fast inference of smaller neural network models is interesting in production, for ex-
ample for real-time applications such as triggers or applications in data analysis with reduced
complexity. In these cases, the minimal latency implementation such as presented above has
a large impact on the performance. Further, TMVA can provide full C++ support, which is
usually the language of choice for the internals of experiment frameworks. The long-term
support for such a feature is currently under investigation.

Inlﬁerence time - images: 32x32 - 4 Conv. layers 12x(3x3) Training time - image: 32x32 - 4 Conv. layers 12x(3x3)
x10

160
140
120
100
80
60

—e— TMVA (CuDNN)
—e— TMVA (CPU)

—e— Keras (Tensorflow)

—e— TMVA (CuDNN) 50000
—e— TMVA (CPU)

—e— Keras (Tensorflow)

40000

30000

20000
40
20

Processed events/second

Application
Training
Processed events/second

10000

T[T T T[T T T
ST T T T T T T T T T T T T LTI

> ?) > 2 J

0 10° 10° 20 30 40 10?2 2x10? 10°
Batch Size Batch Size

Figure 6. Benchmark of the convolutional NN in TMVA versus TensorFlow interfaced by Keras for
training and application

6 Outlook

ROOT/TMVA continues to invest into supporting analysts applying machine learning in data
analysis at HEP experiments and beyond. Due to the diversified landscape in machine learn-

EPJ Web of Conferences 245, 06019 (2020) https://doi.org/10.1051/epjconf/202024506019
CHEP 2019

ing, we adapt by shifting the focus of future developments towards interoperability with the
growing ecosystem outside ROOT and fast inference of machine learning models. Interoper-
ability is provided by the feature to efficiently load data from ROOT files to NumPy arrays,
which satisfies the data interface of most machine learning software. Moreover, modernized
interfaces for TMVA allow to interact seamlessly in Python and C++ with common data
containers. New features for fast inference are studied and we show for models of boosted
decision trees and convolutional neural networks a significant increase in performance for
relevant tasks in HEP data analysis.

References

[1] R. Brun, F. Rademakers, ROOT - An object oriented data analysis framework (1997)

[2] A. Hoecker, P. Speckmayer, J. Stelzer, J. Therhaag, E. von Toerne, H. Voss, M. Backes,
T. Carli, O. Cohen, A. Christov et al., TMVA - Toolkit for Multivariate Data Analysis
(2007), physics/0703039

[3] S. Chatrchyan et al. (CMS), Phys. Lett. B710, 403 (2012), 1202. 1487

[4] The ATLAS collaboration, Evidence for Higgs Boson Decays to the 1~ Final State
with the ATLAS Detector (2013)

[5] S. Chatrchyan, V. Khachatryan, A. Sirunyan, A. Tumasyan, W. Adam, E. Aguilo,
T. Bergauer, M. Dragicevic, J. Ero, C. Fabjan et al., Physics Letters B 716, 30-61
(2012)

[6] G. Aad, T. Abajyan, B. Abbott, J. Abdallah, S. Abdel Khalek, A. Abdelalim, O. Abdi-
nov, R. Aben, B. Abi, M. Abolins et al., Physics Letters B 716, 1-29 (2012)

[7] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein et al., International Journal of Computer Vision (IJCV) 115,
211 (2015)

[8] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard et al., TensorFlow: A system for large-scale machine learning (2016)

[9] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga et al., PyTorch: An Imperative Style, High-Performance Deep
Learning Library (2019)

[10] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, Z. Zhang,
MXNet: A Flexible and Efficient Machine Learning Library for Heterogeneous Dis-
tributed Systems (2015), 1512.01274

[11] P. Baldi, P. Sadowski, D. Whiteson, Nature Communications 5 (2014)

[12] M.S. and, Journal of Physics: Conference Series 1085, 042029 (2018)

[13] Quark versus Gluon Jet Tagging Using Jet Images with the ATLAS Detector (2017),
http://cds.cern.ch/record/2275641

[14] S. Van Der Walt, S.C. Colbert, G. Varoquaux, Computing in Science & Engineering 13,
22 (2011)

[15] D. Piparo, P. Canal, E. Guiraud, X. Pla, G. Ganis, G. Amadio, A. Naumann, E. Tejedor,
EPJ Web of Conferences 214, 06029 (2019)

[16] W. McKinney, Data structures for statistical computing in python (2010)

[17] E.T. Saavedra, S. Wunsch, M. Galli, A new PyROOT: Modern, Interoperable and more
Pythonic, Proceedings CHEP 2019 (2019)

[18] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Niculae,
P. Prettenhofer, A. Gramfort, J. Grobler et al., API design for machine learning soft-

EPJ Web of Conferences 245, 06019 (2020) https://doi.org/10.1051/epjconf/202024506019
CHEP 2019

ware: experiences from the scikit-learn project, in ECML PKDD Workshop: Languages
for Data Mining and Machine Learning (2013), pp. 108-122

[19] The Standard C++ Foundation, https://isocpp.org/

[20] T. Chen, C. Guestrin, XGBoost: A Scalable Tree Boosting System, in Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (ACM, New York, NY, USA, 2016), KDD ’16, pp. 785-794, ISBN 978-1-4503-
4232-2, http://doi.acm.org/10.1145/2939672.2939785

[21] V. Vasilev, P. Canal, A. Naumann, P. Russo, Journal of Physics: Conference Series 396,
052071 (2012)

[22] K. Albertsson, L. Moneta, S. An, S. Wunsch, Fast Inference for Machine Learning in
ROOT/TMVA, Proceedings CHEP 2019 (2019)

[23] K. Albertsson, S. Gleyzer, M. Huwiler, V. Ilievski, L. Moneta, S. Shekar, V. Estrade,
A. Vashistha, S. Wunsch, O. Mesa, EPJ Web of Conferences 214, 06014 (2019)

[24] F. Chollet et al., Keras, https://keras.io (2015)

[25] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, E. Shelhamer,
CoRR abs/1410.0759 (2014), 1410.0759

