EPJ Web of Conferences 245, 06041 (2020) https://doi.org/10.1051/epjconf/20202450604 1
CHEP 2019

Hybrid analysis pipelines in the REANA reproducible anal-
ysis platform

Diego Rodriguez', Rokas Matiulaitis', Jan Okraska', and Tibor Simko'-*
ICERN, Geneva, Switzerland

Abstract. We introduce the feasibility of running hybrid analysis pipelines in
the REANA reproducible analysis plattorm. The REANA platform allows re-
searchers to specify declarative computational workflow steps describing the
analysis process and to execute analysis workload on remote containerised com-
pute clouds. We have designed an abstract job controller component permitting
to execute different parts of the analysis workflow on different compute back-
ends, such as HTCondor, Kubernetes and SLURM. We have prototyped the
designed solution including the job execution, job monitoring, and input/output
file staging mechanism between the various compute backends. We have tested
the prototype using several particle physics model analyses. The present work
introduces support for hybrid analysis workflows in the REANA reproducible
analysis platform and paves the way towards studying underlying performance
advantages and challenges associated with hybrid analysis patterns in complex
particle physics data analyses.

1 Introduction

REANA is a reproducible analysis platform that allows researchers to run containerised anal-
ysis workflows on remote compute clouds [1]. It was developed within the wider context of
CERN analysis preservation and reuse framework [2]. The researcher describes (i) the input
data, (ii) the analysis code, (iii) the computing environment and depending libraries, and (iv)
the computational workflow steps used to perform the analysis. The REANA platform will
take care of instantiating thusly containerised analysis on supported compute backends. See
Figure 1.

The main compute backend for analysis jobs in the REANA platform is the Kubernetes
cloud. We have recently added support for dispatching high-throughput jobs to the HTCondor
platform [5]. Starting from the job abstractions designed for the HTCondor compute backend,
this paper describes recent developments allowing to send high-performance jobs to the Slurm
platform. This enables to run hybrid analysis workflows where some part of the analysis
pipeline are run on Kubernetes, some on HTCondor, and some on Slurm compute backends.

The developed integration with the Slurm compute backend is described in Section 2.
The hybrid analysis pipeline concept together with a simple analysis example is presented
in Section 3. The advantages and disadvantages of hybrid declarative analysis approach are
briefly discussed in Section 4.

*e-mail: tibor.simko@cern.ch

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 245, 06041 (2020) https://doi.org/10.1051/epjconf/20202450604 1

CHEP 2019

scientist
1. input data?
2. analysis code?

3. compute environment?
4. analysis workflow?

monitor

.. workflow
engines

A

............... REANA
shared
storage],
@ ceph 4 en:I:;trin'r:eents
compute clouds r
& ©
slurm y
miam Q File system
HIConadr

Figure 1. A schematic representation of REANA platform taking user inputs, code, environment and
workflow defintion for executing analysis pipeline using various workflow systems (such as CWL [3]
and Yadage [4]) on various compute backends (such as Kubernetes, HTCondor, Slurm).

2 Slurm compute backend

REANA platform consist of several components with separated concerns and responsibilities
in instantiating and executing user workflows as a set of orchestrated runtime computing
jobs. REANA-Job-Controller is responsible for executing and managing individual jobs.
It takes inputs, container image and commands to run, prepares the payload and dispatches it
to the Kubernetes backend for execution. The job controller uses REST API technology for
communication with other components.

The current REANA-Job-Controller REST API was redesigned to ease integration of
external compute backends for job execution [5]. The designed solution allowed to extend
REANA job execution capabilities with external compute backends such as HTCondor for
high-throughput computing.

The redesigned REANA-Job-Controller abstraction concerns job submission and exe-
cution, job status monitoring and the input/output data transfer between REANA platform and
remote compute backends. Each supported backend can easily customise common interface.
Figure 2 shows the abstract job manager class and its three implementations.

In this paper we have developed the Slurm compute backend integration. The typical
job submission to Slurm HPC cluster is done from the head node. To allow communica-
tion between REANA and Slurm clusters, we have designed an ssh-based communication
mechanism which establishes a connection used for job input/output transfer via SFTP, job
submission, and job monitoring. The Singleton design pattern helps to ensure that only one
connection per workflow is established in order to economise resources. The ssh connec-
tion to the Slurm head node is authenticated in a passwordless manner by making use of the
Kerberos technology from user-provided secrets.

The Slurm cluster that was used for testing REANA < Slurm extension does not support
Docker due to security concerns. In HPC centres, Singularity container technology is more
widely used. Singularity provides a mechanism to convert Docker images and run containers

EPJ Web of Conferences 245, 06041 (2020)

CHEP 2019

https://doi.org/10.1051/epjconf/20202450604 1

Figure 2. The abstract REANA-Job-Controller component interface designed to allow job execution
and monitoring for multiple supported compute backends. [5]

JobManager

+ docker_image: str
+ cmd: str

+ env_vars: dict
+job_id: str

+ workflow_uuid: str
+ job_name: str

+ execute()

+stop()

+ get_status()

+ get_logs()

+ execution_hook()

+ _create_job_in_db()
+ _cache_job()

+ _update_job_status()

+ workflow_uuid: str

+ job_name: str

+ compute_backend: str
+ cvmfs_mounts: str

+ shared_file_syste: bool

+ execute()
+stop{)

+ _add_shared_volume()

DAG workflow

REANA Cluster

+ workflow_uuid: str
+ job_name: str
+ compute_backend: str

KubernetesJobManager HTCondorJobManager SlurmJobManager
+ docker_image: str + docker_image: sir + docker_image: str
+ cmd: str +cmd: str + cmd: str
+ env_vars: dict +env_vars: dict + env_vars: dict
+ job_id: str + job_id: str + job_id: str

+ workflow_uuid: str
+ job_name: str
+ compute_backend: str

+ execute()

+stop)

+ authenticate()

+ spool_output{)
+get_logs()
+find_job_in_history()
+ _submit()

+ _get_schedd()

Warkflow
engine

Job “¢-
controller [« - -\ =%

SSH connection

+ execute()
+stop()

Slurm compute
backend

Kubernetes Slurm

Figure 3. The typical interaction between REANA platform (running on Kubernetes) and Slurm com-
pute backend (if a job is dispatched there).

in that way. The payload that is being sent to the Slurm cluster was therefore wrapped to
generate Singularity execution command.

The typical communication scenario between the REANA cluster running on Kubernetes
and the Slurm job execution backend cluster is presented in Figure 3. A code example imple-
menting job Slurm job submission, illustrating implementation of the execute () method of
the abstract REANA-Job-Controller interface, is illustrated in Figure 4.

The REANA-Job-Controller component was thusly enriched to provide full support for
running payloads on Slurm computed backend using Singularity container technology. The

EPJ Web of Conferences 245, 06041 (2020) https://doi.org/10.1051/epjconf/20202450604 1
CHEP 2019

@JobManager.execution_hook
def execute(self):
"""Execute / submit a job with Slurm.
self.cmd = self._encode_cmd(’ ’.join(self.cmd))
initialize_krb5_token(workflow_uuid=self.workflow_uuid)
self.slurm_connection = SSHClient(
hostname=SlurmJobManagerCERN.SLURM_HEADNODE_HOSTNAME,
port=SlurmJobManagerCERN.SLURM_HEADNODE_PORT,

)

self._transfer_inputs()
self._dump_job_file()
self._dump_job_submission_file()

stdout = self.slurm_connection.exec_command (

’cd {} && sbatch --parsable {}’.format(
SlurmJobManagerCERN.SLURM_WORKSAPCE_PATH,
self.job_description_file))

backend_job_id = stdout.rstrip()
return backend_job_id

Figure 4. The Slurm job submission code example consists of encoding executable command to ensure
escaping of special shell characters, Kerberos token initialization, establishing an SSH connection,
transferring inputs, generating job submission files, and submission of a job. Implements execute()
method of the abstract JobManager class presented in Figure 2.

development was tested using CERN Slurm cluster. The following section will provide one
concrete example of a hybrid workflow.

3 Hybrid analysis pipelines

The integration of REANA with the external HTCondor and Slurm compute backend plat-
forms opens up a possibility for users to execute their analysis in hybrid manner, with differ-
ent parts of computational workflow tree being executed on different compute clouds.

Let us use the CMS open data Higgs-to-four-lepton analysis example [6] for illustration.
The analysis workflow is presented in Figure 5 and is composed of three steps. The initial
two steps are parallel, processing collision data and simulated data, and are followed by the
third final step which merges the results and produces the final plot. The different steps could
be dispatched to different compute backends depending on different factors assessed by the
user or by the system: a certain compute backend may be more suitable for a certain task,
e.g. HTCondor for high-throuput calculations and Slurm for high-performance calculations;
or various users may have various lower or higher priorities for certain compute backends.

Let us look at how this computational workflow, consisting of three steps, is expressed in
REANA using the CWL workflow definition language. Figure 6 displays the core part of the
workflow. As can be seen, the researcher needs to specify, in a declarative way, each step of
the workflow with its inputs, outputs, and whether some steps depend on other steps. Note
the use of the compute_backend hint which allows the user to specify the desired compute
backend for each step of the workflow.

EPJ Web of Conferences 245, 06041 (2020) https://doi.org/10.1051/epjconf/20202450604 1
CHEP 2019

A

Figure 5. A Higgs-to-four-lepton physics analysis example using CMS open data. [6]. Note two parallel
steps, analysing collision and simulated datasets; the results are then combined to make final plot.

analyse_data DoubleMuParked2012C_10000_Higgs. mofE

make_plot —» - r

analyse_me |—» Higgs4L 1fife.root

steps:
analyse_data:
run: analyse_data.cwl
hints:
reana:
compute_backend: slurmcern
out: [DoubleMuParked2012C_10000_Higgs.root]
analyse_mc:
run: analyse_mc.cwl
hints:
reana:
compute_backend: htcondorcern
out: [Higgs4Llfile.root]
make_plot:
run: make_plot.cwl
hints:
reana:
compute_backend: kubernetes
in:
DoubleMuParked2012C_10000_Higgs: >
analyse_data/DoubleMuParked2012C_10000_Higgs.root
Higgs4L1file: >
analyse_mc/Higgs4L1lfile.root
out: [mass4l_combine_userlvl3.pdf]

Figure 6. The workflow definition corresponding to the Higgs-to-four-lepton example analysis from
Figure 5. Note the compute_backend hint provided by the user as to where each stop of the analysis is to
be run. Each workflow step runs on different compute backend in this example. The REANA platform
takes care of orchestrating jobs and moving inputs/outputs between platforms, as needed.

4 Declarative vs imperative analysis paradigm

The interconnection and orchestration of jobs running over different batch systems is a diffi-
cult task which is abstracted by the REANA platform, giving the user the choice of expressing
‘what’ the user wants to do, rather than requiring the user to write low-level glue code ‘how’
to do it. As we have seen in Figure 6, the choice of the compute backend was specified on
one line. The declarative approach to data analyses is not only simplifying analysis code, as

EPJ Web of Conferences 245, 06041 (2020) https://doi.org/10.1051/epjconf/20202450604 1
CHEP 2019

there is no need to write specific orchestration details for each backend, but it also makes it
easier to switch from one compute platform to another.

In order to appreciate this point, let us briefly have a look at how the REANA < Slurm
integration works. Firstly, the REANA system will launch jobs on the underlying compute
backends in the name of the user. This requires to handle user authentication (using e.g.
Kerberos) with possible reauthentications for longer running jobs. Secondly, the REANA
system needs to translate job specifications for each backend, using their own language. In
the example of Figure 5, the analyse_data step will run in HTCondor, analyse_mc in Slurm
and make_plot in Kubernetes, each using different job submission protocols. Thirdly, each
compute backend may have their own file storage systems. REANA needs to take care of
staging in the input files and staging out the output files generated by each step. Last but not
least, REANA also abstracts the task of status reporting, providing updates about job progress
in a uniform manner for all three backends. If the user would like to use some computing
platform without proper abstractions, all these tasks would have to be managed directly by
the user.

The separation of “declarative” analysis programming from “imperative” orchestration of
computing tasks allows researchers to focus fully on physics and leave mundane computing
tasks to the workflow platform. The declarative programming approach thusly facilitates
the understanding of the research pipeline and the portability of its various steps to different
compute backends.

The hybrid analysis approach allows to take full advantage of different compute backends
that are at the user’s disposal. However, the penalty inherent in possible file transfer between
compute backends is to be carefully considered; staging-in and staging-out of large files
in between compute farms may unnecessarily penalise the user. The declarative analysis
approach allows to rapidly test the pros and cons and the hybrid overhead for each particular
analysis scenario.

5 Conclusions

We have enriched the REANA reproducible analysis platform with a possibility to run hy-
brid analysis pipelines. We have added support for dispatching jobs to the Slurm compute
backend system that is widely used in HPC clusters. The present work enables users to run
their analysis workflows on containerised Kubernetes clouds, on high-throughput HTCondor
compute platform, and high-performance Slurm compute backends. The user can select a
different desired compute backend for each task by providing a compute backend hint decla-
ration to the workflow language. The workflow hints are then automatically handled by the
REANA workflow orchestration system to dispatch jobs to various backends and to stage-
in and stage-out the job inputs and outputs. The abstraction of the job orchestration allows
to separate high-level physics analysis code from low-level compute platform orchestration
code. We have described one example of a hybrid analysis workflow using the CMS open
data Higgs-to-four-lepton analysis example. A detailed performance comparison of hybrid
approach for complex physics analyses will be part of a future work.

References
[1] T. Simko, L. Heinrich, H. Hirvonsalo, D. Kousidis, D. Rodriguez, “REANA: A sys-

tem for reusable research data analyses”, EPJ Web of Conferences 214, 06034 (2019),
https://doi.org/10.1051/epjconf/201921406034

EPJ Web of Conferences 245, 06041 (2020) https://doi.org/10.1051/epjconf/20202450604 1
CHEP 2019

[2] X. Chen, S. Dallmeier-Tiessen, R. Dasler, S. Feger, P. Fokianos, J. .B. Gonza-
lez, H. Hirvonsalo, D. Kousidis, A. Lavasa, S. Mele, D. Rodriguez, T. Simko,
T. Smith, A. Trisovic, A. Trzcinska, I. Tsanaktsidis, M. Zimmermann, K. Cran-
mer, L. Heinrich, G. Watts, M. Hildreth, L. Lloret Iglesias, K. Lassila-
Perini, S. Neubert, “Open is not enough“, Nature Physics 15 113-118 (2019).
https://www.nature.com/articles/s41567-018-0342-2

[3] P. Amstutz, M. R. Crusoe, N. Tijani¢ (editors), B. Chapman, J. Chilton, M. Heuer,
A. Kartashov, D. Leehr, H. Ménager, M. Nedeljkovich, M. Scales, S. Soiland-Reyes,
L. Stojanovic, “Common Workflow Language, v1.0” Specification, Common Workflow
Language working group, https://doi.org/10.6084/m9.figshare.3115156.v2

[4] K. Cranmer, L. Heinrich, “Yadage and Packtivity — analysis preservation using
parametrized workflows”, arXiv:1706.01878

[5] R. Maciulaitis, P. Brenner, S. Hampton, M. Hildreth, K. Hurtado Anapama, I. John-
son, C. Kankel, J. Okraska, D. Rodriguez, T. Simko, "Support for HTCondor high-
throughput computing workflows in the REANA reusable analysis platform”, 15th
IEEE eScience 2019 conference, San Diego, United States, 24-27 September 2019.
CERN-IT-2019-004. http://cds.cern.ch/record/2696223

[6] N. Z. Jomhari, A. Geiser, A. A. Bin Anuar, "Higgs-to-four-lepton anal-
ysis example using 2011-2012 data", CERN Open Data Portal, 2017.
DOI:10.7483/0PENDATA.CMS.JKB8.RR42

