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Abstract

Many new physics models, including versions of supersymmetry characterized by
R-parity violation (RPV), compressed mass spectra, long decay chains, or additional
hidden sectors, predict the production of events with top quarks, low missing trans-
verse momentum, and many additional quarks or gluons. The results of a search
for new physics in events with two top quarks and additional jets are reported. The
search is performed using events with at least seven jets and exactly one electron or
muon. No requirement on missing transverse momentum is imposed. The study
is based on a sample of proton-proton collisions at

√
s = 13 TeV corresponding to

137 fb−1 of integrated luminosity collected with the CMS detector at the LHC in 2016–
2018. The data are used to determine best fit values and upper limits on the cross
section for pair production of top squarks in scenarios of RPV and stealth supersym-
metry. Top squark masses up to 670 (870) GeV are excluded at 95% confidence level
for the RPV (stealth) scenario, and the maximum observed local signal significance is
2.8 standard deviations for the RPV scenario with top squark mass of 400 GeV.
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1 Introduction
Supersymmetry [1, 2] (SUSY) is an extension of the standard model (SM) that may provide a
solution to the gauge hierarchy problem [3]. In the SUSY framework, quadratically divergent
radiative corrections to the Higgs boson mass parameter, dominated by loops involving the top
quark, are canceled by loops with bosonic top quark superpartners (top squark, t̃ ). To avoid
fine tuning, the lightest t̃ and the superpartners of the Higgs bosons (higgsinos) must have
masses near the weak scale [3–8], and could therefore have nonnegligible production cross
sections at the CERN Large Hadron Collider (LHC).

Most searches for the t̃ look for an excess of events with large missing transverse momentum
pmiss

T originating from the undetected lightest SUSY particle (LSP) produced in t̃ decays. It is
typical in these searches to assume that the LSP is the lightest neutralino χ̃0

1, which is stable if
R-parity [9] is conserved. However, it has been shown [10–12] that this search strategy is not
sensitive to well-motivated SUSY models that predict signatures with low pmiss

T in models with
gauge mediated SUSY breaking [13], compressed mass spectra [14, 15], hidden valleys [16], or
other mechanisms. As searches performed at the LHC using events with high pmiss

T set ever
more stringent lower bounds on the t̃ mass [17–22], searches for low-pmiss

T alternatives become
increasingly important.

Models of R-parity violating (RPV) SUSY produce low-pmiss
T signatures by providing a mech-

anism for the LSP, in this case χ̃0
1, to decay. Among other couplings, RPV SUSY includes a

trilinear Yukawa coupling between quarks and squarks that allows the χ̃0
1 to decay into three

quarks via an off-shell squark [9]. These couplings are typically referred to as λ′′ijk where i, j,
and k specify the generations of the participating (s)quarks. The benchmark RPV model used
in this analysis is illustrated in Fig. 1. The t̃ decays in the typical way into a top quark and a χ̃0

1,
and the χ̃0

1 undergoes an RPV decay via nonzero λ′′112 into three light-flavor quarks, χ̃0
1 → uds.

However, since this analysis does not distinguish between jets originating from quarks of the
first and second generation, our results are more broadly applicable to any RPV model with
coupling λ′′abc with a, b, c ∈ {1, 2}.

Stealth SUSY models [12, 23, 24] introduce a new hidden “stealth” sector of light particles with
small or absent couplings to the SUSY breaking sector and finite couplings to the visible sector.
Because of the weak connection to the SUSY breaking sector, SUSY is approximately conserved
in the stealth sector, resulting in stealth particles that are nearly mass-degenerate with their
superpartners. Production and decay of stealth particles via interactions with visible particles
can be achieved through a variety of “portals” including mediation by the Higgs boson or new
particles at a higher mass scale. The benchmark stealth SUSY model used in the interpretation
of the results of this search (stealth SYY) [24] assumes a minimal stealth sector containing only
one scalar particle S with even R-parity and its superpartner S̃, both of which are singlets
under all SM interactions, and a portal mediated by loop interactions involving a new vector-
like messenger field (Y), the gluon (g), χ̃0

1, S, and S̃. Decays of the t̃ in the stealth SYY model
are illustrated in Fig. 1. Each t̃ decays to a gluon, top quark, and S̃, with subsequent decays
of S̃ to S and a gravitino G̃ and S to jets via S → gg. Because of the small mass splitting
between the S and S̃, as well as the small G̃ mass, the undetected G̃ carries away very little
momentum. Thus, the stealth SYY model shares the general feature of all stealth SUSY models
in that it naturally produces a low-pmiss

T signature without R-parity violation or a special tuning
of sparticle masses.

The RPV and stealth SYY models are characterized by the masses of the particles and branching
fractions in the decay chain. In the benchmark RPV model, we take the χ̃0

1 mass to be 100 GeV.
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Figure 1: Diagrams of top squark pair production with decays to top quarks and additional
light-flavor quarks for the RPV SUSY model (left) and with decays to top quarks and gluons
for the stealth SYY model (right).

For the benchmark stealth SYY model, the critical small S̃-S mass splitting is held constant at
10 GeV, and we assume a S̃ mass of 100 GeV and a G̃ mass of 1 GeV. For both models, a range of
t̃ masses (mt̃ ) are considered from 300 to 1400 GeV, and all decays described above are assumed
to be prompt with unity branching fractions.

In this paper, we describe a search for t̃ pair production followed by the decay of each t̃ into a
top quark and three light-flavor jets via the benchmark RPV and stealth SYY models described
above. This is the first search of its kind at the LHC. Previous searches for RPV t̃ decays focused
on final states with dijet resonances [25, 26], lepton-jet resonances [27, 28], intermediate leptonic
chargino decays [29], or final states with many b quarks [30]. Previous searches for stealth SUSY
targeted superpartners of light-flavor quarks with decays into gauge bosons and jets [31, 32].
Measurements of the tt differential production cross section have been reinterpreted in the
context of RPV and stealth SUSY [24, 33] and were found to yield weak constraints for the
models considered in this paper.

Before describing each step in more detail in subsequent sections, we provide an overview
of the analysis strategy here. The main distinguishing feature of the signals in this analysis,
in addition to the presence of two top quarks, is high jet multiplicity (Njets). The SM back-
grounds arise through processes including top quark pair production (tt), multijet production
from quantum chromodynamics (QCD), production of tt in association with SM weak gauge
bosons or additional top quarks (tt+X), production of weak gauge bosons, and single top quark
production (other). These SM processes all include additional jets from initial- and final-state
radiation (ISR and FSR). The QCD background is primarily suppressed by requiring the pres-
ence of exactly one charged lepton (e or µ) arising from the leptonic decay of a top quark.
Backgrounds that do not produce any top quarks are suppressed by requiring the presence of
at least one jet identified as arising from the fragmentation of a bottom quark (b-tagged jet),
and additionally that the invariant mass of the lepton and a b-tagged jet be consistent with the
presence of a top quark.

The signal is distinguished from the dominant and irreducible tt background by means of a
neural network (NN) trained to recognize differences in the spatial distribution of jets and
decay kinematic distributions between signal and tt background events. Events are divided
into 24 categories based on their NN score (SNN) and Njets; categories with higher (lower) SNN
and Njets tend to be signal enriched (depleted). We perform a simultaneous fit to the number of
events in data in SNN and Njets categories to estimate the total numbers of tt and potential signal
events present in the data, as well as the distribution of tt events in SNN and Njets categories.
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The NN output is designed to have no dependence on Njets, so that the Njets distribution of tt
events can be constrained in the fit to be the same for all SNN categories. This requirement for tt
Njets shape invariance is important for the analysis and will be discussed throughout the paper.

This paper is organized as follows. We introduce the CMS detector and methods for event re-
construction and selection in Section 2. Samples of simulated events are described in Section 3.
The estimation and modeling of SM backgrounds are explained in Section 4, and the descrip-
tion of the treatment of systematic uncertainties is in Section 5. Finally, the results and their
interpretation are in Section 6, followed by the summary in Section 7.

2 Experimental techniques
The search is performed using a data sample of proton-proton (pp) collisions at

√
s = 13 TeV,

corresponding to an integrated luminosity of 137 fb−1, collected in 2016–2018 with the CMS
detector at the LHC. Data and simulation samples from four periods (2016, 2017, 2018A, 2018B)
are treated separately in order to address variations in detector and LHC conditions. Data from
2018 are divided into two samples (2018A and 2018B), with 2018B corresponding to the period
when a detector malfunction prevented readout from 3% of the hadron calorimeter. In this
section, we define reconstructed physics objects and describe the selection criteria for events in
the signal region (SR) and the control region (CR) of the analysis.

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diam-
eter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and
strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator
hadron calorimeter, each composed of a barrel and two endcap sections. Forward calorime-
ters extend the pseudorapidity coverage provided by the barrel and endcap detectors. Muons
are detected in gas-ionization chambers embedded in the steel flux-return yoke outside the
solenoid. A more detailed description of the CMS detector, together with a definition of the
coordinate system used and the relevant kinematic variables, can be found in Ref. [34].

The CMS trigger system is described in Ref. [35]. Events are selected using triggers that re-
quire the presence of at least one electron or one muon. The minimum transverse momentum
pT threshold is 27 (35) GeV for electrons and 24 (24) GeV for muons in 2016 (2017–2018). The
triggers at these thresholds require the lepton to be isolated from tracks and calorimeter de-
posits in the detector. Events may also be selected from single-lepton triggers with higher pT
thresholds, 115 GeV for electrons and 50 GeV for muons, with no isolation requirements. The
combined trigger efficiency varies from 80% for leptons with pT close to the lower thresholds
to greater than 95% for leptons with pT > 120 GeV.

Events are reconstructed using the particle-flow (PF) algorithm [36], which reconstructs parti-
cles in an event using an optimized combination of information from the various elements of
the CMS detector and identifies each as a photon, electron, muon, charged hadron, or neutral
hadron. These particles are further clustered into jets as described below.

The reconstructed vertex with the largest value of summed physics-object p2
T is taken to be the

primary pp interaction vertex, where the physics objects are the jets, clustered using the anti-
kT algorithm [37, 38] with the charged-particle tracks assigned to the vertex as inputs, and the
associated missing transverse momentum, taken as the negative vector sum of the pT of those
jets [39]. Charged-particle tracks associated with vertices from other pp interactions (pileup)
are removed from further consideration. The primary vertex is required to lie within 24 cm of
the interaction point along the beam axis, and within 2 cm in the plane transverse to the beam
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axis.

Electrons and muons must satisfy pT > 30 GeV and |η| < 2.4. For the analysis of the 2017
and 2018 data, the electron pT threshold is increased to 37 GeV to account for the higher trigger
threshold. The lepton identification requirements are the “tight” criteria for electrons [40] and
the “medium” criteria for muons [41]. Leptons must be isolated within a cone of radius R =√
(∆φ)2 + (∆η)2 that scales as 1/pT between a maximum of 0.2 for leptons with pT < 50 GeV

and a minimum of 0.05 for lepton pT > 200 GeV [42].

Jets are clustered from the reconstructed PF particles using the anti-kT algorithm with a dis-
tance parameter of 0.4. Criteria are applied to remove events with jets arising from instru-
mental effects or reconstruction failures [43, 44]. The reconstructed jet energies are corrected
for the nonlinear response of the detector [45, 46] and for contributions from neutral hadrons
from pileup [47]. Jets are required to have pT > 30 GeV and |η| < 2.4. Jets overlapping with
a selected lepton within a cone of radius R = 0.4 are removed. A neural network-based algo-
rithm [48] is used to identify b quark jets; for jets with pT around 30 GeV, the algorithm has an
efficiency of 65% and a misidentification rate for light-flavor jets (including gluon jets) of 1%.

In addition to the trigger and vertex criteria above, events in the SR must contain exactly one
isolated electron or muon and at least seven jets, at least one of which should be b tagged.
Samples with seven and eight jets include a small number of expected signal events, but are
included in the SR to constrain the background. To further reject the QCD background, we
require the scalar sum of jet pT (HT) to exceed 300 GeV. To suppress non-tt backgrounds, we
require the invariant mass of the system formed by the b-tagged jet and the lepton to be be-
tween 50 and 250 GeV. If there is more than one b-tagged jet in the event, the invariant mass of
each b-tagged jet and the lepton is considered, and at least one combination is required to meet
the above criterion. No requirement is made on the event pmiss

T .

In addition to the SR, a signal-depleted control region (CR) dominated by QCD background is
defined with the dual purpose of determining the QCD contribution to the SR and verifying
the important assumption of tt Njets shape invariance with SNN. Despite being dominated by
QCD background, the CR is useful for confirming tt Njets shape invariance because many of the
jets used as inputs to the NN arise from QCD radiation, which is common to the tt and QCD
backgrounds; this claim is verified in Section 5. The CR is defined similarly to the SR with the
differences being that the lepton is required to be a muon; the muon is required to fail the SR
isolation requirement; there is no requirement for a b-tagged jet, nor on the invariant mass of
the lepton and b-tagged jet; the only trigger used is the high-threshold muon trigger without
an isolation requirement; and the muon pT threshold is 55 GeV.

3 Simulated event samples
Simulated event samples are used in the estimation of the expected number of SM background
and signal events passing the SR selection. Top quark pair and single top quark events pro-
duced in the t channel are generated with the next-to-leading-order (NLO) POWHEG v2.0 [49–
53] generator, while single top quark events in the tW channel are generated with POWHEG

v1.0 [52]. Single top quark production in the s channel, as well as rare SM processes such as
ttZ and ttW are generated at NLO accuracy with the MADGRAPH5 aMC@NLO v2.2.2 program.
The MADGRAPH5 aMC@NLO v2.2.2 generator [54, 55] is used in the leading-order (LO) mode
to simulate QCD and W+jets events.

For the signal, top squark pair production events are generated using MADGRAPH5 aMC@NLO
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in LO mode, including up to two additional partons in the matrix element calculation. The top
squarks are decayed using PYTHIA v8.212 (2016) or 8.226 (2017–2018) [56] according to the
signal models described in Section 1. The signal production cross section (σ̃t t̃ ) is calculated as a
function of mt̃ using approximate next-to-NLO (NNLO) plus next-to-next-to-leading-logarithm
(NNLL) calculations [57, 58].

The generation of these processes is based on either LO or NLO parton distribution functions
(PDFs) using NNPDF3.0 [59] for the simulated samples corresponding to 2016 detector condi-
tions, and using the NNLO PDF sets from NNPDF3.1 [60] for the 2017 and 2018 simulated
samples. Parton showering and hadronization are simulated with PYTHIA using underly-
ing event tune CUETP8M1 [61] for 2016 samples, except for tt production which used tune
CUETP8M2T4 [62], or PYTHIA with tune CP5 (CP2) [63] for all 2017 and 2018 background (sig-
nal) samples. To model the effects of pileup, simulated events are generated with a nominal
distribution of pp interactions per bunch crossing and then reweighted to match the corre-
sponding distribution in data. The CMS detector response is simulated using a GEANT4-based
model [64], and event reconstruction is performed in the same manner as for collision data.
The most precise cross section calculations available are used to normalize the SM simulated
samples, corresponding to NLO or NNLO accuracy in most cases [54, 65–71].

The simulation is corrected to eliminate small discrepancies between data and simulation in
the trigger efficiency, lepton selection efficiency, and b tagging efficiency. Analysis-specific
corrections for the HT distribution in tt simulation, parameterized as functions of Njets and
HT, are obtained in a signal-depleted sample identical to the SR, except for the requirement
5 ≤ Njets ≤ 7. Events with Njets = 7 are common to the SR, but as mentioned above, this
sample has low signal contamination. The correction is parameterized with an exponential
function in HT with parameters depending linearly on Njets in order to extend the correction
into the Njets > 7 SR. The HT correction is small at low HT and 20–40% at HT = 1500 GeV,
depending on Njets.

4 Background estimation
Simulated background events passing the SR selection requirements predominantly originate
from tt production, with contributions of less than 10% from QCD, and a few percent from
the remaining minor backgrounds including tt production in association with a vector boson,
single top quark production, and W+jets.

As introduced in Section 1, the crux of the analysis is to estimate the dominant tt background
in four bins of SNN and six Njets bins using a simultaneous binned maximum-likelihood fit
constraining the tt Njets shape to be the same in all SNN categories. Event yields, as well as the
Njets and SNN distributions, are fixed at values determined from a signal-depleted data control
sample for the QCD background and from simulation for the minor backgrounds, as described
later in this section. The yield and Njets shape of the tt background, along with the signal
strength, are determined in the fit; signal strength is defined as the ratio of the fit signal event
yield to the one predicted by SUSY.

The NN is trained to discriminate between signal and tt background by exploiting differences
in the event shape and distributions of the kinematic variables. The gradient reversal tech-
nique [72] is used to minimize dependence of the NN output on Njets, as required by the
primary assumption that the tt Njets shape is the same in all SNN categories. All NN input
variables are computed in an approximate center-of-mass frame defined by all jets in the event
with pT > 30 GeV and |η| < 5. The NN input variables include the four-vector components
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for the seven jets in the event with the highest momentum in the center-of-mass frame, the
four-vector components of the lepton in the event, the second through fifth Fox–Wolfram mo-
ments [73] normalized by the first moment, and the three eigenvalues of the sphericity ten-
sor [74] normalized by the sum of the eigenvalues. The Fox–Wolfram moments and sphericity
tensor eigenvalues, which are computed from the same seven highest momentum jets, quan-
tify the distribution of jet energy in the event, which tends to be more spherical for signal t̃ pair
production than for the tt background.

For the NN training, simulated tt events are used for the background sample, and a mixture of
RPV and stealth SYY simulated events with mt̃ from 350–850 GeV is used as the signal sample.
In this way, the NN can identify common features among all signal samples ensuring a search
with broad sensitivity. Reflecting differences in simulation between the data taking periods,
as described in Section 3, a single training is used for 2017, 2018A, and 2018B, with a separate
training used for 2016. The SNN distributions for the simulated background, several signal
models, and the 2016 and 2017+2018 data are shown in Fig. 2.
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Figure 2: The SNN distributions for the 2016 training (left) and 2017+2018 training (right) show
the corresponding data in the SR (black points); simulated background normalized to the num-
ber of data events (filled histograms); RPV signal model with mt̃ of 450 GeV (red short dashed);
and stealth SYY signal model with mt̃ of 850 GeV (cyan long dashed). All events shown pass
the SR event selection. The band on the total background histogram denotes the dominant
systematic uncertainties related to the modeling of HT, jet mass, and jet pT in the tt simulation,
as well as the statistical uncertainty for the non-tt components. The lower panel shows the ra-
tio of the number of data events to the number of normalized simulated events with the band
representing the difference between the nominal ratio and the ratio obtained when varying the
total background by its uncertainty.

For each of the six Njets bins, events are divided into four SNN bins: SNN,1 (lowest SNN), . . . ,
SNN,4 (highest SNN). The SNN bin boundaries are chosen separately for each Njets bin such that
the expected significance for the 550 GeV RPV signal model, which has expected significance
close to 5 standard deviations (σ), is maximized, under the constraint that the fraction of sim-
ulated tt events in each SNN bin is the same for all Njets bins. For example, the fraction of all
events in each Njets bin falling into the SNN,1 bin is constrained to be approximately 56%, while
the fraction of events falling into the SNN,4 bin is constrained to be approximately 2.4%. This
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constraint removes the small dependence of SNN on Njets that remains after NN training with
gradient reversal.

In the maximum-likelihood fit, the tt Njets distribution is parameterized with a function in-
spired by QCD jet scaling patterns [75] in which the ratio R(i) = Mi+1/Mi, where Mi is the
number of events with Njets = i, can be described by a falling “Poisson” component at low Njets
and a constant “staircase” component at high Njets. This ratio is well modeled by the function

f (i) = a2 +

[
(a1 − a2)

i−7

(a0 − a2)
i−9

]1/2

.

Notice that a0 = f (7), a1 = f (9), and a2 is the asymptotic value for large i. This particular
parameterization was chosen to avoid large correlations between the fit parameters. The Njets
distribution for each SNN bin j (see Fig. 4) is modeled using a recursive expression given by
Mj

i = Y j
7 Πi−1

k=7 f (k) where Y j
7 are normalization parameters that are floating in the fit. The last

Njets bin considered is an inclusive Njets ≥ 12 bin, such that i ∈ [7, 12]. In the maximum-
likelihood fit, the free parameters consist of the three shape parameters a0, a1, and a2; the four
normalization parameters Y j

7; the signal strength; and all nuisance parameters related to sys-
tematic uncertainties described in Section 5.

The QCD background yield parameters are fixed in the fit at the values determined from the
CR. More specifically, the QCD background prediction for each Njets-SNN bin in the SR is given
by the yield for the same bin in the CR in data, after subtraction of the non-QCD backgrounds as
predicted from simulation, multiplied by the ratio of SR to CR yields in simulation (RQCD). This
procedure is verified with a closure test in the simulation. The yield parameters from the minor
backgrounds are also kept fixed in the fit at the values predicted by simulation. While the yield
parameters are fixed in the fit, the ultimate contributions from QCD and minor backgrounds
vary according to the constrained nuisance parameters related to systematic uncertainties in
those fit components.

5 Systematic uncertainties and fit validation
As described in Section 4, an unbiased estimate of the dominant tt background is obtained from
the fit to data as long as the tt Njets shape is the same for all four SNN bins. By construction, Njets
shape invariance is achieved in the simulation with an Njets-specific SNN binning as described
in the previous section. Thus, systematic uncertainties on the tt background are important to
the degree that they violate the assumption that the SNN binning determined in simulation also
applies to the data. We quantify how each source of uncertainty causes deviations from the as-
sumed Njets shape invariance by comparing the nominal Njets shape to the Njets shapes in all
SNN bins after performing the relevant systematic variation to the tt simulation. Each system-
atic variation is associated with a constrained nuisance parameter in the fit. The deviation in
shape for each Njets distribution, derived from the ratio of the post-variation shape divided by
the nominal shape, changes linearly with the associated nuisance parameter for the systematic
variation, while preserving the normalization of the distribution.

Sources of tt shape uncertainty include uncertainty in aspects of event generation including
PDFs, choice of renormalization and factorization scales (µR, µF scales), and parton shower
modeling, which is itself composed of aspects related to modeling of ISR, FSR, color reconnec-
tion in the parton shower, matrix element-parton shower matching scale (ME-PS), underlying
event (UE tune), and pileup modeling. The uncertainty due to the choice in (µR, µF) scales is
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determined by independently varying both by factors of 2.0 and 0.5 excluding the variations
(2.0, 0.5) and (0.5, 2.0) [55, 76, 77]. The ISR and FSR uncertainties originate from variations of
the renormalization scale for the parton shower by factors 0.5 and 2.0, effectively varying the
value of αS. The color reconnection uncertainty is calculated by allowing resonant decays to
occur before the merging of multi-parton systems. The ME-PS uncertainty is obtained by vary-
ing the POWHEG parameter that governs ME-PS matching about its nominal value according to
hdamp = 1.379+0.926

−0.505 times the top quark mass [63]. The UE tune uncertainty comes from varia-
tion of the PYTHIA parameters that control the modeling of the underlying event as described
in Ref. [63]. The total inelastic pp cross section is changed by 5% to estimate the uncertainty
related to pileup [78].

Sources of tt shape uncertainty related mostly to aspects of detector simulation include deter-
mination of jet energy scale (JES) and resolution (JER), modeling of the b tagging efficiency,
modeling of the efficiency for lepton triggers, identification, and isolation (lepton efficiencies);
residual mismodeling of HT, jet pT, and jet mass; and use of the CR for measuring deviations
from the assumption of Njets shape invariance.

The uncertainty in the modeling of HT in the tt simulation is composed of four separate com-
ponents. The first HT uncertainty (primary) is taken as the full difference in the tt background
shape with and without the HT correction. The second HT uncertainty (validation) is taken as
the difference between the simulation with nominal HT correction (described in Section 3) and
the observed HT distribution in the signal-depleted SR sample with Njets = 8. The third and
fourth HT uncertainties address the choices of parameterization of the HT correction as func-
tions of HT and Njets. For these, we take the uncertainty as the difference between the nominal
correction and two alternate corrections that use the HT = 2000 GeV correction for all events
with HT > 2000 GeV (HT-parameterization) and the Njets = 7 correction for all values of Njets
(Njets-parameterization).

Comparisons of data and simulation in the CR show that the simulation predicts distributions
with higher values of jet pT and mass than observed. The observed discrepancy at jet pT (mass)
of 400 (50) GeV depends on jet pT rank and is small for the highest pT jet in each event grow-
ing to approximately 50% for the jet with sixth-highest pT in each event. Similar trends are
observed in the signal-depleted, tt-dominated SR with Njets = 7. In the CR, the discrepancy in
the falling tail of each distribution is minimized when the pT (mass) of each jet is scaled by the
value 0.95, 0.95, 0.95, 0.95 (0.95, 1.01, 0.98, 0.98) for 2016, 2017, 2018A, and 2018B, respectively.
Thus, the related tt shape uncertainty is taken to be the resulting difference between scaled
and nominal simulated tt distributions. The dependence on jet pT rank indicates that the dis-
crepancy arises predominantly in the event generation; however, we choose to estimate the
associated systematic uncertainty separately for each data taking period to include potential
effects of detector response simulation. The HT correction is omitted from the determination of
these jet pT and mass uncertainties to avoid double counting of HT mismodeling effects. In ad-
dition, because the estimation of jet pT and mass uncertainties relies on variable scaling (rather
than event reweighting), the uncertainties include effects of changes in the SNN for each event,
which is not included in the HT uncertainty.

As mentioned above, the use of Njets-dependent SNN binning ensures that the Njets shape is
the same in all four SNN bins in simulation, and the use of the same binning in the data as-
sumes that the Njets-SNN dependence is well modeled in the simulation. This assumption is
confirmed and a related systematic uncertainty is determined by comparing the Njets shapes
(in five uniform SNN bins) for data and simulation in the CR. For each of the six Njets bins, we
compute the ratio RM = (1/µi) (Mall/Mi) as a function of SNN, where Mall is the total number



9

0 0.2 0.4 0.6 0.8 1

NNS

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2M
R MC

CR
QCD

 MC

 SR
tt

CR
Data

CMS  (13 TeV)-135.9 fb

 = 7jetsN

0 0.2 0.4 0.6 0.8 1

NNS

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2M
R MC

CR
QCD

 MC

 SR
tt

CR
Data

CMS  (13 TeV)-135.9 fb

 = 11jetsN

Figure 3: Distribution in SNN of the ratio RM, as defined in the text, for Njets = 7 (left) and
11 (right), for the QCD CR simulation (red circles), the tt SR simulation (green squares), and
data in the CR (blue crosses) for the 2016 data period. The error bars indicate the statistical
uncertainty in the value of RM.

of events in all Njets bins, Mi is the total number of events in the Njets = i bin, and µi is the
uncertainty-weighted average of Mall/Mi in the Njets = i bin used to facilitate comparison of
the RM shapes between samples and Njets bins with different normalizations. Figure 3 shows
a comparison of RM (from Njets = 7 and 11 in the 2016 analysis) for simulation of the QCD

background in the CR (QCDMC
CR ), simulation of tt in the SR (ttMC

SR ), and the data in the QCD
background-dominated CR (DataCR). Agreement between QCDMC

CR and ttMC
SR demonstrates that

QCD background-dominated data in the CR are a good proxy for tt-dominated data in the SR,
and agreement between QCDMC

CR and DataCR verifies that the dependence of the Njets shape on
SNN is well modeled in the simulation. Similar agreement is found for the RM distributions for
the other Njets bins and data periods. The uncertainty related to the combination of both effects

is taken as the difference between ttMC
SR and DataCR.

For the QCD background, the shape is obtained from data in the CR, and the normalization
is set with RQCD. Because the systematic uncertainties in the simulation largely cancel in the
RQCD ratio, the uncertainty in RQCD is dominated by the statistical uncertainty of simulated
samples and ranges from 15–25% depending on data collection period.

Sources of systematic uncertainty in the predictions for signals and the minor backgrounds in-
clude PDFs, JES, JER, b tagging efficiency, lepton efficiency, trigger efficiency, (µR, µF) scales,
cross sections for the minor backgrounds, and a 2.3–2.5% uncertainty in the integrated lumi-
nosity [79–81]. Since the signal and minor backgrounds are estimated directly from simulation,
related uncertainties are included as the full effect of the systematic variation on the yields
in each Njets and SNN bin, thereby taking into account normalization effects as well as shape
changes.

Uncertainties derived from comparisons of data and simulation separately in each data taking
period (related to pileup, JES, JER, b tagging efficiency, lepton efficiencies, HT corrections, Njets
shape invariance, and integrated luminosity) are treated as uncorrelated among all data sam-
ples. Uncertainties related to parton shower modeling are treated as fully correlated for 2017,
2018A, and 2018B, while the corresponding uncertainties for 2016 are uncorrelated with those
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from the other data taking periods; uncertainties related to (µR, µF) scales and cross sections for
the minor backgrounds are treated as correlated between all four periods.

Table 1 shows the impact of the systematic uncertainties on the expected event yields for the tt
background, minor backgrounds, and the RPV signal model with mt̃ = 550 GeV. For sources of
uncertainty for which the size of the impact depends on Njets and SNN, a representative range
of values is listed along with the maximum value from all bins.

Table 1: Summary of the impact of systematic uncertainties in the expected event yields for
the tt background, minor backgrounds (both tt+X and other), and the RPV signal model with
mt̃ = 550 GeV. Abbreviated names for each source of uncertainty are explained in the text. For
sources of uncertainty for which the size of the impact depends on Njets and SNN, a represen-
tative range of values showing the 16th and 84th percentile of all the corrections is listed with
the maximum value from all bins shown in parentheses. All values are in units of percent.

tt Minor RPV
Source of uncertainty background background signal
PDFs 0–1 (2) 0–1 (8) 0–2 (7)
(µR, µF) scales 0–2 (5) 1–8 (18) 0–3 (4)
ISR 0–4 (15) — —
FSR 0–8 (27) — —
Color reconnection 0–10 (44) — —
ME-PS 0–14 (82) — —
UE tune 0–7 (100) — —
Pileup 0–2 (7) 0–7 (28) 0–2 (4)

JES 0–4 (18) 5–21 (100) 1–11 (31)
JER 0–2 (10) 1–15 (100) 0–6 (14)
b tagging 0–1 (3) 0–2 (12) 0–2 (2)
Lepton efficiencies 0–1 (1) 3–5 (5) 3–4 (4)

HT primary 0–5 (17) — —
HT validation 0–1 (4) 0–6 (10) —
HT HT-parameterization 0–2 (9) — —
HT Njets-parameterization 0–7 (27) — —
Jet pT 0–4 (15) — —
Jet mass 0–4 (15) — —
Njets shape invariance 0–12 (37) — —

Integrated luminosity — 2.3–2.5 2.3–2.5
Theoretical cross section — 30 —

6 Results and interpretation
The results of the fit to 2016, 2017, 2018A, and 2018B data sets with the signal strength fixed to
zero (background-only fit) are shown along with the observed number of events in Fig. 4; each
column (row) in the plot array corresponds to a specific SNN bin (data set). The expected dis-
tributions for top squark pair production in the specific RPV (mt̃ = 450 GeV) and stealth SYY
models (mt̃ = 850 GeV) described in Section 1 are overlaid for illustration purposes. The lower
panel of each plot displays the difference between the observed number of events and the total
number of expected events determined by the fit divided by the statistical uncertainty associ-
ated with the observed number of events (δ) as black points with error bars denoting δ. The
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Figure 4: Fitted background prediction and observed data counts for 2016, 2017, 2018A, and
2018B (from upper to lower rows) as functions of Njets in each of the four bins in SNN. The signal
distributions normalized to the predicted cross section for the RPV model with mt̃ = 450 GeV
and the stealth SYY model with mt̃ = 850 GeV are shown for comparison. The lower panel of
each plot displays the difference between the number of observed events and the number of
events determined by the fit divided by the statistical uncertainty associated with the observed
number of events (δ) as black points with error bars denoting δ. The blue band shows the total
systematic uncertainty in the fit from all nuisance parameters.
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cording to the top squark pair production cross section. For visualization purposes, the hatched
band in the lower panel shows the quadrature sum of all of the uncertainties on the background
prediction.

blue band shows the total uncertainty in the fit determined from the full fit covariance matrix
in order to account for the correlations among fit parameters. Figure 5 shows the results of the
same background-only fit summed over SNN bins and data periods with separate contributions
from each background.

The data are also used to determine the 95% confidence level (CL) upper limits on σ̃t t̃ and

the signal strength p-values [82] for both the RPV and stealth SYY models obtained using the
CLs approach [83–85] with asymptotic formulae [86] and the profile likelihood ratio as the test
statistic. Figure 6 shows the expected and observed cross section limits as a function of mt̃ for
the benchmark RPV and stealth SYY signal models. Comparing to the predicted cross section,
these limits correspond to the exclusion of top squark masses in the range 300–670 and 300–
870 GeV for the benchmark RPV and stealth SYY models, respectively. Figure 7 shows the
local p-value [82] of the signal strength, as a function of mt̃ , obtained from fits to the data with
each signal strength as a free parameter for both the RPV and stealth SYY models. The p-value
quantifies the probability for the background to produce an upward fluctuation at least as large
as that observed. Fits are performed and p-values obtained separately for each data set, as well
as in a simultaneous fit to all data sets. We observe the most extreme p-value to be 0.003, which
corresponds to a local significance of 2.8 σ and a best fit signal strength of 0.21± 0.07 for the
RPV model with mt̃ = 400 GeV assuming unity branching fractions for the decays described in
Section 1.

The 2.8 σ local significance for the RPV model with mt̃ = 400 GeV is understood to arise from
a combination of two effects. First, although the level of agreement between the observed data
and the background expectation shown in Fig. 4 is reasonable, the agreement improves when
the signal is included in the fit, contributing approximately 1.1 σ to the significance. Second, the
constrained nuisance parameters (NP) are pulled less from their initial values when the signal
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Figure 8: The upper panel shows the fit values (θ) and uncertainties (δθ) for a selection of nui-
sance parameters (NP) from both the background-only fit (purple) and signal+background fit
(blue) for the RPV model with mt̃ = 400 GeV. The x-axis labels refer to the NP sources described
in Section 5, the data period (16, 17, etc.), and the direction of variation (+,−). The lower panel
shows the ∆χ2 ≡ χ2(s + b) − χ2(b) difference of χ2 ≡ (θ/δθ)

2 from the signal+background
(s+b) and background-only (b) fits as a red point for each NP and the cumulative sum of
∆χ2 from left to right as a blue shaded histogram. The fourteen selected NP are those with
|∆χ2| > 0.3, and the NP are ordered from left to right by decreasing |∆χ2|. The rightmost bin,
separated by a vertical solid line, shows the sum of ∆χ2 for all NP not displayed in the figure
(red point) and the sum of ∆χ2 for all NP (blue shaded histogram).

is included in the fit, contributing approximately 1.7 σ to the significance. This second effect is
illustrated in Fig. 8 which shows for each of a selection of NP : the fit value (θ) and uncertainty
(δθ) from both the background-only fit (b) and the signal+background fit (s+b), as well as the
∆χ2 ≡ χ2(s+ b)− χ2(b) difference of χ2 ≡ (θ/δθ)

2 from the two fits. A θ value of one indicates
that the fit value of the nuisance parameter is one standard deviation from its nominal value,
and a δθ value less than one shows that the uncertainty is reduced in the fit relative to its
initial value. All NPs have θ values below one for the background-only fit, and several NPs
related to tt modeling are constrained with δθ in the range of 0.25–0.40. Figure 8 also shows
the cumulative and total sums of ∆χ2 for the NPs, with the sum for all NP of ∑ ∆χ2 = −3.0
corresponding to an approximate contribution to the signal significance of

√
|∑ ∆χ2| = 1.7 σ.

7 Summary
A first of its kind search for top squark pair production with subsequent decay characterized
by two top quarks, additional gluons or light-flavor quarks, and low missing transverse mo-
mentum (pmiss

T ) is described. Events containing exactly one electron or muon and at least seven
jets, of which at least one should be b tagged, are selected from a sample of proton-proton col-
lisions at

√
s = 13 TeV corresponding to an integrated luminosity of 137 fb−1 collected with the

CMS detector in 2016–2018. No requirement is made on pmiss
T . The dominant tt background is

predicted from data using a simultaneous fit of the jet multiplicity distribution across four bins
of a neural network score.

The results are interpreted in terms of top squark pair production in the context of R-parity
violating (RPV) and stealth supersymmetry models. Top squark masses (mt̃ ) up to 670 GeV are
excluded at 95% confidence level for the RPV model in which the top squark decays to a top
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quark and the lightest neutralino, which subsequently decays to three light-flavor quarks via an
off-shell squark through a trilinear coupling λ′′. Top squark masses up to 870 GeV are excluded
for the stealth supersymmetry model in which the top squark decays to a top quark, three
gluons, and a gravitino via intermediate hidden sector particles. The maximum observed local
significance is 2.8 standard deviations corresponding to a best fit signal strength of 0.21± 0.07
for the RPV model with mt̃ = 400 GeV.
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C. Aime‘a,b, A. Braghieria, S. Calzaferria,b, D. Fiorinaa,b, P. Montagnaa,b, S.P. Rattia,b, V. Rea,
M. Ressegottia ,b, C. Riccardia,b, P. Salvinia, I. Vaia, P. Vituloa,b

INFN Sezione di Perugia a, Università di Perugia b, Perugia, Italy
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Çukurova University, Physics Department, Science and Art Faculty, Adana, Turkey
M.N. Bakirci65, F. Boran, S. Damarseckin66, Z.S. Demiroglu, F. Dolek, I. Dumanoglu67,
G. Gokbulut, Y. Guler, E. Gurpinar Guler68, I. Hos69, C. Isik, E.E. Kangal70, O. Kara,
A. Kayis Topaksu, U. Kiminsu, G. Onengut, K. Ozdemir71, A.E. Simsek, B. Tali72, U.G. Tok,
H. Topakli73, S. Turkcapar, I.S. Zorbakir, C. Zorbilmez

Middle East Technical University, Physics Department, Ankara, Turkey
B. Isildak74, G. Karapinar75, K. Ocalan76, M. Yalvac77

Bogazici University, Istanbul, Turkey
B. Akgun, I.O. Atakisi, E. Gülmez, M. Kaya78, O. Kaya79, Ö. Özçelik, S. Tekten80, E.A. Yetkin81
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