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1. Introduction

In 1987, A. Floer [8,9] suggested that Yang-Mills-Higgs theory should be
studied on asymptotically Euclidean 3-manifolds M and it has been proved
a rich subject in recent years. The focus of interest is the geometry of the
moduli space of monopoles on M and its applications. In Donaldson [3], the
moduli space of SU; monopoles on the Euclidean space R? is identified as
a certain space of rational functions on the complex plane. In Ernst [6], the
moduli space M! of charge 1 monopoles on M is constructed. By investi-
gating the end of M!, M is proved diffeomorphic to R? if ||Ric"|[:21 < :—2,
where y is the Sobolev constant of the imbedding of L8(M) in L3(M) and
Ric™ is the negative part of the Ricci curvature. In Wang [28,29], the end
an’oo of the moduli space M¥, of monopoles of charge k and mass m on
M is constructed and the structure of M* _ is clarified (see also AH [1]).

m,00

an is generally a smooth, orientable manifold with a perturbation.

To apply the theory of monopoles to study the topology of M, a main
problem is the non-compactness of moduli space M . Although it is clearly
clarified, an itself seems not to have an immediate, natural compactifica-
tion. Let C* be the space of Yang-Mills-Higgs configurations of charge k € N
and mass m € R* on M, G* = Map,(M, SU,) be the base-preserving gauge
group and B, = CX /G*. Denote by Map (52, S?) the space of maps from
52 to 5? of degree k. In this paper, we prove the following:

Theorem: When Hy(M,Z) = 0, the configuration space Bjp, is ho-
motopic to Map, (52, S?). Moreover, there is an SO3-equivalence homotopy
equivalence é : By, — Map,(S?,S?), such that, é(M¥ ) has a natural com-



pactification
E(ME) = (ML) UEMET) x 82 U e(MO) x (S2)%,  (1.1)
where $O3 acts on Map,(5?, 5?) by rotating the target 52

When H(M,Z) # 0, é is an SO3z-equivalent fibration. The reader may
compare (1.1) to the Uhlenbeck compactification of the moduli space of
instantons (see cf. DK [5] or FM [11]). The idea of proof consists of two
parts which are as follows. (i) As in Taubes [22], for small € > 0, we define
the set of e-centers for a monopole [C] € ME,. Then there is the following
weak convergence theorem: Let {[C;]}22; C M¥ be a sequence of monopoles
on M such that the e-centers of {[C;]} form a bounded set on M for some
€ > 0. Then {[C;]} has a subsequence {[C;,]} which is convergent on M. As
a consequence, a sequence {[Cy]}32; C M, which approaches to the infinity
of Mk, has always the following properties: there is a subsequence {[C; ]},
a partition k = Z§'=1 k; and sequences of centers {z1}(j = 1, -+, 1), such
that, {[C;,]} converges to a k;-monopole on any given ball B, (z). (ii) The
map € is compatible with the non-compactness of ME as follows. If the
sequence of centers {27} — oo and &} = zJ/|zi| — 37 € S2, then {é([Ci D}
correspondnces to a standard blow-up phenomenon in Map, (5%, 5%): for
example,

61_1*%1+ Jim 2 det Dé([C},]) = 2k, (1.2)
where DE([C},]) is the Jacobian of é([Cy,]). Note that é is a refined map of
that of Taubes [20]. The blow-up is not due to a conformal invariance.

The paper is arranged as follows. In Section 2, we give a brief review of
the geometry of B,, and M* and the analytical behaviors of monopoles
on M. In section 3, we study the geometry of By m carefully and prove
that, there is a fibration € : By, — Map,(S*,5%) which is a homotopy
equivalence if H;(M,Z) = 0. In Section 4 we give a new proof of the weak
convergence theorem (which is also proved in {28]) and a classification of the
structure of the end M¥, _ of M%. In section 5, we refine the map € to
define € and investigate the blow-up phenomenon. In Section 6, we combine
the weak convergence theorem and the blow-up phenomenon to define the
natural compactification é(M¥X ). It is also proved that, when k is in the
stable range k > 2, é(MZ% ) define at least a Z,-fundamental class of dimen-
sion (4k — 1) if H(M,Q) = 0. We do not not discuss the orientablity of



é(ME)) here. As an application, we will study the extension of the coho-
mology groups of the space Map, (52, 5%) over the compactification é(M*))
to define Donaldson-type invariants for M.

Acknowledgement: The author wishes to like to thank Prof. C.H.
Taubes and D. Sullivan for helpful conversations.

2. Preliminary Results

Let M be an asymptotically Euclidean 3-manifold. In this section, we
give a brief review of Yang-Mills-Higgs theory on M and collect some basic
results on the geometry of the configuration space B, and the moduli space
ME and the analytical behaviors of monopoles on M. Without lost of
generality, we assume that M is a metric connected sum of a closed, oriented
Riemannian 3-manifold X and R? over the annulus

As={z € R*:s < |z| < 25} (2.1)

and the metric outside the ball B,; is standard.

2.1 The configuration space BX,. We begin by reviewing some basic
results on the space of Yang-Mills-Higgs configurations. For further details,
the reader may refer to [13,20,8]. By definition, an SU, Yang-Mills-Higgs
configuration C' = (A, ®) on M is a couple

(A, @) € (2" ® Q°)(M, suy)
of a connection A and a Higgs field & which has finite energy
a(C) = ||Fall3 + lda®|3. (2.2)

Here F4 is the curvature and d4® is the covariant derivative.

A Yang-Mills-Higgs configuration C' = (A, ®) on M has a mass m and a
charge k as follows. Since d4® € L?, there is a unique constant m > 0 such
that m — |®| € L%(M). m is called the mass of C. The charge k is defined
as

T drm

k= -—1—/ Tr(Fa AV a0) (2.3)
M

when m € R*. A theorem of Groisser [13] is that k is an integer.



Let Ck, denote the space of L?,,. Yang-Mills-Higgs configurations of

charge k£ and mass m on M. Endow Ck with the topology of Li,oc and
that renders continuous the map

CE — L((92 @ 0" (M, sup))

defined by F4 and d4®. As Proposition B1.2 of [20], Ck is a paracompact,
Hausdorff Fréchet manifold. Let G = L%y,oc(M,SUz) be the gauge group.
Then G acts on C% continuously as

9(C) = (gAg™" + gdg™1, g®g~"). (2.4)

As Proposition 1 of [8], C = (A, ®) is irreducible if the charge number k
is non-zero in the sense that the stablizer of C in G is trivially +1. Notice
that an orientation reserving of M correspondences to a sign change of k.
We will restrict ourselves to the case k € N and m € R*. A fundamental
theorem of Floer [8] is that the quotient space B%, = Ck /G is naturally a
Hilbert manifold.

A basic regularization process in Yang-Mills-Higgs theory is as follows.
Notice that, for C = (A4, ®) € Cf, it may not be true that lim,_ e |®| = m.
The idea of the regularization process is to perturb @ in a certain function
space, such that, for the perturbation ¥ = ® + 7, there is lim,_, o, |¥| = m.
To do this, let H{ be the Hilbert space of the completion of compactly
supported elements in Q°(M, su,) in the norm given by

InllE = IV anil3 + I[@, m)l13 (2:5)

Consider the functional

Ie(n) = [da(® + n)li3 + [®, 7]lI3 (2.6)

on Hg. As Proposition 4.8 of [13], I is a strictly convex, weakly lower semi-
continuous and coersive functional on H/,. Thus, for any C = (4,®) € C*,
there exists a unique ¢ € H/, which minimizes I on Hf. Let ¥ = &+ nc.
Then (A, ¥) is called the regularization of C = (4, ®). Asin [13], (A, ¥) has
charge k and mass m. Notice that (4, ¥) satisfies the second order, elliptic,
partial differential equation

d5da0 — [3,[®, ¥]] = 0. (2.7)



A standard a priori estimate implies that V4V ¥ € L2 As Lemma 3 of
[13], ¥ is continuous on M and |¥| — m uniformly at the infinity of M. As
Lemma B4.2 of [20], there is the following:

Lemma 2.1: There exists a continuous, G-equivalent function R : C¥, —
[2s,00) such that where |z| > R(C), then |¥|(z) > 2.

Pick a continuous function R on Ck . Notice that, for any C = (A4,®) €
Ck, ¥(z) = ¥(2)/|¥(z)| is well-defined where |z| > R(C). As in [13], the
charge number k of C coincides with the degree of the map

U:52c M- §%Csuy (2.8)
where r > R(C).

Consider the configuration space BY. Let G* be the group be base-
preserving gauge transformations on M. Then B ,, = Ck /G* is a principal
$03-bundle over BX. By Floer’s theorem, B ., is also a Hilbert manifold.
Notice that G acts on C% infinitesimally as

£ — —dct = —(daé,[9,£)). (2.9)

The vector vc = dc¥ correspondences the infinitesimal action of the gauge
group

{g = exp(t¥):t € R} ~ U(1). (2.10)
As Theorem 4.1 of [28), there is a natural circle bundle B, over B,. The
space of configurations will be connected to the loop space 2252 in Section 3.

2.2 The moduli space MX . Sitting inside B%, is the moduli space M¥,
of monopoles of charge k and mass m on M. By definitiion, a monopole
C = (A,®) on M is a minimum of the energy functional (2.2) in Ck . Note
that

a(C) = 8krm + ||da® — *F4]|3, (2.11)

C = (A,®) € €k is a monopoles iff it satisfies the following Bogomolny
equation:

dA(I) = *FA (212)

on M. The moduli space M¥ is by definition the set of solutions to (2.12)
in CX¥, modulo the gauge group G.



Remark 2.2: Since a monopole C = (A, ®) satisfies the equation
d3da® = 0on M, it is automatically regularized.

Note that a monopole C = (A, ®) on M can be considered as a static in-
stanton C' = A + ®d6 on the product 4-manifold Y = M x S!. As in [2] and
[28], there is a Baire set of perturbations in the space 7 of static Riemannian
metrics on Y such that M¥ is a smooth manifold by the transversity argu-
ment of [10]. By Theorem 4.1 of Wang (28], there is a natural circle bundle
.A;(fn over ME which is quaternionic (i.e. there is an action of quaternions
H on the tangent bundle T/\;ifn) Thus an is orientable, so is M% . Denote
by My, the space of solutions to (2.12) modulo the gauge group G*. Then
M is a principal SO5-bundle over ME . Thus M is smooth with a
perturbation and is orientable.

Remark 2.3: As Theorem 3 of [28], when H;(X,Z) = 0, the dimension
of M% is (4k — 1). In this case, ME, is in fact smooth for a generic pertur-
bation in the space 7. This fact is proved in (28] when m > mg for some
mo > 0. In the case m is small, M, is automatically smooth, see [29].

2.3 Analytical behaviors of monopoles. We list here some basic
a priori estimates on the monopole solutions on M. Let C = (A,®) be a
monopole on M of charge k and mass m. As well-known, C is gauge equiv-
alent to a smooth solution and {®| < m on M by the maximum principle.
As Theorem 11.1 of IV.11 of JT [15], the field strength F4 can be estimated
as follows:

Proposition 2.4: [|F4llcopy) < K for some constant K = K(k,m).

As in [15], there is also ||F4||cn < K for some constant K = K(k,m,n)
by the standard boot-strapping argument. To establish the decay property
of C' = (A, ®), we introduce the concept of centers of monopoles on M as in
[22] as follows. The concept of centers of monopoles will be used to prove
the weak convergence theorem and to analyze the structure of the end of
ME in Section 4. Let &' be the injectivity of M and § = min(é’,1). For any
€ > 0, define

Uce ={z € M : |[F(C)||72(p,(x) > €m},

Uce={z € M:d(z,Uc,) < 6}. (2.13)

Apparently Uc is a bounded set and is not empty when € > 0 is small. As



Lemma C2.9 of [21], Uc, has the following properties:

Lemma 2.5: (i) The number of components of Ug is less than ‘“‘7";
(ii) The diameter of each of the components is less than 8kx /6.

Let {Ué_(}f’:1 be the components of Uc, and z; € Ué’( (1<j<N).
We call {zj}f/:l a set of e-centers of C. As Lemma C.2.1 and C.3.1 of [22],
the centers has the following important property: F4 decays quadratically
and m — |®| decays in the first order around {z;}.

Theorem 2.6 (Taubes [22]): Let C = (A, ®) be a monopole of charge
k and mass m on M and {z;:1 < j < N} be a set of e-centers of C. Then
there is a constant K" = K(k,m,¢€), such that,

{ Fal(e) < KN i,

m—0l(x) < K3, (214

3. Homotopy and Configurations

In this section, we study the geometry and topology of the space of
Yang-Mills-Higgs configurations. We show that there are natural smooth
maps € : Br, — Mapy(5?,5%) and I : Map,(S?,5%) — Bim such that
€ o I =identity. Thus é is a fibration and I is an imbedding. We moreover
investigate the structure of the fiber of € and prove that € is a homotopy
equivalence if H1(M,Z) = 0. Let 025? denote the space of base-preserving
maps from 52 to 52 of degree k. Notice that both & and I are SOs-equivalent,
¢ descends on B, and € o I = identity on Q252. Let 1252 = 0252/S! with
51 acts on Q2S? by rotating the target S2. Then & and I descends as
é:Bk — Q3S?and I:Q25% — Bk,

Note that € is essentially defined by the regularized Higgs field ¥ and ¥
is continuous on M. We will not distinguish the space of continuous maps
from that of smooth ones, since they are the same in the homotopy theory.
The construction in this section can be compared to that of Taubes [20].
The map € will be revised in Section 6 to be compatible to the structure of
the end Mﬁwo of the moduli space M .



3.1 The geometry of Bk . Consider the configuration space By, =
/g* Notice that G* has two normal subgroups G and G as follows:

Go ={9 €0 glye =1},
G ={9€G":glp, =1} (3.1)
Let G; = G N G~

Lemma 3.1: G* is a fiber product of G5 and GX over G}: G* =
G5 Xgr G5

Proof: Notice that A, = ussrgss,? and the space Map(52%, SU,) is path
connected. Thus an element ¢ € G* can be always decomposed as ¢ = go- goo

for some gg € G§ and g, € G%.. Clearly the decomposition is unique up to
elements in G;.

To define €, for any [C] € By, we choose a representative C = (A,9®)
which is in the polar gauge as follows:

A, = (A,dr) =0 (3.2)

on the complement M¢.

Lemma 3.2: For any C = (A, ®) € C¥, there is a unique gauge g € G
such that g(C) is in the polar gauge.

Proof: Notice that g(C) is in the polar gauge iff —-’1 = gA on M¢. By
the existence and uniqueness of the ordinary dlfferentlal equation

3 = g4
{ ols) = 1, (3:3)

Lemma 3.2 is proved.

The map € : By — Map,(5?,52) is defined as follows. For any C =
(A, ®) € Ck, pick g € G%, such that (A,¥) is in the polar gauge. Define

é(C)(2) = ¥(R%) (3.4)



for 2 € §2. Where R is a fixed function in Lemma 2.1. Note that é descends

onto Bi, and defines a smooth map. Pick a cut off function on M such
that 8 = 0 on M$,. The map I can be defined as follows:

I(e)(2) = (1 - B)(—[e(2), de(£)], me(£)) (3:5)
as (B1.1) of [20].

Lemma 3.3: € o I = identity.

Proof: This is because I(e) = (A(e),®(e)) defined explicitly as (3.5)
has the following two properties: (i) A, = 0, so I(e) is in the polar gauge;
(ii) I(e) satisfies the equation d%d4® = 0, it is also regularized.

3.2 The homotopy type of Blr(n. Let us now investigate the structure
of the fiber €=1(e) of the map é. It will be prove that é~(e) is contractible
if Hi(X,Z) = 0. Thus ¢ is a homotopy equivalence when X is a homology
3-sphere. A theorem of the obstruction theory is needed as follows (see cf.

[19]).

Theorem 3.4: Let Y, Z be finite CW-complexes such that Y has trivial
homology and Z is simply connected. Then the space Map,(Y, Z) of base-
preserving maps from Y to Z is contractible.

Proof: We show that Map,(Y,Z) is contractible by proving that any
base-preserving map f : S™ — Map (Y, Z) is homotopically trivial as fol-
lows. It is equivalent to show that any base-preserving map f: S"xY — Z
is homotopically trivial. Let f : (S™,s0) X (Y,%0) — (Z, 20) be a such map
and {e!} be a cell-decomposition of Y, where j is the dimension of the cells.
To show f is homotopically trivial, construct a homotopy

F:8xYxI—2Z (3.6)
such that
F(307 yO,t) =29
F(s,y,0) = f(s,y) (3.7)
F(s,y,1) = 2z

by induction as follows. Note that {ef x I} is a cell decomposition of Y x I
and F is defined on the lowest skeleton {e? x I'}. To extend the homo-
topy F' to higher skeleton, the obstructions lie in the cohomology groups



HIY (8™ x Y x I,my(Z)),q € N. Since Z is simply connected and Y has
trivial homology, the cohomology groups are ordinary singular ones and are
all zero. Thus there is no obstruction to the existence of the homotopy F;
the map f is homotopically trivial. Theorem 3.4 is proved.

As an application, the gauge group G* = Map, (M, SU,) is contractible if
Hy(M,Z)=0. Thus C5, ~ By if X is a homology 3-sphere. Consider the
map € : Brm — Map,(52%, 5?). For fixed e € Map, (52, §?), we will prove
that, the fiber €1 (e) consists of equivalence classes of configurations whose
regularized Higgs fileds is parallel to e at the infinity of M. Together with
the obstruction theory, the so-called gauge fixing techniques will be used to
prove that it is contractible.

Similar to (3.4) of Floer (8], for any e € Map,(S?, 5?), define
U = {C = (A, @) €C :[¥(z),e(2)] = 0 for large |z|},

Ge = {9 € G7 : g(2) = exp(f(z)e(%)) for large |z|}, (3.8)

where f is an L2, -function on M. Notice that G’ acts on U, freely and

continuously.

Lemma 3.5: Restricted on é7!(e), the principal G*-bundle Ck — Bim
reduces to the principal GZ-bundle U, — é~'(e).

Proof: Similar to that of Lemma B7.1 of [20] as follows. Notice that
G* acts on C = (A4, ®) € CX by conjugating the Higgs field ®. This action
reduces to a rotation of the vector ¥ on a large sphere $2 ¢ R3. Thus for
any fixed e € Map, (52, 5?), thereis g € G% , such that, g(¥)(z) is parallel to
e(z) for large |z|. Hence the principal G*-bundle C% — By, can be reduced
to U, — €71(e), which is thus a principal G>-bundle. Lemma 3.5 is proved.

The configuration space U, and gauge group G have the following inter-
esting geometry: For any C = (A, ®) € CF, let H¢ be the Hilbert space of
the completion of the compactly supported elements in (Q1 @ QO)( M, suy)
in the norm defined by

ICHIE = IV 4¢lI3 + l1[@, CJif3. (3.9)

Let C,C" € Ue and (a,¢) = C' = C. As Lemma B4.1 of [20], (a, #) is almost
in the Hilbert space H¢ as follows. First ¢ ¢ H[.. Decompose a = al + aT
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with al = (a - e)e for large |z| and denote ac' = a-e. As Lemma B4.1 and
B4.4, a” and a” have the following estimates respectively.

Lemma 3.6: Val € L?,[(®,a7] € L? and dag: € L%

Remark that if (a,¢) € Hc, then U, is contractible, since H¢ is so.
Notice that the gauge group G; ,, = G5, N G. is contractible since elements
in G, can be considered as gauges in R®. We proceed to prove that U,
is contractible as follows.It will be shown that, with new gauges in G ,
Vac: € L% Indeed, G: » acts to preserve the polarization a = al + a7 and
it acts on a® as follows. Let g(z) = exp(f(z)e(2)) for large |z|, then

ag(C’) = Q¢+ — df (310)

Notice that, for any r > 0, H!(BS(0),R) = 0. As Lemma B4.5 of {20] or
Lemma 4.2 of [8], the following Lemma 3.7 follows from the Hodge theorem.

Lemma 3.7: There exists a continuous map
g:U.— g;,oo (3'11)
which induces a continuous map

U, — He : C' v g(CYC' - C. (3.12)

Thus U, is contractible. By Lemma 3.5, € !(e) is the classifying space
for the gauge group G2, é7!(e) = BG:.

Lemma 3.8: G is contractible if H1(X,Z) = 0.

Proof: Similar to that of Theorem 3.4 as follows. Assume that H;(X,Z) =
0. Let f: S™ — G? be a base-preserving map. f is then homotopically trivial
as follows. Consider f as a base-preserving map f : S® x M — SU,. By the
obstruction theory, f is homotopic to a base-preserving map §: $* — G? oos
since there is no obstruction to deform fign sy, into the identity. Since G
is contractible, Lemma 3.8 is proved.

Corollary 3.9: ¢ is a homotopy equivalence when Hy(M,Z) = 0.
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4. A Weak Convergence Theorem

In this section, we prove a weak convergence theorem about sequences of
monopoles on M and give a classification of the structure of the end an,oo
of the moduli space MX,. As in [28], M, is a smooth, orientable manifold
with a perturbation. As (3.6) of [1], it has a complete Riemannian metric
which is defined by

ICHE = 1V.aCli3 + 1112, <IIl3- (4.1)

It is shown that, a sequence {[C;]} C M, has always a converging subse-
quence {Cj;,} if the centers of {{C;]} form a bounded set on M. As a corol-
lary, an,oo has k-regions (open sets) which consists of monopoles which
have [ (1 <! < k) charge of energy concentrated around the infinity of M.
As a more detailed picture, a monopole [C] € an,oo is approximately a
“gluing” of k;-monopoles on M with " k; = k whose centers are far away
from each other.

The weaker convergence theorem is essentially proved in Wang [28]. The
reader may compare also AH {1]. Here we give a proof which is technically
simpler. The weak convergence theorem will be a key in Section 6 to prove
that M¥, indeed has a natural compactification.

4.1 A priori estimates in the polar gauge. In Section 2.3, we list
a few a priori estimates on monopole solutions on M. To prove the weak
convergence theorem and also the blow-up phenomenon, we need a priori
estimates of monopoles on M which are in the polar gauge. The a priori
estimates may have independent interests elsewhere.

Let C = (A,®) € C* be a configuration on M which is in the polar
gauge. In the local coordinates, write

3
A= Z A,’d.l’i, Fy= Z Fi]'dl‘i A dz?
=1 1<i<5<3

on M;. As Lemma 2.1 of {25], computing directly from 3, z'A; = 0, there
are the following identities:

; 0 0%
Z;I Fj = 5(r4;),(0:,ds®) = e (4.2)

12



As a corollary, C = (A, ®) can be estimated as follows: Pointwisely

d 0o
(rd)| £ T|FA|7|5;| < |da®|. (4.3)

5

Lemma 4.1: Let C = (A, ®) be a monopole of charge k£ and mass m on
M which is in the polar gauge. Then, for any & € S?,

lim @(rg) = &},(£) (4.4)
exists and there is a constant K = K (k, m), such that,

|B(x) ~ &n(2)] < — (4.5)

K
k2

Proof: By Theorem 2.6 and (4.3), for ro > r; > 2s,

|8(ra) — B(r2)] < / |4 (sd)|ds < /r” KEm) s (46)

2
T1 1 s

which is convergent to 0 as r2,7; — oco. Thus ®F (2) exists. (4.5) is clear
by (4.6).

We need gauges both in G§ and G2 to estimate A. As Proposition 9.3
of [23], choose gauge in Gj, such that,

1A = Tlicoar,y € Kl Fallzan,) < K(k,m), (4.7)

where I' is a flat connection on M,,. To establish a decay estimate for
A, choose a further gauge in G, such that, T' is supported on M,. Note
that, this can be done since 7 (My) = 0. By (4.7), [|Allcoom,) < K(k,m).
Integrating (4.3), there is

|z|

Al(2) < K (kym)(1+1n ) fa] (4.8)

with C in the polar gauge.

Remark 4.2: It may be true that |A(z)| < K/|z| for some constant
K = K(k,m) when C is in the polar gauge. Note that ®F (#) is a smooth

13



map from 52 to §? of degree k. Let ®*(2) = & (#)/m. Then &"* is inde-
pendent of m. Ineed, ®* is a universal, SO3-symmetric map from S? to §2
of degree k. It is intuitively as follows. In the “telescope” S% which is at
the infinity, the images of [C] € M¥, are all centralized and are the same,
disregard of where are the centers of [C], or what is exactly the monopole.
We will return to this fact and give it a proof in Section 5.1.

4.2 The weak convergence theorem. With the a priori estimates,
the weak convergence theorem can be proved as follows.

Theorem 4.3: Let {C; = (4;,®;)}2, be a sequence of monopoles of
charge & and mass m on M which has the following property: for any € > 0,
the e-centers of {C;} form a bounded set on M. Then there is a subse-
quence ¢, of the following significance: there is a sequence of gauges {g;, },
such that, {g;,(C;,)}22, converges to C' € CX¥ on M in C*®-norm.

Proof: We will prove that {[{Ci]} has a subsequence {[C;,]} which is
convergent in the C%norm. The C'*-convergence follows then from a stan-
dard boot-strapping argument (see cf. [23]). (i) As (4.7), choose gauges in
Gg such that

14i = Cllcoar,y < KIF(A)l|2(ary,) < K (k,m), (4.9)

where I' is a flat connection on M,, which is supported on M;. Thus
{Ci} C C°%M,) is bounded. By boot-strapping, {(4;,9,)} C CY(M,) is
also bounded. Thus {C;} C C%(M¢) is bounded and equi-continuous, there
is a subsequence {C,} of {C;} which is convergent in C°(M,). For conve-
nience, denote by C, = (.

(ii) Choose gauges in G% such that {C.,} are in the polar gauge. Notice
that the centers of {C,} form a bounded set, there is a constant K, which
is independent of v, such that,

|A,|(z) < K(1+1n m)/|alc| (4.10)

s
Thus {C,} is bounded in CO(M¢). Notice that, by differentiating (4.2),
{VC.} can be similarly estimated as (4.8). Thus {C,} C Cl(MY¢) is also
bounded. Hence {C,} has a subsequence which converges in CO(M¢). De-
note again {C,} the subsequence. Combining (i), {C,} converges in Co(M).
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(iii) Let C = (A, ®) denote the limit. Notice that C is smooth on M by
boot-strapping and it satisfies the Bogomolny equation on M. Note that,
there is a Soblev constant u, such that,

llm —[@ulllLs < ullVa, ®ullr2 (4.11)

which is uniformly bounded, C has mass m. Notice that, the centers of {C,}
is a bounded subset, there is a constant K, which is independent of v , such
that,
K K
m- 18, < B Pyl < (4.12)
|z |=|?

by Theorem 2.6. As in [13], C has charge k. Theorem 4.5 is proved.

4.3 The structure of Mlél_oo. Let {[C{]} C M, be a sequence of
monopoles on M. By theorem 4.3, the sequence may approaches to the in-
finity of M only when there is a sequence of centers {z'} of {C;} drifting
away to the infinity of M. Let {z;}é‘zl be a set of centers of C;. Consider
the limit of this sequence of sets of centers as i — oo. There is first a clas-
sification of the end anm of Mk as follows.

Proposition 4.4: The end an'oo is a union of k regions M5, 1, -+, Mﬁl'k
which consists monopoles which have ! charges of energy concentrated around
the infinity of M.

A monopole [C] € an,, is thus approximately a “gluing” of a charge
(k — 1) monopole which has energy concentrated around Mj, and a charge
! monopole in R® whose energy is concentrated far away from the origin.
Hence MF, has the following “stratified” structure: M% = Uf:OMI:n,I' By
investigating further the decomposition of the sequence of sets of centers
{x;}§‘=1 as 1 — 0o, we have the following:

Theorem 4.5: Let {[Ci]} C M be a sequence of monopoles on M
which approaches to the infinity of M¥ . Then there is a subsequence i, a
partition k = Z§-=1 k; and sequences of centers zJ(j = 1,-+,1), such that,

{[C:,]} converges to a k;-monopole on any given ball B,(z1) C M.

5. A Blow-up Phenomenon
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In this section, we revise é to define another §03-equivalent map
é: Bim — Map,(5?,5%) (5.1)

which is a homotopy equivalence if H;(M,Z) = 0 and is compatible with the
geometry of an,oo- Indeed, the non-compactness of M, correpondences to
a standard blow-up phenomenon in the space Map,(S5?%,5?). We will show
that é(M?%,) has a natural compactification in Section 6.

5.1 A blow-up phenomenon. Let us first examine some simplest
examples of the blow-up phenomenon to motivate the definition of é which
1s slightly technical. Recall that € is defined as (3.4), where R is a fixed
function on C¥ in Lemma 2.1. Fix

R(C) = inf{R(C): |¥|(x) 2 T, le| 2 R(O)}. (5:2)
R
Note that R descends on B¥ as a continuous function.

Consider the simplest case £ = 1. Let {[C;]} C ML be a sequence
of monopoles on M approaches to the infinity of M%. By Theorem 4.5,
for large ¢, [C;] is approximately a 1-monopole in R? with center far away
from the origin O. Note that, in the polar gauge, the standard 1-monopole
C = (A, ®) in R? with zero at O can be written as

sinh

A=(1-d)ixo - dz
{ ¢ = (tar{hr - %)j (5:3)

where 0 = (01,02, 03) is the standard basis of su;. Let z; be the center of C;.
Then C; is approximately (A(m(z —z;)), m®(m(z —z;))) in the polar gauge.

Consider the map é. Note that {C;} are regularized. With {C;} in
the polar gauge, &([C;]) can be also defined as follows. Note that there is
Ai £ A(m) such that |®;(z)] > 2 with |z — z;| > Aj,

(5.4)

on 5%, where r; = |z;| + );.

Proposition 5.1: Let [C;] € M} i € N be a sequence of monopoles on
M which approaches to the infinity of M1 . Then there is a subsequence
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{[C:,]} of {[C:]} such that
(i) {#:,} converges to some &g € 52
(i) &((Ca))(&) — f=22 for & # 2o
(iii) lims_o+ imy—oo fp,(s,) det(DEN([C,]) = 2.

Proof: (i) is clear since S? is compact. To prove (ii), notice that

(1 + fgv)i - &,
(14 €,)E — &,

&([C,])(2) ~ | (5.5)
where ¢; = ]—i—h Since ¢; — 0, (ii) is proved. Notice that (5.5) blows up the
small neighborhood Bg(#¢) into the hemisphere, Lemma 5.1 is proved.

Remark: The blow-up phenomenon is not due to a conformal invari-
ance, such as the case of Yang-Mills fields. In fact, a straightforword com-
putation gives

lim lim ~VE((Cy)) = oo (5.6)

§—0t v—oo Bs(z0)

When k > 2, the simplest case is that the sequence {[C;]} C M, have
all the energy drifting to the infinity of M in the following pattern: thereis a
constant D > 0, such that, the centers {z7 };‘zl of [C;] form a set of diameter
d; < D. In this case, [C}] is approximately a monopole in R3 whose centers
are {z]}. As the case k = 1, there is a constant A; < A(k,m), such that,
|®|(z) > T when [z - :rf| > A(1 <7 <), Since C; is regularized,

E([Ci)(2) = di(rik) (5.7)
where 7; = max;<;<y, |z;| + A; with C; in the polar gauge.

Proposition 5.2: Let [C;] € M¥ ,i € N be a sequence of monopoles on
M whose centers approach to the infinity of M and form a set of diameter
d; < D. Then there is a subsequence {[C; ]} of {[C;]} which has the follow-
ing properties:

(i) {#;,} converges to some o € S?;

(ii) For any & # &0, €([C},])(&) converges to a universal map Qk(]%(‘h);

(iii) lims_ o+ imy—oo [, (z,) det(DE)([C,]) = 2k7.
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Proof: (i) holds as that of Lemma 5.1. (ii) Consider the corresponding
subsequence C', = Cj,. The convergence of &([C;])(Z) can be argued as fol-
lows. (A) When [C,] is approximately the gluing of k single monopoles in
R? whose zeros are far apart from each other as that of Definition 7.1 of IV.7
of JT [15], C, = (A,,®,) can be explicitly given. In this case, &([C,])(£)
can be shown explicitly to converge to d’k(]%'—_'fg-[) at & # &o9. The proof is
lengthy but not difficult. (B) When [C,] is not approximately the gluing
of k separate 1-monopoles, it is encircled by a domain D* in M¥ which
consists of monopoles which are approximately a gluing of separate single
monopoles. This can be envisaged as follows. For example, when [C,] has
two infinitesimally closed centers, the break-up of one center from another
in all directions form a domain encircling [C,]. The situation is similar to
that of Theorem 4.5. Since &é(D¥) converges to a point by (A), é([C.])(2)
converges as the case of (A). ®¥ is a universal map means that it is inde-
pendent of the sequence {[C}]}.

(iii) When [C,] is the gluing of k separate single monopoles, (iii) can still
explicitly proved. To prove the general case, notice that ®* is a degree k
map on S? by Remark 4.2. By (ii), on the complement B{(10),

lim lim det(De)([C,]) = 2km. (5.8)

§—0t v—=00 JBe(z4)

(We need in fact only to check the case k = 1, which is proved in Proposition
5.1.) Notice that é({C,]) has degree k, (iii) is proved.

5.2 The é-map. When the sequence {[C;]} C M&, approaches to the
inifinity of M¥% with centers {z} ;:11, approaches in different directions and
at different rates to the infinity of M, the map é no longer guarantees a
canonical blow-up as those in Proposition 5.1 and 5.2. We revise therefore
€ to define a map ¢ : Bi,, — Map,(5%,S?) which is compatible with the
geometry of an'oo. The definition of € is slightly technical due to the com-

plexity of the geometry of M¥% _ . compare [23] and [17].
Let C = (A,®) € Ck be a configuration on M. Recall that the reg-
ularized (A, ¥) has the following property: ¥ is continuous on M and

|¥|(z) — m uniformly as z — occ. Let

Qc={ze€M:|¥|(z)< -’2’3}. (5.9)
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Then Q¢ C M is a compact domain. Denote by {QJC 5’:1 the path compo-
nents of Q¢ and d; the diameter of Qé. For convenience, we pick 2’ € R3
in the following “canonical” way: If Q’é N M, = ¢, 2/ is the center of mass
of Q%

o = /ﬂ] xdz3/vol(Q£~). (5.10)

C

If Qé N M, # ¢, 7 is the center of mass of Qé \ M,.

- To deal with the case 7 — oo and {z’} fall apart, for each j, encircle
z? with a ball B, (y;) C R3 as follows. When 27 = O, take y; = O and
r; = d;. When 7 # 0,

: _ 1 . 1.
y; = (l&7] = A))#, A; = min(7|z* — 27|, 7[’]) (5.11)
i#; 4 4

and rj = dj+A;. Note that {B:,(y;)} do not intersect each other and B,,(0)
if 27 — oo and {z’} fall apart.

Define the connected sum 533(0)#531(yj)#---#Sfl(yI) by ballooning
each 5,2J (y;) to S2,(0) as follows. If B, (y;)NB2,(0) is not empty, 533(0)#Sfj(yj)
is the boundary of By,(0)UB, (y;). If B2,(0)NB,(y;) = ¢, then S%,(O)#Sfj(yj)
is connected by the tube in R® which has small radius 6; = min(lﬁ—l,%)
and is centered along the line L; : {z = 37 : t € R}. Note that, when
B, (yi) N B;,(y;) # ¢ for some ¢ and j, we consider S2,(0)# - - -#52 (1) as
an immersed 2-sphere in R3. Fix a parametriztion

pi S SLO0)# - #5%(w) (5.12)

such that, if z? £ 0, ' , ,
w(#) = (|2°] + ;). (5.13)

The map ¢ is then defined as follows. Let [C] € MX, be a configuration

on M. Choose a representative C = (A, ®) such that C is in the polar gauge.
Define

E([C)) = i ST (0)# - #S(w) — §° (5.14)
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and é = é' o . € is clearly §0O3-equivalent.

For any e € Map;(5?, 5?), define I(e) € By, as (3.5). Recall that I(e) is
regularized and is in the polar gauge. Notice that |®| = m on Ms§,, 27 = 0.
It implies that é o I is a diffeomorphism. Thus é is a fibration and I is an
imbedding.

Proposition 5.3: ¢ is a homotopy equivalence if H,(M,Z) = 0.
Proof: Similar to that of Corollary 3.9.

Consider the restriction of é on M¥%. Let [C] € ME be a monopole
on M. Consider the set Q7. By Theorem 2.6, the diameter od QL has a
bound D = D(k,m). Let C = (A, ®) be in the polar gauge. Notice that
éisfj (v;) = $. As Proposition 5.2, there is the following standard blow-up

phenomenon.

Proposition 5.4: Let {[C;]} C M, be a sequence of monopoles on M
which has a sequence of centers {z;} approaches to the infinity of M and
carries away ! charges of energy. Assume that &, — #¢ € S2. Then there is
the following: o
I — Ig

|2 — &0

lim &([Ci))(z) — &( ) (5.15)

where = y; + r;z € Sfj(yj), T # &o. Moreover,

lim lim det(Dé)([Cy]) = 2In. (5.16)

§—0% i—00 J By (o)

6. The Comapctification of &(MK )

In this section, we prove that é(M¥X,) C Map,(S?, §?) has a natural com-
pactification. The compactification is based on the weak convergence theo-
rem 4.3 and the fact that the map é defines a canonical blow-up. Let é(ME )
denote the compactification. We prove also that, when H,(X,Q) =0,
é(M£E ) defines at least a Z,-fundamental class of dimension (4k — 1) when
k is in the stable range k > 2. We do not discuss the orientation of é(ME )

here.
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6.1 The compactification of é(eril). Let us now prove that the space
é(MF ) has a natural compactification. As in DK [5] and FM [11], we call
a pair (é([C]), (£}, +,4')) an ideal image if [C] € M and (&!,---,2") is
an unordered [-tuple of points of §2.

Let {[C;]} € M be asequence of monopoles on M and (é([C]), (z1,---, 3%,
e —r’

k1
o, &t . &Y with T k; = I be an ideal image. We call {¢([C;])} weakly
ke
converges to (é([C]), (!, - - -, %)) if {{C;]} has sequences of centers {z]}}_,,

such that, zJ — oo and carries away k; charges of energy, :cf — &7, and

(i) {é([Ci])} converges wealky (i.e. on any compact subset of M) to
é([C)); ,

(ii) é([C:])} has the standard blow-up at {#’} as follows:

. T #
e([Ch(z) — @ J(|§: - ijl) (6.1)
for y; + r;& € S? (y;) with & # # and
lim lim detDé([C;]) = 2k . (6.2)

§—0t t—oc 86(5‘1)

We thus define the compactificatin é(M£,) of é(ME,) to be
BMEY) = e(MEYUE(MET) x S2U - e MO) x (ST (6.3)

with the topology given by the weak convergence. It is easy to see that this
topology is second-countable, Hausdorff and metrizable. é(ME) is embed-
ded as an open subset of é(M¥X ). More generally, the induced topology of
the different strata é(MZ%"!) is the usual one.

Remark 6.1: Note that é(MEX ) is not necessarily dense in the com-
pactification. We may also define é(M£X,) to be the completion of é(ME)
in the space of ideal images with the topology given above. It seems that it
does not make a difference for our purpose.
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Remark 6.2: Note that a 0-monopole C = (A, ®) has zero energy,
Fp =0,d4® = 0. Thus |®| = m and & defines a splitting

M xsu; = (M xR)@ &t (6.4)

where M x R is generated by ® and &+ is the complement. Note that A
defines a flat connection on &+,

MY ~ Hom(m M, U(1))/+1 (6.5)

where {£1} acts as the flipping on the diagnal of B € SUs,. (6.5) is well-
known as the “pillow case”. It has dimension b, = dim H'(M,R). Ana-
lytically, C' is gauge equivalent to (w,m7), where w is a harmonic 1-form
supported on M,. Note that (w,m7) is in the polar gauge, é(M%) = 1
which is a point.

Theorem 6.3: The space é(M* ) is compact.

Proof: Let {[Ci]} be a sequence in é(Mk ). Passing to a subsequence,
{[Ci]} is in é(METY) x (52) for some | < k. Note that S2 is compact. By
Theorem and 4.3 and 4.5, the sequence é([C;]) with [C;] C Mk has the
following properties: it has a subsequence, denoted again as {é([C:])}, such
that, (i) {[Ci]} convergens weakly on M to a k — | — I’ monopole on M,
(ii) there is a partition k — [ — I’ = Egv___l k;j and sequences of centers {z}
( =1,---,N), such that, {27} — oo, {27} carries away k; charges of en-
ergy to the infinity of M and &} — &’ € §2. By Proposition 5.4, {&([Ci])}
converges in (M=) x (§2)". Theorem 6.3 is proved.

6.2 The fundamental class & ME,). To ensure that é(M&X ) repre-
sents a fundamental class of dimension (4k — 1) for k > 2, we need to prove
two things: (i) The map ¢é is an imbedding on an open subset of Mk , thus
é(M%E)) has dimension (4k — 1); (ii) In the stable range k > 2, the lower
stratas M%~! x (§2)! have codimension greater or equal than 2 in é(Mk).
We do not discuss the orientablity of é(M¥ ) here.

Lemma 6.4. Assume that H;(X,Q) = 0. Then, for any k € N, there
is an open set & C M¥, on which é is an imbedding.

Proof: Consider the open set 2/ which consists of monopoles [C] € M¥
whose energy is concentrated around k different points xy,-- -,z which are

22



far away from each other and the compact set M,,. Then [C] is close to
a 0-monopole on My,. When H{(M,Q) = 0, as in the case in [28], U is
diffeomorphic to the open set ' which consists of monopoles in R® whose
energy is concentrated around the k different points z;,--,zx € R? and [C]
is approximately the gluing of the k single monopoles which have zeros at
x; respectively. Similar to (5.4), ¢ and its differentiation can be explicitly
identified on each sphere S7 (y;). €' is an imbedding on U.

Lemma 6.5: When H{(M,Q) = 0 and k£ > 2, the lower stratas of
é(MZE)) have codimension greater or equal than 2 in é(MX).

Proof: By Lemma 6.4, when H{(M,Q) = 0 and k > 2, the lower strata
e(MFE1 x (8%} with [ < k has dimension

Ak =D —1+42 < (4k—-1)—2 (6.6)

and the lowest strata é(M%) x (5?)* has dimension 2k < (4k — 1) — 2.
Lemma 6.5 is proved.

Corollary 6.6: When H (M,Q) = 0 and k > 2, é(M£E,) defines a Z5-
fundamental class of dimension (4k-1).
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