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Abstract. Since its earliest days, the Worldwide LHC Computational Grid
(WLCG) has relied on GridFTP to transfer data between sites. The announce-
ment that Globus is dropping support of its open source Globus Toolkit (GT),
which forms the basis for several FTP client and servers, has created an opportu-
nity to reevaluate the use of FTP. HTTP-TPC, an extension to HTTP compatible
with WebDAV, has arisen as a strong contender for an alternative approach.
In this paper, we describe the HTTP-TPC protocol itself, along with the cur-
rent status of its support in different implementations, and the interoperability
testing done within the WLCG DOMA working group’s TPC activity. This pro-
tocol also provides the first real use-case for token-based authorisation for this
community. We will demonstrate the benefits of such authorisation by showing
how it allows HTTP-TPC to support new technologies (such as OAuth, OpenID
Connect, Macaroons and SciTokens) without changing the protocol. We will
also discuss the next steps for HTTP-TPC and the plans to use the protocol for
WLCG transfers.

1 Introduction

The primary driver for wide-area data movement for all LHC experiments is bulk data move-
ment between storage services. This bulk data movement serves to pre-stage data to be pro-
cessed by production systems or to increase data replication to make it more available for
analysis. The technique to perform these transfers is third-party copy (TPC); in TPC, a cen-
tral entity (the ‘third party’) contacts a source and destination storage endpoint to facilitate a
transfer from the source to the destination. This provides for central management and coor-
dination of transfers but allows for data to move directly between the storage systems. The
high-level concept is illustrated in Figure 1.

In 2017, Globus announced the retirement of the Globus Toolkit, which served as the
reference implementation for GridFTP protocol [3, 19]; this has increased interest into a
number of alternatives such as HTTP [10]. HTTP is protocol that underpins the World Wide
Web, making it one of the most common protocols on the planet - meaning there is a large
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Step 2:
Data is transferred directly between sites

on the data channel.

Step 1: Third-party contacts both sides to
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Figure 1. The basic concept behind TPC: an entity independent of either storage service coordinates
direct transfer of data between the source and destination.

community of experts and many mature implementations. Unlike GridFTP, utilizing HTTP
does not expose the WLCG community to the risks of relying on a specialized protocol.

The initial work to adopt HTTP as a third party transfer protocol within the WLCG com-
munity was outlined in [9], following activities descripted in [14]; since then, the protocol has
evolved and matured into what we term “HTTP Third Party Copy” (HTTP-TPC), as described
in Section 2. Further, the WLCG community has formed a working group around Third Party
Copy as part of the Data Organization, Management, and Access (DOMA) initiatives; as
outlined in Section 3, this working group is testing and developing both HTTP-TPC and third
party copy extensions for XRootD [15]. This has allowed for the continued growth of the
activity - both in maturing implementations so they can be used in production and further
evolving the protocol as described in Section 4.

2 Background

In preparation for the Run 1 of the LHC, a number of transfer protocols were considered by
the LHC community before it eventually settled on GridFTP with a reference implementation
provided by the Globus Toolkit [4] (at least one other production-quality implementation has
been written by the dCache project [13]). This transfer protocol was augmented with the
Storage Resource Management (SRM) protocol [23] which helped manage load-balancing
between servers and the storage end-points. Overall, the GridFTP protocol has served the
community faithfully for nearly 15 years.

By the end of Run 2, several events transpired that motivated the community to re-evaluate
its use of GridFTP as a TPC protocol. First, many sites began to retire their SRM endpoints
as unique space management features of SRM were largely never used, GridFTP could be
used directly and native load-balancing solutions were introduced. Second, the Globus orga-
nization’s retirement of the Globus Toolkit [11] meant the implementation of GridFTP in use
by several of the storage systems had no original developer support. This led to the formation
of the WLCG DOMA TPC working group during the WLCG DOMA face-to-face at CHEP
2018, charged with examining alternative options and growing nascent ecosystems.

For the HTTP-TPC, as explained in [9], the key concept is the use of the WebDAV COPY
verb. The client sends an HTTP request using COPY to the active endpoint of the transfer
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Request 1:
COPY /store/path HTTP/1.1
Host: storage.site1.com
Source: https://storage.site2.com/store/path.src
Authorization: Bearer abcdef
Copy-Header: Authorization: Bearer 12345

Request 2:
GET /store/path.src HTTP/1.1
Host: storage.site2.com
Authorization: Bearer 12345

Figure 2. The basic mechanism of HTTP-TPC, reproduced from [9]. Here, we illustrate “pull mode",
where the third party copy client contacts the destination site and issues a request that the destination
downloads (pulls) the data from the source over HTTP.

along with another URL in an HTTP header. For pull mode, the active endpoint is given a
Source header; for push mode, the active endpoint is given a Destination header. The
active endpoint then downloads or uploads, respectively, from the passive endpoint. Features
of note for the HTTP-TPC protocol include:

• Separation between the “framing” and the “transfer” protocol. The URL sent to the active
endpoint does not have to use https://; for instance, the dCache implementation has
shown that the HTTP-TPC active endpoint can be given a GridFTP URL to move the data
over GridFTP (potentially useful for enabling a transition from GridFTP).

• The active endpoint sends continuous performance markers back to the TPC client, allow-
ing the client to monitor progress (cancelling the transfer as necessary).

• Ability for transfers to be load-balanced using HTTP’s built-in redirection response.

• When in ‘pull’ mode (the active endpoint is the destination), multiple pipelined GET re-
quests can be load-balanced across multiple parallel TCP streams, allowing a single trans-
fer to proceed faster compared to when a single TCP stream is used.

As of March 2020, there are four independent implementations of the HTTP-TPC proto-
col, in the dCache, DPM, StoRM [1], and XRootD software products. Further, as XRootD
often forms the basis of other storage services in the WLCG community, services like EOS
also have HTTP-TPC support without needing a separate implementation.

3 Building the HTTP-TPC Community

We found that the key to maturing the use of HTTP-TPC beyond initial specification and
implementation is to build a user community. The primary mechanism thus far has been
the WLCG DOMA TPC working group; in the 18 months that followed the work done in
[9], this group (with co-leads Bockelman and Forti) has coordinated the development and
finalization of HTTP-TPC, helped deploy a test-bed for HTTP-TPC, and organized a testing
infrastructure. Within the testing infrastructure, the working group operates three types of
tests: nightly, integration, and full scale.

The nightly “smoke tests” [22], demonstrate compliance and functionality with the
HTTP-TPC protocol by performing a small transfer against a known working endpoint in



Figure 3. Example graph from the CERN monitoring system displaying the number and volume of
HTTP-TPC transfers in the scale test-bed per 6 hour interval. Note that maintaining 20TB of data
movement every 6 hours for a week adds up to 560TB of data transferred.

addition to simple tests for acquiring a transfer token from the endpoint (Section 4). These
tests are driven by a simple script and are meant to be easily reproducible by developers or
administrators.

As of March 2020, the HTTP-TPC ‘smoke test’ test-bed has 49 participating endpoints.
To catch bugs and issues as early in the development process as possible, we include end-
points from across the full software development life cycle: from endpoints on production
sites to integration test-beds to developer instances. This approach allows us to test across
multiple versions (e.g., stable releases transferring against the latest nightly builds) in addi-
tion to across multiple implementation.

The continuous integration tests the ‘transfer matrix’ between any two protocol endpoints
in the system at a small-scale (2-3 GB per hour), allowing the working group to understand
behavior at a modest scale and to monitor for a broader set of pairwise issues. These are
driven by a dedicated instance of Rucio [20], the data management solution used by the
ATLAS experiment. Unlike the smoke tests, these integration tests include the full stack of
WLCG transfer utilities. While failures are more difficult to reproduce in this environment,
these tests are far more representative of a production transfer activity. For example, failures
due to the interaction of the FTS3-based [7] TPC client and the storage service may require a
full FTS3 server to reproduce.

Finally, full-scale tests are also driven by Rucio; other than scale, these are identical to
the continuous integration tests. These scale tests are driven by a driver script that uploads
a randomly-generated one terabyte dataset to an endpoint, then generates a rule to replicate
the dataset to all other endpoints in the system. Once the dataset is completely transferred,
the driver script triggers a deletion of the replicated datasets; after the deletion is complete,
the same rule is installed again. With this setup, we have demonstrated the ability to transfer
approximately half a petabyte of data per week. See Figure 3. This allows us to monitor for
issues at scales similar to the production system.

4 Evolving Approach

One of the strongest motivations for using HTTP as the base protocol in TPC is that it allows
for a number of authorization schemes. The WLCG has historically used the Grid Security



Infrastructure (GSI) [12] with various extensions; at its core, GSI is based on X.509 PKI. As
GSI is based on X.509, its infrastructure can be used to associate a TLS session for HTTPS
and authenticate a client and the TLS level. Previously in [21], work was done to delegate a
grid proxy to the HTTPS-based active endpoint; with the client’s delegated identity, the active
endpoint could then authenticate its transfer request to the passive endpoint.

However, this use of GSI suffers from the same issue as GridFTP: the retired Globus
Toolkit was the reference implementation. The WLCG DOMA TPC working group has
instead settled on using bearer tokens to authenticate transfers. A number of bearer token
based schemes have been proposed, including SciTokens [24] and the WLCG Common JWT
profile [5]; these will eventually allow a transfer to be performed completely without the use
of a X.509 client credential. As a transition mechanism, we have defined a way for clients
to request a token from the storage endpoint, provided the request is made over a HTTPS
connection that is GSI-authenticated.

First, the client must perform OAuth2 metadata discovery [18] against the storage end-
point to determine the associated (storage-specific) token endpoint. Then, an access token
request is made against the token endpoint using the client credentials flow [16]. Unlike
a typical client credential flow, when the client authenticates via an HTTP header (such as
the Authorization header), this request must be done over the GSI-authenticated HTTPS
channel. Based on this token request and the client’s authorization, the storage endpoint will
issue an access token that can be used as part of the HTTP-TPC infrastructure. Although the
token format is considered opaque (implementations have been done both based on JWT [17]
and Macaroons [8]), the client must ask for one or more of an agreed-upon set of scopes of
the form $ACTIVITY:$PATH. If permitted, the returned token will permit the bearer to per-
form the specified activity ($ACTIVITY) for any resource inside the normalized $PATH. The
defined authorizations (based upon the work done in dCache for its initial Macaroon support
[6]) are:

• UPLOAD: Authorization to create new and upload contents, provided that existing data at
the endpoint is not altered.

• DOWNLOAD: Authorization to read data.

• DELETE: Authorization to delete resources from the endpoint.

• MANAGE: Change file metadata at the storage endpoint and perform operations that may
overwrite existing data.

• LIST: List the contents of a directory resource at the storage endpoint.

Beyond authorization, the experience gained in the WLCG scale tests has shown that,
while HTTP-TPC can be run in either push or pull mode, pull mode has become preferred.
Pull mode allows the active endpoint to download with the HTTP GET requests; as GET is
idempotent, the endpoint can issue numerous requests in a pipeline or partition them over a
number of TCP streams to improve overall throughput. Further, the active endpoint is the
most natural entity in the system to manage a queue of transfer requests. Given the ability to
write to disk is considered a more scarce resource than reading, sites have preferred the pull
mode.

5 Conclusions

Not only is third party copy an essential technique in the WLCG infrastructure, it is how the
majority of the LHC data is transferred. Over the past several years, the HTTP-TPC protocol
has emerged as viable replacement for the venerable GridFTP protocol. While the broad
outlines of the protocol have been used by the community for years, the protocol has evolved



based on operational experience and the community evolution away from using X.509 client
credentials. These activities have been led by the WLCG DOMA TPC working group which
organizes several types of test-beds. A key activity in the coming months will be to evaluate
fully token-based data transfers, with authorization following the rules defined by the WLCG
JWT profile [5] and leveraging the integration with the WLCG IAM token issuer [2].

As we go beyond tests, LHC experiments are beginning to consider the use HTTP-TPC
in their production infrastructure; we expect to see significant, at-scale tests in the lead-up to
Run 3.
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