

Latest ATLAS VBF/VBS results

Joany Manjarrés
on behalf of the ATLAS collaboration

VBS and VBF: measurable, but not measurable

- Protons in LHC serve as source of vector boson beams
- Not possible to separate VBS (or VBF) in a gauge invariant way → Measure EWK V(V)jj production

■ Usually QCD mediated production of V(V)jj at the LHC has larger cross sections than the EWK production → crucial for a precise measurement to understand and reduce the QCD background!

Published measurements

What has been done so far, and what will be covered in this talk?

Published measurements

What has been done so far, and what will be covered in this talk?

	Channel		Energy (Luminosity)	Observed (Expected) σ	
VBF	W± jj	Eur. Phys. J. C 77 (2017) 474	7, 8 TeV (5, 20 fb ⁻¹)	> 5σ	Covered in this talk!
	Z jj	<u>2006.15458</u>	13 TeV (139 fb ⁻¹)	> 5σ	
VBS	W±W± jj	Phys. Rev. Lett. 123 (2019) 161801	13 TeV (36 fb ⁻¹)	6.5σ (4.4)	
	W±Z jj	Phys. Lett. B 793 (2019) 469	13 TeV (36 fb ⁻¹)	5.3σ (3.2)	
	W±γ jj	-	-	-	Covered in this talk!
	Zγ jj	Phys. Lett. B 803 (2020) 135341	13 TeV (36 fb ⁻¹)	4.1σ (4.1)	
	ZZ jj	2004.10612	13 TeV (139 fb ⁻¹)	5.5σ (4.3)	
	W±V semi-lept jj	Phys. Rev. D 100 (2019) 032007	13 TeV (36 fb ⁻¹)	< 3σ	

Electroweak Zjj production

EWK Zjj differential cross sections

- Signal region built requiring high di-jet invariant mass, no hadronic activity in between the tagging jets and Z boson centrality
- QCD background (strong) has the largest contribution over the spectra
- Large QCD background miss-modeling, huge efforts to extract it in a data driven way!

Signal extraction steps

Binned maximum likelihood fit performed to reduce dependence on MC mis-modeling. In the fit:

- QCD background is estimated → 4 different regions using two uncorrelated variables:
 - Bin-by-bin weights for strong Zjj, separate for low and high centrality and linked within the gap jets bins
 - Linear correction applied to strong Zjj to correct for residual dependence on the N gap jets
- 2. Bin-by-bin electroweak Zjj signal strengths (same in all regions)
- 3. Procedure repeated for different MC generators
- 4. The final EWK signal is taken to be the midpoint of the envelope of yields obtained using the three different QCD Zjj event generators

Regions for data-driven background

Zjj differential cross sections results

Differential cross sections extracted for EWK only and EWK+QCD production as a function of four observables: m_{jj} , $I\Delta y_{jj}$ I, $p_{T,II}$ and $\Delta \varphi_{jj}$

Effective Field Theory interpretation

To capture the EFT effects cross sections can be written as :

- Expectation: EFT-SM interference (linear) leading contribution
- Different distributions show different sensitivities to the linear and quadratic terms (Madgraph SMEFT at LO)
- Limits extracted using the measured EW Zjj differential cross-section as a function of the parity-odd Δφ_{jj}

Wilson	Includes	95% confidence	<i>p</i> -value (SM)	
coefficient	$ \mathcal{M}_{d6} ^2$	Expected	Observed	
c_W/Λ^2	no	[-0.30, 0.30]	[-0.19, 0.41]	45.9%
	yes	[-0.31, 0.29]	[-0.19, 0.41]	43.2%
\tilde{c}_W/Λ^2	no	[-0.12, 0.12]	[-0.11, 0.14]	82.0%
	yes	[-0.12, 0.12]	[-0.11, 0.14]	81.8%
c_{HWB}/Λ^2	no	[-2.45, 2.45]	[-3.78, 1.13]	29.0%
	yes	[-3.11, 2.10]	[-6.31, 1.01]	25.0%
$\tilde{c}_{HWB}/\Lambda^2$	no	[-1.06, 1.06]	[0.23, 2.34]	1.7%
	yes	[-1.06, 1.06]	[0.23, 2.35]	1.6%

Strongest limits when pure dim-6 are excluded from the theoretical prediction! Quadratic: $---|\mathcal{M}_{d6}|^2$ EFT-SM linear: $---2\text{Re}(\mathcal{M}_{\text{SM}}^*\mathcal{M}_{d6})$

full EFT: $--|\mathcal{M}_{d6}|^2 + 2\text{Re}(\mathcal{M}_{SM}^*\mathcal{M}_{d6})$

 $p_{\mathsf{T.II}}$ [GeV]

 m_{ii} [TeV]

 $|\Delta y_{ii}|$

9

Electroweak ZZjj production Electroweak jet e, µ, e, µ, e, µ, jet

000000000 9

60000000 g

 \sim z

YonRes

QCD background

ME accuracy

NLO (0j), LO (1-3j)

NLO (0j), LO (1-3j)

LO

EWK ZZjj production

- \blacksquare ZZjj analysis performed in two channels $\ell\ell\ell\ell$ jj and $\ell\ell\nu\nu$ jj
- Interesting channel to probe neutral aQGCs
- Different background composition, data driven estimation for the main components
 - $\ell\ell\nu\nu$ jj signal region:
 - WZ estimated in 3-lepton control region
 - Non-resonant (ttbar and WW) estimated in eµvv control region
 - - QCD ZZjj control region with low m_{jj} or $\Delta y(jj)$ included in the fit

High centrality region to

verify m_{ii} modeling

Generator

MG5_NLO+P_Y8

Sherpa 2.2.2

Sherpa 2.2.2

Process

ZZ EWK

ZZ QCD

WZ

EWK signal

EWK ZZjj results

Extract inclusive cross-section EWK+QCD in the signal region

	Measured fiducial σ [fb]	Predicted fiducial σ [fb]
$\overline{\ell\ell\ell\ell jj}$	$1.27 \pm 0.12 (\mathrm{stat}) \pm 0.02 (\mathrm{theo}) \pm 0.07 (\mathrm{exp}) \pm 0.01 (\mathrm{bkg}) \pm 0.03 (\mathrm{lumi})$	$1.14 \pm 0.04 (\mathrm{stat}) \pm 0.20 (\mathrm{theo})$
$\ell\ell u u jj$	$1.22 \pm 0.30 (\mathrm{stat}) \pm 0.04 (\mathrm{theo}) \pm 0.06 (\mathrm{exp}) \pm 0.16 (\mathrm{bkg}) \pm 0.03 (\mathrm{lumi})$	$1.07 \pm 0.01(\text{stat}) \pm 0.12(\text{theo})$

■ Then use Multivariate Discriminants (MD) to separate the EWK component. Three MD fitted together

Observation!!

	$\mu_{ m EW}$	$\mu_{ ext{QCD}}^{\ell\ell\ell\ell jj}$	Significance Obs. (Exp.)
$\ell\ell\ell\ell jj$	1.5 ± 0.4	0.95 ± 0.22	$5.5 (3.9) \sigma$
$\ell\ell u u jj$	0.7 ± 0.7	_	$1.2 (1.8) \sigma$
Combined	1.35 ± 0.34	0.96 ± 0.22	$5.5 (4.3) \sigma$

Fiducial cross-section in agreement with the SM

Electroweak Zγjj production q γ e, μ get γ jet γ jet γ jet

EWK Zγjj production

- Electroweak Zγ+2j production not yet observed.
 - Strong evidence reported by both ATLAS and CMS with 13 TeV data
 - Latest ATLAS result using 2015+2016 data (36fb⁻¹)
- Interesting channel to probe neutral aQGCs (larger cross section than ZZ), sensitive to WWZγ vertex
- Analysis selection:
 - Uses an mll+mllγ cut to reduce FSR contributions
 - Veto b-jets
 - $\Delta \eta_{jj} > 1$, centrality $(Z\gamma) < 5$ and $m_{jj} > 150 \, \text{GeV} \rightarrow \text{Looser than the usual}$

VBS selections used

Simulation

Process	Generator	ME accuracy
Zγ EWK	MG5_NLO+P _Y 8	LO
Zγ QCD	Sherpa 2.2.2	NLO (0-1j), LO (3j)
Z+jets	Sherpa 2.2.2	NLO (0-2j), LO (3-4j)

Background estimation

■ QCD Zy+2j

 Normalization estimated from data (pre-correction 0.91), and then fitted in the signal region

- Z+jet: DD estimate of shape and normalization
 - 2D sideband method (photon ID, isolation), in region close to SR except: jet pT 30 GeV, mjj<150 GeV
 - Extrapolation to SR using ratio Z+jet/Zγ

ttbar γ:

- Pre-correction factor from data: 1.41 + fit in a CR
- Dedicated CR (b-CR): >=1 b-jet -> \sim 70% purity, 25% Z γ QCD.

Smaller backgrounds: WZ, Wt

From MC (less than 0.5% in SR)

Zγjj results

- **EWK** Zγjj signal extraction:
 - Fitted BDT distribution trained to separate EW signal from background (13 variables)
 - Simultaneous fit of signal region and b-CR

Evidence!!

 4.1σ expected and observed significance

Measured cross sections:

$$\sigma^{\text{fid.}}_{Z\gamma jj-\text{EW}} = 7.8 \pm 1.5 \, (\text{stat.}) \pm 1.0 \, (\text{syst.}) \, ^{+1.0}_{-0.8} \, (\text{mod.}) \, \text{fb}$$

$$\sigma^{\text{fid.}, \, \text{MadGraph}}_{Z\gamma jj-\text{EW}} = 7.75 \pm 0.03 \, (\text{stat.}) \pm 0.20 \, (\text{PDF} + \alpha_{\text{S}}) \pm 0.40 \, (\text{scale}) \, \text{fb}$$

$$\sigma^{\text{fid.}, \, \text{Sherpa}}_{Z\gamma jj-\text{EW}} = 8.94 \pm 0.08 \, (\text{stat.}) \pm 0.20 \, (\text{PDF} + \alpha_{\text{S}}) \pm 0.50 \, (\text{scale}) \, \text{fb}$$

Combined EW+QCD Zγjj cross-section also measured: same method and phase spaces, except for CRs which are excluded

$$\sigma_{Z\gamma jj}^{\text{fid.}} = 71 \pm 2 \text{ (stat.)} ^{+9}_{-7} \text{ (syst.)} ^{+21}_{-17} \text{ (mod.) fb}$$

$$\sigma_{Z\gamma jj}^{\text{fid., MadGraph+Sherpa}} = 88.4 \pm 2.4 \text{ (stat.)} \pm 2.3 \text{ (PDF} + \alpha_{\text{S}})^{+29.4}_{-19.1} \text{ (scale) fb.}$$

In agreement with the expectation. Large uncertainties from theory modeling!

Summary

- New differential cross-section measurement of electroweak Zjj production, with strong limits on new physics through an effective field theory interpretation
- Measurements of inclusive Vjj and VVjj production in VBF/VBS topologies are providing a stress test of perturbative QCD
 - Crucial to understanding the background modeling and to make public the relevant information! What do theorist need?

EWK Zjj production

- VBS measurements are still in their infancy!
 - Lots of new results in preparation with full run-2 data
 - For "precision" measurement, need to improve signal and background modeling uncertainties

Backup

EWK WZjj production

 $W^{\pm}Z \rightarrow \ell \nu \ell \ell$

Signal extraction strategy

 Boosted Decision Tree trained on simulation events, to separate WZjj-EW from backgrounds

■ 15 discriminant variables used

$$\begin{split} m_{jj}, \ N_{jets}, \ p_{T}{}^{j1}, p_{T}{}^{j2}, \ \eta^{j1}, \ \Delta \eta_{jj}, \ \Delta \varphi_{jj} \\ Iy_{I,W} - y_{Z}I, \ p_{T}{}^{W}, \ p_{T}{}^{W}, \ \eta^{W}, \ m_{T}{}^{WZ} \\ \Delta R(j1, \ Z), \ R_{p}{}^{hard}, \ \zeta_{lep} \end{split}$$

 Simultaneous fit of BDT in signal region with 3 Control region regions (WZ QCD, ZZ and tZj)

Observation!!

Results:

Observed (expected with Sherpa) significance is 5.3σ (3.2 σ)

Fiducial cross section measurement

$$\sigma^{\text{fid.}}_{WZjj-\text{EW}} = 0.57 \,{}^{+0.14}_{-0.13} \,(\text{stat.}) \,{}^{+0.05}_{-0.04} \,(\text{exp. syst.}) \,{}^{+0.05}_{-0.04} \,(\text{mod. syst.}) \,{}^{+0.01}_{-0.01} \,(\text{lumi.}) \,\,\text{fb}$$

■ LO Sherpa cross-section (No EW/QCD interference)

$$\sigma_{WZjj-EW}^{\text{fid., Sherpa}} = 0.321 \pm 0.002 \text{ (stat.)} \pm 0.005 \text{ (PDF)}_{-0.023}^{+0.027} \text{ (scale) fb,}$$

WWjj EW

47 %

EWK same charge WW production

 $W^{\pm}W^{\pm} \rightarrow \ell \nu \ell \nu$

Events

- Best EWK/QCD over background ratio!
- Main background WZ QCD mediated production:
 - Normalization taken from data
 - Shape taken from simulation
 - Theory uncertainties applied (PDF, scale, shower)

Signal extraction strategy → Fitting framework development

■ Simultaneous fit of dijet invariant mass (M_{jj}>200GeV) and WZ control region

Observation!!

Observed (expected with Sherpa) significance is 6.5σ (4.4 σ)

Why Vector Boson scattering is interesting?

■ Example: Cross-section or longitudinal $W_L^+W_L^- \rightarrow W_L^+W_L^-$ scattering

- Test of electroweak sector and EW Symmetry Breaking
- Complementary to "direct" Higgs boson property studies
- Differences in this sector will be indications of new physics

Why Vector Boson scattering is interesting?

Why Vector Boson scattering is interesting?

Testing the electroweak sector and EW Symmetry Breaking ATLAS

 $\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}$

Testing the electroweak sector and EW Symmetry Breaking ATLAS

 $\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}$

