As.Abada^a, Ph.Boucaud^a, M.Crisafulli^b, J.P.Leroy^a, V.Lubicz^b, G.Martinelli^{b,c}, F. Rapuano^{b,c}, M. Serone^b, N.Stella^b, and A Bartoloni^b, C. Battista^b, S. Cabasino^b, N. Cabibbo^d, E. Panizzi^b, P.S. Paolucci^b, R. Sarno^b, G.M. Todesco^b, M. Torelli^b, P. Vicini^b. The APE Collaboration

^a LPTHE, Université Paris-XI, 91405 Orsay, France[†]

^b Dip. di Fisica, Univ. di Roma 'La Sapienza'

^c Theory Division, CERN, 1211 GENEVA 23, Switzerland.

 $^{\rm d}$ Dip. di Fisica, Univ. di Roma 'Tor Vergata' and INFN , Sezione di Roma II, Via della Ricerca Scientifica 1, I-00133 Roma,Italy .

We present results for the radiative decay $B \to K^* \gamma$, obtained by using the Clover action at $\beta = 6.0$ on APE. The compatibility between the scaling laws predicted by the Heavy Quark Effective Theory (HQET) and pole dominance is discussed. The final result depends crucially on the assumed q^2 -dependence of the form factors.

1. Introduction

The hadronic matrix element which governs the radiative decay $B \to K^* \gamma$ is parametrised in terms of three form factors:

$$\langle K_r^*(\eta, k) | J_\mu | B(p) \rangle = C_1^\mu T_1(q^2) + i C_2^\mu T_2(q^2) + i C_3^\mu T_3(q^2),$$
(1)

where

$$C_{1}^{\mu} = 2\epsilon^{\mu\alpha\rho\sigma}\eta_{r}(k)_{\alpha}p_{\rho}k_{\sigma},$$

$$C_{2}^{\mu} = \eta_{r}(k)(M_{B}^{2} - M_{K^{*}}^{2}) - (\eta_{r}(k).q)(p+k)^{\mu},$$

$$C_{3}^{\mu} = \eta_{r}(k).q(q^{\mu} - \frac{q^{2}}{M_{B}^{2} - M_{K^{*}}^{2}}(p+k)^{\mu}). \quad (2)$$

and $J_{\mu} = \bar{s}\sigma_{\mu\nu}\frac{1+\gamma_5}{2}q^{\nu}b$; η is the polarization vector of the K^* and q the momentum transfer. When the emitted photon is real, T_3 does not contribute to the physical rate and $T_1(0) = T_2(0)$. At $q^2 = 0$, the physics of this decay is thus described by only one form factor, T_1 . The feasibility of the lattice approach has been demonstrated first by the work of Bernard et al. [1].

2. Scaling laws and q^2 dependence of the form factors

In order to obtain the form factors at the physical point, we need to extrapolate both to large meson masses and small values of q^2 . The final results critically depend on the assumptions made on the q^2 - and heavy mass-dependence. At fixed \vec{p}_{K^*} , with $|\vec{p}_{K^*}| \ll M_B$ in the B-meson rest frame, the following scaling laws can be derived [2]:

$$\frac{T_1}{\sqrt{M_B}} = \gamma_1 \times \left(1 + \frac{\delta_1}{M_B} + \dots\right)$$
$$T_2 \sqrt{M_B} = \gamma_2 \times \left(1 + \frac{\delta_2}{M_B} + \dots\right) \tag{3}$$

which are valid up to logarithmic corrections. On the other hand, "scaling" laws for the form factors at $q^2 = 0$ can only be found by using extra assumptions for their q^2 dependence. This procedure is acceptable, provided the "scaling" laws derived in this way respect the exact condition $T_1(0) = T_2(0)$. This is a non-trivial constraint: the q^2 behaviour of T_1 and T_2 has to compensate for the different mass dependence of the two form factors near the zero recoil point given in

^{*}Talk presented by Ph. Boucaud

[†] Laboratoire associé au CNRS

eq.(3). For example, the popular assumption of pole dominance for both T_1 and T_2 would give that $T_1(0) \sim M_B^{-1/2}$ and $T_2(0) \sim M_B^{-3/2}$, which is inconsistent.

The assumptions on the q^2 -dependence of the form factors can be tested directly on the numerical results, although only in a small domain of momenta.

3. Lattice set-up

The numerical simulation was performed on the 6.4 Gigaflops version of the APE machine, at $\beta = 6.0$, on a $18^3 \times 64$ lattice, using the SW-Clover action [3] in the quenched approximation. The results have been obtained from a sample of 170 gauge configurations and the statistical errors estimated by a jackknife procedure with a decimation of 10 configurations from the total set. For each configuration we have computed the quark propagators for seven values of the Wilson hopping parameter K_W , corresponding to "heavy" quarks, $K_H = 0.1150, 0.1200,$ $0.1250, 0.1330, \text{ and "light" quarks, } K_L = 0.1425,$ 0.1432 and 0.1440. Due to memory limitations, the propagators are "thinned". The matrix elements have been computed for an initial meson at rest and a final vector meson with momentum \vec{p}_{K^*} . We have taken $\vec{p}_{K^*} = 2\pi/(La) \ (0,0,0),$ (1,0,0), (1,1,0), (1,1,1), and (2,0,0), where Lis the spatial extension of the lattice. The initial (final) meson was created (annihilated) by using a pseudoscalar (local vector) density inserted at a time $t_B/a = 28$ ($t_{K^*} = 0$), and we have varied the time position of the current in the interval $t_J/a = 10 - 14$. Two procedures, denoted by "ratio" and "analytic" in the tables, have been used to extract the plateaux: the three point functions are divided either by the numerical two point functions ("ratio") or by an analytical expression ("analytic"). Details can be found in ref [4].

4. Results

From our data, if we assume a pole dominance behaviour for T_2 , the mass extracted from the fits with the pole mass as a free parameter is larger than the mass obtained from the axial two-point correlation functions. As a consequence $T_2(q^2)$ is flatter than predicted by pole dominance (see fig. 1). The values found in this way at $q^2 = 0$ are reported in table 1 as $T_2^{free}(0)$.

Figure 1. $T_2(q^2)$ as a function of q^2 for $K_H = .1330$. The curves show the pole dominance with either the lattice axial pole mass (dashed line) or with a free pole mass (full line).

In the case of T_1 , the absence of data at q_{max}^2 and the large errors in the data at high momenta make it difficult to test directly the validity of the pole dominance hypothesis. We can use the value for $T_1(q^2 = 0)$ obtained from the the condition $T_1(0) = T_2^{free}(0)$, together with the point at $\vec{p}_{K^*} = 2\pi/(La)$ (1,0,0) in a fit of T_1 to a pole dominance behaviour; the pole mass determined along this way for T_1 is compatible, though with large errors, with the mass of the corresponding lattice vector meson. More data (i.e. with a moving B meson) are needed to test this point more accurately. As a matter of comparison, we give in table 1 the values for $T_1^{pole}(q^2 = 0)$ $(T_2^{pole}(q^2 = 0))$ obtained under the assumption of a pole dominance with the lattice vector (axial) meson mass. Although the quality of our data is not accurate enough to draw a definite conclusion, they suggest that assuming T_2 flatter than pole dominance and T_1 following pole dominance gives a good description of our data. We call this option $m^{-1/2}$ -scaling. In fig. 1, the curve corresponding to the pole dominance for T_2 is also given $(m^{-3/2}$ -scaling); this scaling law

would follow from a dipolar q^2 -dependence for T_1 . We take the two possibilities, $m^{-1/2}$ - and $m^{-3/2}$ scaling, as representatives of a whole class of possible "scaling" laws.

Table 1

Form factors at $q^2 = 0$ extrapolated to the strange quark, assuming independence on the spectator quark. "ratio" and "analytic" are explained in the text. T_1^{pole} and T_2^{pole} are computed with the appropriate lattice meson mass for the pole dominance, T_2^{free} with the pole mass as a free parameter.

	ratio	analytic
$T_1^{pole}(0)\kappa_h = .1150$.286(35)	.297(34)
$T_2^{free}(0)\kappa_h = .1150$.280(52)	.301(56)
$T_2^{pole}(0)\kappa_h = .1150$.238(17)	.242(17)
$T_1^{pole}(0)\kappa_h = .1200$.298(33)	.309(37)
$T_2^{free}(0)\kappa_h = .1200$.293(40)	.309(40)
$T_2^{pole}(0)\kappa_h = .1200$.262(16)	.265(17)
$T_1^{pole}(0)\kappa_h = .1250$.311(32)	.322(31)
$T_2^{free}(0)\kappa_h = .1250$.310(30)	.320(28)
$T_2^{pole}(0)\kappa_h = .1250$.288(17)	.292(17)
$T_1^{pole}(0)\kappa_h = .1330$.331(31)	.339(30)
$T_2^{free}(0)\kappa_h = .1330$.345(19)	.348(18)
$T_2^{pole}(0)\kappa_h = .1330$.340(19)	.343(19)

The extrapolation to the physical region (i.e. the *B* mass) is performed following these two hypothesis, $m^{-1/2}$ - and $m^{-3/2}$ -scaling with linear and quadratic fits. The results are presented in table 2. We give also δ_1 , the coefficient of the 1/M corrections in the linear fit. It should be noted that in the $m^{-1/2}$ -scaling case, the 1/Mcorrections are smaller and the extrapolated value is less affected by the adjunction of a quadratic term than in the $m^{-3/2}$ -scaling hypothesis.

As a consistency check, we can first extrapolate T_1 to the B, at (small) fixed momentum, following the scaling law of eq. 3. We have used $\vec{p}_{K^*} = 2\pi/(La)$ (1,0,0). Then from a pole dominance with the physical vector meson mass $(M_V \sim 5.4 \text{ GeV})$ we get for the value of $T_1(0)$ the results 0.192(44) and .200(44) for the "ratio" and "analytic" methods respectively, in agreement with the results in table 2 $(m^{-1/2}$ -scaling). Table 2

The form factors at $q^2 = 0$ extrapolated to the physical *B* mass. δ_1 is the coefficient of the 1/M correction.

	ratio	analytic
$T_1^{pole}(0)$ fit $m^{-\frac{1}{2}}$ lin.	.203(28)	.213(27)
$T_1^{pole}(0)$ fit $m^{-\frac{1}{2}}$ quad.	.191(40)	.200(40)
$\delta_1 \; ({ m MeV})$	310(109)	339(97)
$T_1^{pole}(0)$ fit $m^{-\frac{3}{2}}$ lin.	.102(11)	.106(12)
$T_1^{pole}(0)$ fit $m^{-\frac{3}{2}}$ quad.	.135(20)	.140(21)
$\delta_1(\text{MeV})$	871(34)	879(34)
$T_2^{pole}(0)$ fit $m^{-\frac{3}{2}}$ lin.	.082(7)	.083(7)
$T_2^{pole}(0)$ fit $m^{-\frac{3}{2}}$ quad.	.091(12)	.092(13)
$\delta_1({ m MeV})$	735(51)	737(54)

The same game can be played with $T_2(q_{max}^2)$; the results in this case are $T_2(q_{max}^2, B) = .217(15)$ and $T_2(q^2 = 0, B) = .090(6)$ for a value of $M_A \sim 5.7$ GeV for the axial pole mass; this is in agreement with the results in table 2 for the $m^{-3/2}$ -scaling.

From table 2, we quote:

$$T_1^{pole}(0) = .196(45) \quad (m^{-1/2} \text{ scaling}) T_2^{pole}(0) = .090(15) \quad (m^{-3/2} \text{ scaling})$$

Clearly, the final result depends crucially on the assumption made for the q^2 -dependence. Given the statistical errors, the systematic uncertainty in the extraction of the form factors, the effects of O(a) terms and the limited range in q^2 and masses, the study of the q^2 - and mass-dependence of the form factors, remains a crucial challenge for lattice calculations.

REFERENCES

- C. Bernard et al., Nuc. Phys. (Proc Suppl) B26, 347 (1992), Phys. Rev. Lett. 72 (1994) 1402.
- N. Isgur and M.B. Wise, Phys. Rev. D42 (1990) 2388.
- B. Sheikholeslami and R. Wohlert, Nucl. Phys. B259 (1985) 572.
- As. Abada et al., Nucl. Phys. <u>B416</u> (1994) 675.