Measurement of the associated production of a Higgs boson decaying into b-quarks with a vector boson at high transverse momentum with the ATLAS detector

<u>Maria Giovanna Foti</u>

on behalf of the ATLAS Collaboration

Epiphany 2021, XXVII Cracow Epiphany Conference on Future of particle physics 7th-10th January 2021

Physics motivations

 \overline{b}

H(bb)

Largest BR in SM (~58%)

Measurement of Yukawa coupling to down-type quarks

Challenge to H(bb): large multi-jet background

<u>Study VH production</u> (V=W,Z), <u>V \rightarrow leptons</u>: distinctive signature, efficient trigger and large reduction of multi-jet events

- In search for new physics, BSM scenarios often predict deviations from the SM at high pT
 - Need to have a more detailed view at this energy regime

Strategy and event selection

$\Delta R(b_1, b_2) \approx \frac{2 \cdot m_H}{p_T^H}$

 $\Delta R(b_1, b_2) \le 1, \ p_T^H \ge 250 \, GeV$

Higgs candidate:

- Large-radius (R) calorimeter jet (trimmed anti-kt R=1.0), p_T > 250 GeV
- ≥ 2 variable-radius (VR) track jets matched to Large-R jet
- Leading 2 VR track jets b-tagged (MV2c10@70%)
- Number of charged leptons (l = e,µ) in leptonic V decay determines analysis channel:
 - $Z \rightarrow \nu \nu$ (0L)
 - W→ℓν (1L)
 - Z→ℓℓ (2L)

Background processes and fit model

Background modelling strategy:

- tt, W+hf, Z+hf, Diboson: dominant backgrounds, templates extracted from simulation, normalisation from data
- Single top, V+light flavours (II, cl)*: template and normalisation uncertainties from simulation
- Multi-jet: suppressed with dedicated cuts, residual contribution studied in data *< 5% of total V+jets
- ▶ Signal extracted using binned profile likelihood fit with Large-R jet mass (mJ) as discriminant
 - Fit 10 signal and 4 control regions simultaneously
- Simultaneous measurement of signal strength parameters μ_{VH} and μ_{VZ} :

$$\mu = \frac{\sigma_{meas}}{\sigma_{SM}}$$

Results

Measurement	Expected sig.	Observed sig.
0L	1.86	1.43
1L	1.96	1.95
2L	1.24	-0.13
WH	1.92	2.04
ZH	1.79	0.63
combined	2.73	2.05

$$\mu_{VH}^{bb} = 0.72_{-0.36}^{+0.39} = 0.72_{-0.28}^{+0.29} (\text{stat.})_{-0.22}^{+0.26} (\text{syst.}) \qquad \sigma_{VH}^{bb} = 2.1 (2.7) \text{ obs. (exp.)}$$

$$\mu_{VZ}^{bb} = 0.91_{-0.23}^{+0.29} = 0.91 \pm 0.15 (\text{stat.})_{-0.17}^{+0.25} (\text{syst.}) \qquad \sigma_{VZ}^{bb} = 5.4 (5.7) \text{ obs. (exp.)}$$

Simplified Template Cross Section (STXS)

- Differential cross section measurement in "simplified" fiducial regions
- **STXS measurement** in 2 p_T^V analysis bins: [250,400[, [400,∞[

07-10/01/2021

ATLAS

M. G. Foti - maria.giovanna.foti@cern.ch

UNIVERSITY OF

arXiv:2008.02508

- Model-independent way to test presence of BSM physics
- Parameterisation of BSM effects using effective Lagrangian operators in Warsaw basis.

 $\mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \sum_{i=1}^{N} \mathcal{L}_{SM}$ Wilson coefficients 14 dimension-6 operators (Warsaw basis) Scale of new physics (1 TeV) describing new physics considered Coefficient Operator $(H^{\dagger}H)(H^{\dagger}H)$ c_H $(H^{\dagger}D^{\mu}H)^{*}(H^{\dagger}D_{\mu}H)$ c_{HDD} $(H^{\dagger}H)(\overline{q}_{n}d_{r}H)$ $|c_{dH}|$ Parametrise $\sigma(qq \rightarrow ZH)$, $H^{\dagger}HW^{I}_{\mu\nu}W^{I\mu\nu}$ c_{HW} $\sigma(qq \rightarrow WH)$, **BR(H \rightarrow bb)** as $H^{\dagger}HB_{\mu\nu}B^{\mu\nu}$ c_{HB} $H^{\dagger}\tau^{I}HW^{I}_{\mu\nu}B^{\mu\nu}$ linear/quadratic polynomials in ci c_{HWB} $\begin{array}{c} c_{Hl}^{(1)} \\ c_{Hl}^{(3)} \\ c_{He}^{(1)} \\ c_{Hq}^{(1)} \\ c_{Hq}^{(3)} \\ c_{Hq}^{(3)} \end{array}$ $H^{\dagger}i \overleftarrow{D}_{\mu} H(\overline{l}_{p} \gamma^{\mu} l_{r})$ $H^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}H(\bar{l}_{n}\tau^{I}\gamma^{\mu}l_{r})$ $H^{\dagger}i\overleftarrow{D}_{\mu}H(\overline{e}_{p}\gamma^{\mu}e_{r})$ Extract 95% CL limits for leading $H^{\dagger}i\overleftrightarrow{D}_{\mu}H(\overline{q}_{n}\gamma^{\mu}q_{r})$ ci coefficients $H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H(\overline{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$ $H^{\dagger}i\overleftarrow{D}_{\mu}H(\overline{u}_{p}\gamma^{\mu}u_{r})$ c_{Hu} $H^{\dagger}i\overleftrightarrow{D}_{\mu}\underline{H}(\overline{d}_{p}\gamma^{\mu}d_{r})$

TLAS

 $\frac{c_{Hd}}{c_{ll}^{(1)}}$

 $(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$

UNIVERSITY OF

EFT results

 Effect of ±1σ variation of the four independent deformations to the SM the analysis can identify, based on the measurement of STXS bins

Effect of dedicated bin above 400 GeV

Conclusions

First VH(bb) analysis at high-p_T (p_T > 250 GeV), using boosted techniques:

$$\mu_{VH}^{bb} = 0.72_{-0.36}^{+0.39} = 0.72_{-0.28}^{+0.29} (\text{stat.})_{-0.22}^{+0.26} (\text{syst.})$$

 $\mu_{VZ}^{bb} = 0.91^{+0.29}_{-0.23} = 0.91 \pm 0.15 (\text{stat.})^{+0.25}_{-0.17} (\text{syst.})$

Measurement is in agreement with the SM expectations

 $\sigma_{VH}^{bb} = 2.1 \, (2.7) \ obs. \, (exp.)$ $\sigma_{VZ}^{bb} = 5.4 \, (5.7) \ obs. \, (exp.)$

- First STXS measurement of $p_T(V, truth) > 400$ GeV, well in agreement with SM prediction
- Provided EFT interpretation of the results

Thank you!

arXiv:2008.02508 CERN Physics briefing: link

Backup

Event selection details

Selection	0 lepton channel	nnel 1 lepton channel		2 leptons channel	
		e sub-channel	μ sub-channel	e sub-channel	μ sub-channel
Trigger	$E_{\mathrm{T}}^{\mathrm{miss}}$	Single electron	$E_{\mathrm{T}}^{\mathrm{miss}}$	Single electron	$E_{\mathrm{T}}^{\mathrm{miss}}$
Leptons	0 baseline leptons	1 signal	lepton	2 baseline lep	otons among which
		$p_{\rm T} > 27~{\rm GeV}$	$p_{\rm T} > 25~{\rm GeV}$	$\geq 1 \ signal \ leg$	pton, $p_{\rm T} > 27~{\rm GeV}$
		no second ba	seline lepton	both leptons	of the same flavour
				-	opposite sign muons
$E_{ m T}^{ m miss}$	$> 250 { m ~GeV}$	$> 50 { m GeV}$	-		-
p_{T}^{V}			$p_{\rm T}^V > 250 { m ~GeV}$		
Large- R jets	at least one large-R jet, $p_{\rm T} > 250$ GeV, $ \eta < 2.0$				
Track-jets	at least two track-jets, $p_{\rm T} > 10$ GeV, $ \eta < 2.5$, matched to the leading large-R jet			ding large- R jet	
<i>b</i> -jets	leading two track-jets matched to the leading large-R must be b-tagged (MV2c10, 70%)			ged (MV2c10, 70%)	
$m_{ m J}$			$> 50 { m ~GeV}$		
$\min[\Delta \phi(\vec{E}_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{small-}R \mathrm{jets})]$	$> 30^{\circ}$			-	
$\Delta \phi(\vec{E}_{\mathrm{T}}^{\mathrm{miss}}, H_{\mathrm{cand}})$	$> 120^{\circ}$			-	
$\Delta \phi \ (\vec{E}_{\mathrm{T}}^{\mathrm{miss}}, E_{\mathrm{T, trk}}^{\mathrm{miss}})$	$< 90^{\circ}$			_	
$\Delta y(V, H_{ ext{cand}})$	- $ \Delta y(V, H_{\rm cand}) < 1.4$				
$m_{\ell\ell}$		-		$66 { m GeV} <$	$m_{\ell\ell} < 116 { m ~GeV}$
Lepton $p_{\rm T}$ imbalance		-		$(p_{\mathrm{T}}^{\ell_1} - p_{\mathrm{T}})$	$(p_{\rm T}^{\ell_2})/p_{\rm T}^Z < 0.8$

Event categorisation details

	Categories					
Channel	$250 < p_{\rm T}^V < 400 { m ~GeV}$			$p_{\mathrm{T}}^{V} \ge 400 \mathrm{GeV}$		
	0 add. <i>b</i> -track-jets		≥ 1 add.	0 add. <i>b</i> -track-jets		≥ 1 add.
	0 add.	≥ 1 add.	b-track-jets	0 add.	≥ 1 add.	b-track-jets
	small- R jets	small- R jets		small- R jets	small- R jets	
0-lepton	HP SR	LP SR	CR	HP SR	LP SR	CR
1-lepton	HP SR	LP SR	CR	HP SR	LP SR	CR
2-lepton		SR			SR	

Fit main features

• Normalisation of three dominant bkgs are floated:

- ttbar → from CR
- V+hf: W+hf, Z+hf \rightarrow from sidebands in the SRs.
- Systematics:
 - Full set of detector systematics:
 - Large-R jets (pT, mass)x(scale, resolution)
 - small-R jets, MET, leptons, b-tagging, pile-up, luminosity
 - Full set of modelling uncertainties
 - MC stat. unc.: includes VZ but excludes VH (1 NP per bin)
- ▶ 2 p_T^V analysis bins (for STXS): [250,400], [400,∞]

Breakdown of the uncertainties

Source of uncertainty			impact
Total	0	.372	
Statistical		0	.283
Systematic		0	.240
Experimenta	l uncertainties		
Small- R jets		0	.038
Large- R jets		0	.133
$E_{\rm T}^{\rm miss}$		0	.007
Leptons		0	.010
	$b ext{-jets}$	0	.016
b-tagging	c-jets	0	.011
	light-flavour jets	0	.008
	extrapolation	0	.004
Pile-up		0	.001
Luminosity		0	.013
Theoretical a	and modelling uncer	tainti	es
Signal		0	.038
Backgrounds		0	.100
$\hookrightarrow Z + \text{jets}$	0	.048	
$\hookrightarrow W + \text{jets}$	0	.058	
$\hookrightarrow t\bar{t}$.035
\hookrightarrow Single top quark			.027
$\hookrightarrow \text{Diboson}$.032
\hookrightarrow Multijet	0	.009	
MC statistical			.092

- Analysis statistically limited.
- Systematic uncertainties is of same order as the statistical one. Most relevant sources:
 - Large-R jets (JMR, then JMS)
 - Modelling uncertainties
 - MC stat.

Large-R jet mass

- Final discriminant: Large-R jet mass (m_J). Improve mass resolution on top of calorimeter-based performance using:
 - Combined mass
 - Muon-in-jet-correction
 - Kinematic fit (2L)

Postfit plots: 0L

HP SR

LP SR

CR

07-10/01/2021

M. G. Foti - maria.giovanna.foti@cern.ch

Postfit plots: 1L

HP SR

LP SR

CR

07-10/01/2021

GeV

400

V

P⊤<

V

Ge

250

GeV

400

Λ

P⊤<

M. G. Foti - maria.giovanna.foti@cern.ch

Postfit plots: 2L

Postfit event yields: 0L

	$250 \text{ GeV} < p_{\mathrm{T}}^{V} \le 400 \text{ GeV}$			$p_{\rm T}^V > 400 { m ~GeV}$		
Processes	HP SR	LP SR	CR	HP SR	LP SR	CR
W + t	$14.7 {\pm} 5.4$	46 ± 19	17.2 ± 8.1	$2.0{\pm}1.0$	$8.93 {\pm} 6.3$	$3.76{\pm}2.5$
other $t + X$	$0.79{\pm}0.03$	$3.18 {\pm} 0.66$	4.5 ± 1.3	-	$0.66{\pm}0.03$	$0.1091{\pm}0.0041$
$tar{t}$	75 ± 14	423 ± 36	539 ± 31	$7.5 {\pm} 1.8$	$38.21 {\pm} 6.8$	44.07 ± 7.43
VZ	$77 {\pm} 17$	88 ± 19	$6.2{\pm}1.6$	$17.3 {\pm} 4.1$	$28.77 {\pm} 6.6$	$2.79{\pm}0.72$
WW	-	$2.15 {\pm} 0.05$	$0.24{\pm}0.01$	$0.33 {\pm} 0.02$	$1.80 {\pm} 0.06$	-
W + HF	101 ± 20	331 ± 60	$30{\pm}22$	$20.2{\pm}6.2$	$59.8 {\pm} 18$	$6.6{\pm}5.1$
W + cl	5.1 ± 2.3	8.4 ± 3.2	$0.46 {\pm} 0.01$	$0.99 {\pm} 0.69$	$2.8{\pm}1.1$	$0.19{\pm}0.07$
W + l	$5.6 {\pm} 3.9$	$4.6 {\pm} 2.5$	$0.160 {\pm} 0.003$	$1.4{\pm}2.0$	$2.7{\pm}1.7$	$0.57 {\pm} 0.36$
Z + HF	319 ± 35	549 ± 62	77 ± 21	87 ± 11	185 ± 21	$25.8 {\pm} 7.4$
Z + cl	$4.0{\pm}1.6$	$6.7 {\pm} 2.7$	$0.83 {\pm} 0.02$	-	$6.4 {\pm} 2.7$	$0.93{\pm}0.41$
Z + l	$1.34{\pm}0.67$	$3.6{\pm}2.1$	$0.42{\pm}0.01$	$1.05 {\pm} 0.63$	$3.7 {\pm} 2.5$	$0.29{\pm}0.16$
Signal	$22{\pm}11$	19.0 ± 9.8	1.05 ± 0.54	5.7 ± 2.9	5.9 ± 3.0	$0.33 {\pm} 0.17$
Background	603 ± 25	$1466 {\pm} 36$	676 ± 25	$137.6 {\pm} 8.5$	$339 {\pm} 15$	85.1 ± 7.3
data	623	1493	683	146	330	85

Postfit event yields: 1L

	$250 \text{ GeV} < p_{\mathrm{T}}^{V} \le 400 \text{ GeV}$			$p_{\rm T}^V > 400 {\rm GeV}$		
Processes	HP SR	LP SR	CR	HP SR	LP SR	CR
W + t	64 ± 21	$160{\pm}75$	73 ± 30	16.4 ± 7.3	53 ± 42	21 ± 15
other $t + X$	$1.92 {\pm} 0.48$	$16.3 {\pm} 0.3$	$21.9 {\pm} 6.2$	$0.13 {\pm} 0.01$	$1.70 {\pm} 0.06$	$4.0{\pm}1.4$
$tar{t}$	235 ± 30	1190 ± 76	1758 ± 58	50.9 ± 7.3	227 ± 24	341 ± 25
VZ	$35.9 {\pm} 8.9$	56 ± 14	5.0 ± 1.4	$8.63 {\pm} 2.3$	$20.0{\pm}5.3$	$2.61 {\pm} 0.84$
WW	-	$6.8 {\pm} 1.6$	$0.27 {\pm} 0.01$	$0.15{\pm}0.02$	$4.68 {\pm} 1.32$	$0.93 {\pm} 0.03$
W + HF	265 ± 28	617 ± 64	$60{\pm}22$	91 ± 12	$239 {\pm} 30$	$26.6{\pm}9.8$
W + cl	$7.33 {\pm} 2.9$	$13.8 {\pm} 5.7$	$2.10 {\pm} 0.04$	6.2 ± 2.5	10.2 ± 4.1	$0.63 {\pm} 0.02$
W + l	$3.0{\pm}1.5$	5.7 ± 3.4	$0.65{\pm}0.01$	2.2 ± 1.4	$7.7{\pm}5.0$	$0.31 {\pm} 0.01$
Z + HF	10.2 ± 1.2	24.6 ± 2.5	$3.45 {\pm} 0.41$	$2.12{\pm}0.30$	$6.56 {\pm} 0.79$	$0.98 {\pm} 0.12$
Z + cl	-	$0.75 {\pm} 0.02$	-	-	$0.33 {\pm} 0.01$	-
Z + l	-	$0.49 {\pm} 0.01$	-	$0.30{\pm}0.19$	$0.23 {\pm} 0.01$	-
MultiJet	$17.0 {\pm} 8.9$	$44{\pm}23$	22 ± 11	$7.8 {\pm} 4.5$	22 ± 13	$7.9{\pm}4.0$
Signal	$24{\pm}12$	18.0 ± 9.3	$0.86 {\pm} 0.45$	$7.8 {\pm} 4.0$	7.5 ± 3.9	$0.39{\pm}0.20$
Background	640 ± 26	$2136{\pm}44$	$1947 {\pm} 43$	$186{\pm}11$	592 ± 21	406 ± 18
data	668	2161	1946	185	597	410

Postfit event yields: 2L

	$250 \text{ GeV} < p_{\mathrm{T}}^{V} \le 400 \text{ GeV}$	$p_{\rm T}^V > 400 { m ~GeV}$
Processes	SR	SR
W+t	1.28 ± 0.39	_
$t\overline{t}$	$1.64{\pm}0.35$	$0.45 {\pm} 0.10$
VZ	$19.9{\pm}4.9$	$7.5 {\pm} 2.1$
W + HF	$0.41{\pm}0.07$	$0.07 {\pm} 0.01$
Z + HF	$151{\pm}13$	57.2 ± 5.8
Z + cl	$2.20{\pm}0.91$	$1.80 {\pm} 0.76$
Z + l	$0.94{\pm}0.67$	$1.01{\pm}0.67$
Signal	7.6 ± 3.9	$2.8{\pm}1.4$
Background	177 ± 12	$68.0{\pm}5.6$
data	179	73

Multi POI fits: μ_{VH} and μ_{VZ}

Measured CL μ_{VH} and μ_{VZ}

EFT interpretation results

Coefficient	Operator
c_H	$(H^{\dagger}H)(H^{\dagger}H)$
c_{HDD}	$(H^{\dagger}D^{\mu}H)^{*}(H^{\dagger}D_{\mu}H)$
$ c_{dH} $	$(H^{\dagger}H)(\overline{q}_{p}d_{r}H)$
c_{HW}	$H^{\dagger}HW^{I}_{\mu u}W^{I\mu u}$
c_{HB}	$H^{\dagger}HB_{\mu u}B^{\mu u}$
c_{HWB}	$H^{\dagger}\tau^{I}HW^{I}_{\mu\nu}B^{\mu\nu}$
$c^{(1)}_{Hl}$	$H^{\dagger}i\overleftrightarrow{D}_{\mu}H(\bar{l}_{p}\gamma^{\mu}l_{r})$
$c_{Hl}^{(3)}$	$H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$
$c_{He}^{(1)}$	$H^{\dagger}i\overleftrightarrow{D}_{\mu}H(\overline{e}_{p}\gamma^{\mu}e_{r})$
$c_{Hq}^{(1)}$	$H^{\dagger}i\overleftrightarrow{D}_{\mu}H(\overline{q}_{p}\gamma^{\mu}q_{r})$
$c_{Hq}^{(3)}$	$H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H(\overline{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$
c_{Hu}	$H^{\dagger}i\overleftrightarrow{D}_{\mu}H(\overline{u}_{p}\gamma^{\mu}u_{r})$
c_{Hd}	$H^{\dagger}i\overleftarrow{D}_{\mu}H(\overline{d}_{p}\gamma^{\mu}d_{r})$
$c_{ll}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t)$

Coefficient	Eigenvalue	Engenvector combination
c_{EA}	1500.0	$0.99 \cdot c_{Hq}^{(3)} + 0.11 \cdot c_{Hu}$
c_{EB}	26.9	$0.82 \cdot c_{Hu} - 0.49 \cdot c_{Hq}^{(1)} - 0.24 \cdot c_{Hd} - 0.13 \cdot c_{Hq}^{(3)}$
c_{EC}	2.2	$0.67 \cdot \mathcal{I}_{BR} + 0.66 \cdot c_{HW} + 0.18 \cdot c_{Hq}^{(1)} - 0.16 \cdot c_{Hl}^{(3)} + 0.14 \cdot$
		$c_{HWB} + 0.12 \cdot c_{ll}^{(1)}$
c_{ED}	0.1	$0.70 \cdot c_{Hq}^{(1)} + 0.52 \cdot c_{HWB} + 0.27 \cdot c_{Hu} - 0.27 \cdot c_{HW} - 0.27 $
		$0.24 \cdot c_{Hd} + 0.13 \cdot c_{HB}$

07-10/01/2021

M. G. Foti - maria.giovanna.foti@cern.ch