
What the new RooFit can do for your analysis

Stephan Hageboeck𝑎,∗
𝑎CERN,
1, Esplanade des Particules, Meyrin, Switzerland

E-mail: stephan.hageboeck@cern.ch

RooFit is a toolkit for statistical modelling and fitting, and together with RooStats it is used
for measurements and statistical tests by most experiments in particle physics. Since one year,
RooFit is being modernised. In this talk, improvements already released with ROOT will be
discussed, such as faster data loading, vectorised computations and more standard-like interfaces.
These allow for speeding up unbinned fits by several factors, and make RooFit easier to use from
both C++ and Python.

40th International Conference on High Energy physics - ICHEP2020
July 28 - August 6, 2020
Prague, Czech Republic (virtual meeting)

∗Speaker

ar
X

iv
:2

01
2.

02
74

6v
2

 [
ph

ys
ic

s.
da

ta
-a

n]
 2

2
Fe

b
20

21

mailto:stephan.hageboeck@cern.ch

What the new RooFit can do for your analysis Stephan Hageboeck

1. Introduction

RooFit [1] is a C++ package for statistical modelling distributed with ROOT [2]. With RooFit,
users can define likelihood models using observables, parameters, functions and PDFs1, which can
be fit to data, plotted or be used for statistical tests. The tools for performing such tests are provided
by the RooStats package, and the HistFactory package provides tools to create RooFit models
from collections of ROOT histograms.
RooFit was started in the year 2000 in the BaBar collaboration. Since then, RooFit has

been a reliable tool for many experiments in high-energy physics at 𝐵 factories or the Large Hadron
Collider. Due to its long history, it is nonetheless time to modernise and optimise RooFit for today’s
hardware, enabling researchers to analyse larger datasets, to devise more elaborate statistical models
and to solve challenging research questions.

2. Improving the Usability of RooFit

2.1 Extending RooFit with more Stable and Faster Built-in PDFs

Figure 1: Johnson [3] distribution for var-
ious values of the parameters 𝛾 and 𝛿

In modernisingRooFit, the Johnson [3] (ROOT 6.18+,
fig. 1) and Hypatia2 [4] distributions (ROOT 6.20+) were
added. Although RooFit can interpret any formula using
ROOT’s cling interpreter [5], built-in PDFs are usually
more stable, and can be optimised to evaluate faster [6].

In ROOT 6.20+, another convenience PDF was added,
RooWrapperPdf. SinceRooFit treats functions andPDFs
differently (the former are just evaluated while the latter
are evaluated and normalised automatically), users are
sometimes forced to decide whether they should implement an object as a function, as a PDF or
both. With the addition of RooWrapperPdf, only the function implementation has to be provided.
The function can be used as a PDF by wrapping it into RooWrapperPdf. That is, the function is
augmented with automatic numerical normalisation, and toy data can be sampled from it.

2.2 Unbiased Binned Fits

A long-known problem in RooFit discussed during the conference are binned fits with PDFs
that have high curvature2. To save computation time in binned fits, RooFit evaluates PDFs only
in the centre of a bin, and uses this as an approximation for the probability of an entire bin. If a
function has a high curvature, this is not correct, and can lead to biases as shown in fig. 2a. These
biases can be reduced by using more bins, but this is not always an option for users given available
data statistics. In ROOT 6.24+, the class RooBinSamplingPdf was added to integrate a continuous
PDF over each bin. It converts continuous into binned PDFs as shown in fig. 2b, and evaluating
it in the bin centre, in fact, anywhere in a bin, yields correct probability densities. Residuals are
reduced, fits converge more reliably and fit results are not biased, any more.

1Probability Density Functions
2That is non-zero second derivatives. These are models that cannot easily be approximated with piece-wise linear

functions.

2

What the new RooFit can do for your analysis Stephan Hageboeck

2008 2008.5 2009 2009.5 2010 2010.5 2011 2011.5 2012 2012.5 2013
x

0

1000

2000

3000

4000

5000

6000

7000

8000

3
10×

E
ve

nt
s

/ (
 0

.1
)

Fitting continuous distribution to binned data

2008 2009 2010 2011 2012 2013

25−

20−

15−

10−

5−

0

5

10

15

20

Pull of Histogram of dataH_plot__x and Projection of pdf

(a) Continuous PDF compared to binned data

2008 2008.5 2009 2009.5 2010 2010.5 2011 2011.5 2012 2012.5 2013
x

0

1000

2000

3000

4000

5000

6000

7000

8000
3

10×

E
ve

nt
s

/ (
 0

.1
)

Fitting continuous distribution to binned data

2008 2009 2010 2011 2012 2013

3−

2−

1−

0

1

2

3

4

Pull of Histogram of dataH_plot__x and Projection of BinSampling PDF

(b) PDF wrapped into RooBinSamplingPdf

Figure 2: Comparison of pulls with and without RooBinSamplingPdf. The pulls are computed by
comparing event counts with the plotted curves at the bin centres. NB: The 𝑦-axis is zoomed 6-fold in (b).

2.3 Recovery from Evaluation Errors

When RooFit evaluates a mathematical model, it relies on the fact that all model parameters
are within the domains of the functions involved. If this assumption is violated, computations might
yield the value NaN3. Starting from ROOT 6.24, RooFitwill warn users if they set up parameters that
might violate the domain of a function. Not all invalid parameters can be prevented by checking
parameter limits, though. If the minimiser chooses a set of parameters that violates the domain
of a function, the model cannot be evaluated, and no gradient can be computed to continue the
minimisation. The minimiser will try to change each parameter, but it may only slowly, sometimes
never, find a set of valid parameters to continue the minimisation.

Starting from ROOT 6.24, some of these fit failures can be avoided. RooFit can pass information
to the minimiser by packing it into the mantissa of a NaN. If, for example, a PDF evaluates to
a negative value, which is disallowed, the magnitude of the undershoot is packed into a NaN.
Since IEEE-compliant floating-point operations leave the mantissa unaffected, this information can
propagate through all computations. Before the log-likelihood is passed to the minimiser, this
information is unpacked and the magnitudes of all violations are summed. This is converted into
a penalty term, which is passed to the minimiser. From the magnitude of the penalty term, the
minimiser can compute a gradient, and use it to step away from disallowed parameters. Notoriously
unstable PDFs such as RooPolynomial4 were found to fit to data much faster, and fits that would
previously fail were found to converge more reliably.

2.4 Modernisation of Interfaces

In RooFit, any collection of mathematical entities such as parameters, observables, functions
or PDFs are saved or passed to functions using the classes RooArgSet and RooArgList. To
operate RooFit, users have to manipulate these collections, for example, for querying the values
of fit parameters. Until ROOT 6.18, these collections were based on a linked list shipped with

3“Not a Number”. For a Gaussian distribution, for example, this happens when setting the parameter 𝜎 ≤ 0.
4Since polynomials of uneven order inevitably evaluate to negative values if 𝑥 is large or small enough, very careful

tuning of model parameters is required to keep the polynomial positive across the fit range of the observable.

3

What the new RooFit can do for your analysis Stephan Hageboeck

RooFit. Iterating through such a collection was cumbersome and not efficient. To allow for the
use of range-based for loops and to speed up iterations, RooFit’s collections were converted to
std::vector-based collections in ROOT 6.18. This results in simpler code:

ROOT 6.18+

1 // No variables outside loop required

2 for (auto p : *pdf.getParameters(obs))
3 p->Print();

4 // No danger of memory leak

ROOT 6.16 and before

1 TIterator* it =

2 pdf.getParameters(obs)->createIterator();

3 RooAbsArg* p;

4 while ((p=(RooAbsArg*)it->Next())) {
5 p->Print();

6 }

7 delete it;

Iterating proved to be 25 % faster, and the code is significantly simpler. Typical workflows in
RooFit are sped up from 5 % to 21 % [7], depending on how many iterations through collections
are required. The old interface remains supported, however, so users are not forced to rewrite their
code.

Starting from ROOT 6.22, RooFit uses modernised category classes, which behave map-like.
Defining and printing category states compares as follows:

ROOT 6.22+

1 RooCategory cat("cat", "Lep. mult.");

2 cat["0Lep"] = 0;

3 cat["1Lep"] = 1;

4 for (const auto& name_idx : cat) {
5 std::cout << name_idx.first << ", "

6 << name_idx.second << std::endl;

7 }

ROOT 6.20

1 RooCategory cat("cat", "Lep. mult.");

2 cat.defineType("0Lep", 0);

3 cat.defineType("1Lep", 1);

4 TIterator* typeIt = cat.typeIterator();

5 RooCatType* catType;

6 while ((catType =
7 dynamic_cast<RooCatType*>(typeIt->Next()))
8 != nullptr) {
9 std::cout << catType.GetName() << ", "

10 << catType.getVal() << std::endl;

11 }

12 delete typeIt;

The new categories use 4 instead of 288 bytes of memory per entry in a dataset, and can better
be integrated into batch computations (see section 3). Also here, old interfaces remain supported.

The modernisation of C++ interfaces is also beneficial for using RooFit from Python. Since
ROOT ships with the C++ interpreter cling [5], it can automatically generate Python bindings for
C++ objects (“PyROOT” [8]). Before ROOT 6.18, Python users would have had to imitate the C++
code at the beginning of this section. Now, the equivalent loop reads:

1 for p in pdf.getParameters(obs):
2 p.Print()

In addition to the automatically generated interfaces, PyROOT features so-called “Pythonisations”,
short Python code that helps steer C++. For example, while an import function for RooFit objects
reads “workspace.import(object)” in C++, Python users were required to use the workaround
“getattr(workspace, 'import')(object)”, since import is a reserved keyword. Starting from
ROOT 6.22, users can use the more intuitive “workspace.Import(object)”.

4

What the new RooFit can do for your analysis Stephan Hageboeck

2 4 6 8 10 12 14 16
Speed up

2nd order Polynomial

5th order Bernstein

2nd order Chebychev

BreitWigner

Sum of 2 Gaus and Exp

Exp(x, c1)

Gauss

CBShape

BifurGauss

Argus

Gamma

Johnson

Bukin

ChiSquarePdf clang9 i7-7820X AVX512
clang8 i7-4790 AVX2
clang9 i7-7820X AVX2
gcc9 i7-7820X AVX2
gcc9 i7-7820X AVX512

clang9 i7-7820X AVX512
clang8 i7-4790 AVX2
clang9 i7-7820X AVX2
gcc9 i7-7820X AVX2
gcc9 i7-7820X AVX512

Speed up using vectorisation

Figure 3: Speed up for computing the likelihoods of datasets of 100 000 to 300 000 events for various like-
lihood models. The fast batch interface in ROOT 6.20 is timed against the normal single-value computations.
Depending on compiler, CPU capabilities and workflow, a speed up of 3x to 16x can be expected.

3. Faster PDF Computations

When RooFit computes likelihoods, one or multiple PDFs have to be evaluated for each entry
in a dataset. However, RooFit only evaluates a single event in each function call5, and rows of a
dataset are read one by one. This strategy is inefficient, because it does not make use of data caches,
memory prefetching or vector extensions.

Starting from ROOT 6.20, data access and likelihood computations were reorganised such that
data are read from a dataset in batches instead of copying them out of a dataset one by one [6].
Each sub-computation produces multiple values per function call, so less functions have to be
called. Data are read in blocks. This mode uses slightly more memory, because intermediate results
have to be stored, but it speeds up likelihood computations by about 300 %, which is especially
relevant for data-intensive unbinned fits. Note that this speed up multiplies with the speed up from
multi-processing.
PDF classes need to implement the interface ’span getValues(...)’6 to benefit from this

speed up. Most PDFs in RooFit have been updated to support it. External PDFs that do not
implement this interface can be used nevertheless, since a fall-back function that calls RooFit’s
classic evaluation functions in a loop will be used. Since the optimised functions might yield
slightly different numbers, the fast batch mode has to be activated by users:
pdf.fitTo(data, BatchMode(true)); // Evaluate likelihood using fast batch mode

On modern CPU architectures with vector extensions such as SSE or AVX, the batch computation
functions can be optimised even further using SIMD computations [6]. Figure 3 shows the speed

5A multi-process mode can be used to parallelise computations, but this still computes one event per function call.
6In ROOT 6.20 and 6.22, the experimentalgetValBatch()was in use, but it has been superseded bygetValues().

5

What the new RooFit can do for your analysis Stephan Hageboeck

up that was achieved in comparison to RooFit’s classic single-value computations when vector
extensions are used. The speed up ranges from 3x for the “ChiSquared” PDF, which is based on a
function from an external library without vectorisation, to 16x with AVX512 extensions.

To use vector extensions, users have to compile ROOT 6.20 and 6.22 themselves, manually
enabling the desired extensions. Therefore, pre-compiled ROOT distributions (e.g. provided centrally
by collaborations) will mostly benefit from the 3x speed up due to the more efficient data access.
ROOT 6.24 and later will ship with multiple versions of a RooFit computation library, which are
optimised for different vector extensions. ROOT will inspect the CPU and load the fastest library
supported by the hardware. Users will therefore be able to benefit from larger speed ups than 3x.

Unit tests ensure that the optimised computation functions yield the same results as the classic
RooFit functions. Computations of likelihoods usually agree to a relative accuracy of 1.0 × 10−14,
and log-likelihoods agree up to 2.0 × 10−14 with a few exceptions. Fit parameters usually agree
better than 1.0 × 10−5, which is orders of magnitude smaller than the statistical error in most fits.

4. Conclusions

In 2019, development in RooFit has been resumed. RooFit’s interfaces are being modernised,
long-standing problems are solved, and significant speed ups were achieved by better using the
capabilities of modern CPUs. Work is underway to use the benefits of the new computation interface
for RooFit computations on GPUs. These developments are aimed at providing RooFit’s users
with a better tool, and the ROOT team encourages users to get in touch with ideas and requests.

References

[1] W. Verkerke and D.P. Kirkby, The RooFit toolkit for data modeling, econf C0303241 (2003)
MOLT007 [physics/0306116].

[2] R. Brun and F. Rademakers, ROOT: An object oriented data analysis framework, Nucl.
Instrum. Methods Phys. Res. A389 (1997) 81.

[3] N.L. Johnson, Systems of frequency curves generated by methods of translation, Biometrika 36
(1949) 149.

[4] D.M. Santos and F. Dupertuis, Mass distributions marginalized over per-event errors, Nucl.
Instrum. Methods Phys. Res. A 764 (2014) 150 .

[5] V. Vasilev, P. Canal, A. Naumann and P. Russo, Cling – the new interactive interpreter for
ROOT 6, J. Phys.: Conf. Ser. 396 (2012) 052071.

[6] S. Hageboeck, A Faster, More Intuitive RooFit, EPJ Web Conf. 245 (2020) 06007
[2003.12875].

[7] S. Hageboeck and L. Moneta, Making RooFit Ready for Run 3, J. Phys. Conf. Ser. 1525 (2020)
012114 [2003.12861].

[8] M. Galli, E. Tejedor and S. Wunsch, A New PyROOT: Modern, Interoperable and More
Pythonic, EPJ Web Conf. 245 (2020) 06004.

6

https://arxiv.org/abs/physics/0306116
https://doi.org/https://doi.org/10.1016/j.nima.2014.06.081
https://doi.org/https://doi.org/10.1016/j.nima.2014.06.081
https://doi.org/10.1088/1742-6596/396/5/052071
https://doi.org/10.1051/epjconf/202024506007
https://arxiv.org/abs/2003.12875
https://doi.org/10.1088/1742-6596/1525/1/012114
https://doi.org/10.1088/1742-6596/1525/1/012114
https://arxiv.org/abs/2003.12861
https://doi.org/10.1051/epjconf/202024506004

	1 Introduction
	2 Improving the Usability of RooFit
	2.1 Extending RooFit with more Stable and Faster Built-in PDFs
	2.2 Unbiased Binned Fits
	2.3 Recovery from Evaluation Errors
	2.4 Modernisation of Interfaces

	3 Faster PDF Computations
	4 Conclusions

