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1 Introduction

Over the last decades, numerical lattice QCD has become a high-precision tool for pre-
dicting several non-perturbative strong-force observables, including hadronic masses, de-
cay constants and form factors. Looking beyond these quantities, each defined in terms
of single-hadron states, lattice QCD has also shown outstanding progress in calculating
multi-hadron observables including 2 → 2 scattering and 1 → 2 decay amplitudes. The
successful determination of such amplitudes is especially impressive due to the presence
of the Euclidean metric, required in order to apply Monte Carlo methods in estimating
the lattice QCD path integral. While the analytic continuation to Minkowski correlators
is formally guaranteed by the Osterwalder-Schrader theorem [2], in practice the limited
knowledge of correlation functions on a finite set of points, together with the presence of
statistical uncertainties, implies that direct extraction is a numerically ill-posed inverse
problem, see e.g. ref. [3].

Offering another perspective on this challenge, Maiani and Testa [1] showed that (for
energies above production threshold) asymptotically separating individual pion fields in
Euclidean time leads to correlators dominated by off-shell contributions. As we review in
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more detail in section 2, this means that matrix elements of the form 〈π|π̂(0)|ππ〉 contribute,
where 〈π| represents a single pion state and |ππ〉 a two-pion asymptotic in- or out-state.
The infamous off-shellness refers to the fact that the four momentum associated with the
operator π̂ does not satisfy q2 = m2

π, wheremπ is the physical particle mass. As a result the
matrix element depends on the details of the operator used and gives no useful information.

This limitation was circumvented by Lüscher [4, 5], who showed that the values of the
low-lying two-pion energies in a finite periodic spatial volume are determined by the on-shell
2 → 2 scattering amplitude (up to corrections falling faster than any power of 1/L where
L denotes the box length). Thus, the scattering amplitude can be extracted indirectly,
from discrete spectra determined in lattice calculations. In more recent years, due espe-
cially to efficient methods for evaluating quark-field Wick contractions [6] and an improved
understanding of the importance of a large operator basis [7], this method has proven to
be extremely successful in the determination of elastic two-hadron scattering amplitudes.1

Formal extensions of the relations between amplitudes and energies [12–40] have allowed
the same basic approach to be applied in calculations involving particles with spin, coupled-
channel two-particle systems, and most recently to the scattering of three-pion states.

In parallel, Lellouch and Lüscher [41] extended this approach, to give a method for
extracting the K → (ππ)I=0,2 decay amplitude from a combination of finite-volume en-
ergies and matrix elements. This approach has since been applied by the RBC-UKQCD
collaboration [42–44] to reach a first-principles understanding of the ∆I = 1/2 rule and a
determination of the CP violating parameter ε′/ε. Further generalizations to generic 0 J→ 2,
1 J→ 2 and 2 J→ 2 amplitudes have been derived since [14, 18, 19, 45–58] with the symbol
above the arrow indicating that the transition is mediated by a local operator, e.g. the
conserved vector current.

The main limitation of the finite-volume formalism, besides the technical challenge of
measuring several excited-state energy levels and matrix elements, is the proliferation of
multi-particle channels as the scattering energy increases. Here it is important to note that
any finite-volume method must formally treat all open multi-hadron channels (or argue
that they are irrelevant) in order to reach a prediction about any individual scattering,
decay, or transition amplitude. This is because finite-volume energies and matrix elements
generically depend on a mixture of all physically allowed scattering processes.

For these reasons, recent work has revisited prospects for the direct analytic continu-
ation of numerical correlation functions in the context of inverting the Laplace transform

G(t, L) =
∫ ∞

0
dω e−ωt ρ(ω,L) (t > 0) , (1.1)

where G(t, L) represents a general Euclidean correlator and the right-hand side defines the
spectral function, ρ(ω,L). A regulated inverse of this simple relation could potentially
unlock an alternative method in extracting inclusive quantities, such as heavy-particle
lifetimes or the hadronic tensor [59], as well as scattering amplitudes [60], directly from

1See refs. [8–11] for recent reviews.
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spectral functions convoluted with a known resolution function

ρ̂(ω,∆, L) ≡
∫ ∞

0
dω δ̂∆(ω, ω) ρ(ω,L) , (1.2)

where δ̂∆(ω, ω) is peaked at ω = ω with characteristic width ∆. Encouraging progress
has recently been made in developing improved strategies to regulate the inverse problem
and systematically target a resolution function [61, 62] to extract eq. (1.2) from eq. (1.1).
To reach a physical prediction, these methods formally require that the infinite-volume
limit (L → ∞) is taken before the resolution width is sent to zero (∆ → 0). Such ideas
might prove useful also in the context of QED corrections to semi-leptonic decays, and
similar processes,2 where intermediate on-shell states prevent the analytic continuation to
Minkowski signature and approximate numerical solutions to the inverse problem could
play a significant role.

In this manuscript, we present a strategy for combining the ideas summarized by
eqs. (1.1) and (1.2) with the work of Maiani and Testa [1], in order to extend the reach
of the latter to energies above scattering threshold, without suffering the dominance of
off-shell terms. We present the idea both in the context of three- and four-point functions
and, as a side benefit, we also reach new results for extracting threshold information from
standard correlators.

Although we focus in this work on three- and four-point functions, the basic idea can
already be expressed with a two point function of a scalar current, J(t,x),

G(t) =
∫
d3x 〈J(t,x)J(0)〉 , (1.3)

where we assume the L→∞ limit has been taken. We then define the modified correlator

GΘ(t|s) =
∫
d3x 〈J(t,x)Θ(Ĥ −

√
s,∆)J(0)〉 , (1.4)

where Θ(z,∆) is a smoothened Heaviside function, interpolating from zero for z < 0 to one
for z > 0. A specific definition of Θ(z,∆) is given in eq. (2.5) below, but any function can
be used provided it is smooth and becomes the usual Heaviside step function for ∆ → 0.
Defining the spectral function as

ρ(ω) =
∫
d3x 〈J(0,x)δ(Ĥ − ω)J(0)〉 , (1.5)

note that the following relations hold:

G(t) =
∫ ∞

0
dω e−ωt ρ(ω) , GΘ(t|s) =

∫ ∞
0

dω
[
Θ(ω −

√
s,∆)e−ωt

]
ρ(ω) . (1.6)

These two simple results form the basis of this work. In the expression for G(t), the kernel
e−ωt becomes sharply peaked at threshold for large t, leading to the threshold dominance

2Other notable examples are long distance effects in εK and time-like Compton amplitudes. See also
refs. [63] and [64] for finite-volume methods targeting these observables.
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famously identified by Maiani and Testa [1]. ForGΘ(t|s), by contrast, the peak forms at ω =√
s and one can extract time-like observables away from threshold.3 See also figure 1 below.

To give an impression of the relations derived in the following, we close this introduction
by highlighting two of our key results.

First, returning to the scalar current, J(x), we introduce the form factor

f(s) = 〈s, ππ, out|J(0)|0〉 , (1.7)

where |0〉 is the vacuum and 〈s, ππ, out| is a two-particle out state with squared center-
of-momentum energy, s, projected to zero angular momentum by the current. We then
demonstrate in section 2 that the following holds

N 〈π, q|π̃−q(t) Θ(Ĥ −
√
s,∆) J(0)|0〉

= e−
√
m2
π+q2t

[
Θ(0,∆)Re[f(s)]− 2J (0)(t, s,∆) Im[f(s)] + · · ·

]
s=4(q2+m2

π)
. (1.8)

Here the left-hand side is a product of a simple normalization factor, N , with an infinite-
volume Euclidean matrix element, modified by the smooth Heaviside-function Θ(z,∆).
The matrix element is built from a single-pion state and a generic operator π̃−q(0) such
that 〈0|π̃−q(0) has the quantum numbers of 〈π,−q|.4

The right-hand side of eq. (1.8) demonstrates the utility of this quantity. Specifically, as
we prove in section 2, it is equal to a known linear combination (with one time-independent
coefficient Θ(0,∆) and a second time-dependent function J (0)), of the real and imaginary
parts of the target observable, f(s), up to terms that are suppressed for well-chosen values
of t and ∆. The suppression is quantified through an asymptotic series of known geometric
functions that can be understood as a generalization of the large t expansion of Maiani
and Testa [1]. As with the inverse techniques of refs. [59, 60], this result holds for all s and
may be competitive with standard methods for s > (4mπ)2 (mπ is the pion mass), where
it is challenging to disentangle the multiple open channels from finite-volume information.

A simple cross check of eq. (1.8) is given by setting s = 4m2
π and carefully taking the

∆→ 0 limit, as detailed in section 2.1. Then one recovers the original result of ref. [1]

N 〈π,0| π̃0(t) J(0) |0〉 = e−mπtf(4m2
π)
[
1 +O(t−1/2)

]
. (1.9)

In section 2.1 we also discuss the finite t corrections to this and revisit the expansion
performed by Maiani and Testa. We express the result in an alternative basis that exhibits
faster convergence and give expressions for the next-to-leading order term (depending on

3We also point the reader to refs. [65, 66], in which the authors also use a spectral representation involving
a smooth theta function, but in a different context. The details of their intriguing proposal differ from those
presented here, most importantly because, in refs. [65, 66], the range of sampled energies is given a physical
interpretation as a phase-space integral defining a scattering cross section. In the present work we consider
amplitudes at fixed energies (rather than total rates) so that no phase-space integral arises.

4We comment here that, in ref. [45], the authors also consider methods that do not make use of the
Lellouch-Lüscher type conversion factor. These differ from the present work, for example in that the
observable is still extracted from a single finite-volume matrix element.
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the ππ scattering length) and the next-to-next-to-leading order term (depending on the
derivative of the scattering amplitude with respect to the virtuality of an off-shell leg).

Second, we consider the same derivation with four-point functions, studying both the
standard correlation function and the modification with Θ. In direct analogy to eq. (1.8)
above, we deduce that one can extract the 2→ 2 scattering amplitude at all energies from
the Θ-correlator. Also of great interest, however, is the standard correlation function at
two-particle threshold, which is more straight-forward to implement in the short term. For
example in the case of Nπ scattering, we derive the following result in section 3

N 2Ca′b′Cab 〈πa
′
,0| Ñ b′

0 (t)N †b(0) |πa,0〉c

= e−mN t
[
8π(mN +mπ) aNπ t− 16 a2

Nπ

√
2π(mN +mπ)mNmπt+O

(
t0
)]
. (1.10)

Here the left-hand side is a Euclidean matrix element that can be extracted from a four-
point function of pion and nucleon fields, all projected to zero spatial momentum. The
indices a′, a encode isospin and b′, b simultaneously indicate isospin and spin such that the
coefficients Cab can be chosen to project onto any definite Nπ quantum numbers (with an
implicit sum over indices understood). The left-hand side also includes a simple normal-
ization factor N 2 and the subscript c indicates that the disconnected N → N and π → π

contribution is subtracted.
In analogy to the Maiani-Testa correlation function at threshold, this four-point func-

tion can be used to directly extract the Nπ scattering length, aNπ, in the channel specified
by Cab. The advantage compared to the three-point function is that one recovers a function
only of aNπ as opposed to a combination of the threshold form-factor [f(4m2

π)] and the scat-
tering length. Indeed the right-hand side contains two terms, scaling as taNπ and

√
ta2
Nπ

so that a strong constraint on the scattering length may be achieved from the combined fit.
The remainder of this manuscript is organized as follows: in the next section we revisit

the analysis of the three-point function of Maiani and Testa and show how the result is mod-
ified for the Θ-correlator. We also present a new form of the large t expansion, in terms of a
series of known integrals. We then repeat the analysis for four-point functions in section 3,
where we also present the derivation of eq. (1.10). In section 4, we discuss implementation
strategies to extract the Θ-correlator, including the role of finite-volume effects. We also
include a number of appendices, deriving various technical results used in the main text.

2 Time-like form factors

Following Maiani and Testa we begin by defining the Euclidean correlator

Gq1q2(t1, t2) ≡
〈
π̃q1(t1)π̃q2(t2)J(0)

〉
, (2.1)
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where π̃q(t) =
∫
d3xπ(t,x)e−iq·x is a generic single-pion interpolating field and J(0) is a

local scalar current. Then, taking t1 large and positive, we write

Gq1q2(t1, t2) = Zπ
e−ωq1 t1

2ωq1

e−ωq2 t2

2ωq2

cq1q2(t2) +O
(
e−
√

9m2
π+q2

1t1
)
, (2.2)

cq1q2(t2) ≡
2ωq2e

ωq2 t2 〈π, q1|π̃q2(t2)J(0)|0〉√
Zπ

, (2.3)

where ωq =
√
q2 +m2

π and Zπ = 〈π,p|π(0)|0〉2. Here the single particle state has the usual
relativistic normalization, 〈π, q|π, q′〉 = 2ωq(2π)3δ3(q − q′).

As was shown in ref. [1], for q1 6= q2 [which, for vanishing total momentum (q1 +q2 =
0), translates to q1 6= 0], the quantity cq1q2(t2) contains growing exponentials as t2 →∞,
with coefficients depending on scattering amplitudes for which one of the external legs is
off the mass shell. To better understand the limitations associated with this, we define the
modified quantity

cΘ
q1q2

(t2|ω0) ≡
2ωq2e

ωq2 t2 〈π, q1|π̃q2(0) Θ(M̂ − 2ω0,∆) e−(Ĥ−ωq1 )t2 J(0)|0〉√
Zπ

, (2.4)

where Θ(ω,∆) is a smooth Heaviside function, e.g.

Θ(ω,∆) = tanh(2ω/∆) + 1
2 , (2.5)

and M̂ =
√
Ĥ2 − P̂ 2 is an operator giving the center-of-momentum-frame energy. In

section 4, we describe strategies for accessing this object in a numerical lattice calculation,
including the role of the finite-volume boundary conditions. In this section we take cΘ as
given and show that it can be used to access the real and imaginary parts of

f
(
s(q)

)
≡ 〈ππ, out, q1q2|J(0)|0〉 , (2.6)

where we have introduced

s(q) ≡ (ωq1 + ωq2)2 − (q1 + q2)2 . (2.7)

In the same spirit as the inverse methods described in refs. [59, 60], this approach is valid
for all values of s(q), provided the correlator can be estimated with an appropriate range
of ∆ and ω0.

Before deriving our main result, we pause here to discuss the intuition motivating
eq. (2.4) and its relation to the results of Maiani and Testa. For this discussion we set
q1 = −q2 = q and ω0 = ωq. The key point is that cq,−q(t2) and cΘ

q,−q(t2|ωq) can be written
as the convolution of the same spectral function, ρ, with two different resolution functions,
δ̂ and δ̂Θ. In particular

cq,−q(t2) =
∫ ∞

0
dE ρq(E) δ̂(E , t2) , (2.8)

cΘ
q,−q(t2|ωq) =

∫ ∞
0

dE ρq(E) δ̂Θ(E , t2) , (2.9)
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Figure 1. Sketch of the normalized effective resolution functions, δ̂(E , t2) and δ̂Θ(E , t2), defined in
eqs. (2.11) and (2.12) respectively. The corresponding correlators can be written as convolution
integrals of these resolution functions with the same spectral function, ρq(E), which contains the
time-like information we are after. Thus, the functional forms plotted here give an indication of
the energies that predominantly contribute to the correlation functions. The left panel illustrates
that cq,−q(t2) is dominated by E ≈ 2mπ and that large t2 sharpens the near-threshold resolution.
By contrast, the right panel illustrates the modification involving Θ(E − 2ωq,∆) (also plotted here
in gray) for 2ωq = 5mπ. The three curves correspond to the same ∆ value, and the sharpening
around E = 5mπ is achieved by increasing t2, with the dashed curves showing the corresponding
factors of e−t2(E−2ωq).

where

ρq(E) = 2ωq 〈π, q|π̃−q(0) δ(Ĥ − E) J(0)|0〉√
Zπ

, (2.10)

δ̂(E , t2) = θ(E − 2mπ) e−(E−2ωq)t2 , (2.11)

δ̂Θ(E , t2) = Θ(E − 2ωq,∆) e−(E−2ωq)t2 . (2.12)

Here we have included a zero-width Heaviside function (denoted θ(x)) in the definition of
δ̂(E , t2) to further emphasize the similarities. This is allowed as the spectral function, ρ(E),
has zero support for E < 2mπ.5

In figure 1 we show the functional forms of δ̂(E , t2) and δ̂Θ(E , t2), normalized to unit
area. Note that δ̂(E , t2) is sharply peaked at threshold with a width given by 1/t2. For
this reason, the large t2 limit can only access time-like information at threshold, as was
famously established in ref. [1]. For δ̂Θ(E , t2), the peak is shifted and mimics the resolution
functions discussed in refs. [59, 60], formally allowing one to extract scattering amplitudes
at all energies. The key advantage, as compared to the earlier work, is that the effective
resolution width can be reduced at fixed ∆ by increasing t2. This gives a powerful handle on
the target observable and can be expressed as a large t2 expansion, to which we now turn.

Returning to eq. (2.4), the next step is to insert a complete set of states between π̃q2(0)
and J(0) to reach

cΘ
q1q2

(t2|ω0) =
∑
k

∫
dΦk e

−(E(p)−ωq1−ωq2 )t2 Θ
(
s(p)1/2− 2ω0,∆

)
Ak(q1, q2;p)Bk(p) , (2.13)

5We assume throughout that the system has no bound state.
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where

dΦk = 1
Sk

d3p1
(2π)32ωp1

· · ·
d3pnk

(2π)32ωpnk
(2π)3δ3(P − q1 − q2) , (2.14)

and s(p) = E(p)2 − P 2, with the total energy and momentum given by(
E(p),P

)
=
(
ωp1 + · · ·+ ωpnk

, p1 + · · ·+ pnk
)
. (2.15)

The complete set of states leads to the matrix elements

Ak(q1, q2;p) ≡ 2ωq2

〈π, q1|π(0)|k, out,p1 · · ·pnk〉√
Zπ

, (2.16)

Bk(p) ≡ 〈k, out,p1 · · ·pnk |J(0)|0〉 , (2.17)

where k is a channel index (referring e.g. to ππ, KK, ππππ), nk is the number of particles
in the channel and Sk the number of permutations of identical particles. We define k = 1
as the ππ channel, with internal quantum numbers matching π(0)|π, q〉.

The final key step is to express Ak(q1, q2;p) in terms of an off-shell amplitude
Mk(η|µ(q,p)). We use the bold notation here whenever the amplitude has at least one
off-shell external leg. This object is defined in more detail in appendix A.1 and for the
present argument it suffices to note that Mk(0|µ(q,p)) = Mk(µ(q,p)) is the usual on-
shell two-to-nk scattering amplitude as a function of Lorentz invariants organized in the
vector µ(q,p). For example in the case of a two-to-two amplitude

µ(q,p) =
(
s, t
)
, (2.18)

=
(
(ωp1 + ωp2)2 − (p1 + p2)2 , (ωp1 − ωq1)2 − (p1 − q1)2

)
. (2.19)

The matrix element Ak(q1, q2;p) admits a simple decomposition in terms of the off-shell
amplitude

Ak(q1, q2;p) = δk,1(2π)32ωq12ωq2

[
δ3(p1−q1) + δ3(p2−q1)

]
− 2ωq2

Mk

(
η(q,p)|µ(q,p)

)∗
η(q,p)− iε ,

(2.20)
where the distance of the π(0) leg from the mass shell is given by

η(q,p) = (E(p)− ωq1)2 − (P − q1)2 −m2
π . (2.21)

Combining eqs. (2.13) and (2.20) gives the generalization of Maiani and Testa’s result to
the case of non-zero total momenta and to the Θ-function modification of the correlator. In
appendix A.2 we give explicit expressions in the case of general kinematics and discuss their
utility. Here we focus on the role of the Heaviside function and set q1 = −q2 = q to reach

cΘ
q,−q(t2|ω0) = Θ(2ωq − 2ω0,∆) f

(
s(q2)

)
− 2ωq

∫ ∞
2mπ

dE
2π e

−(E−2ωq)t2 Θ(E − 2ω0,∆) G(E , ωq)
(E − ωq)2 − ω2

q − iε
, (2.22)
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where we have replaced q → q in quantities that only depend on q2 = q2 and have
introduced

G(E , ωq) =
∑
k

∫
dΦk 2πδ

(
E − E(p)

)
Mk

(
η(q,p)|µ(q,p)

)∗
Bk(p) . (2.23)

For example, in the case where only the ππ channel contributes, i.e. for E2 < (4mπ)2,
this becomes

G(E , ωq) = 2π1
2

4π
(2π)3

∫
dp p2 1

4ω2
p

δ
(
E − 2ωp

)
Ms

(
η(q, p)| E2)∗f(E2) , (2.24)

=
√
E2/4−m2

π

8πE Ms
(
(E − ωq)2 − ω2

q | E2)∗f(E2) , (2.25)

where Ms is the scattering amplitude projected to zero orbital angular momentum

Ms
(
η(q, p)| E2) = 1

4π

∫
dΩ M1

(
η(q,p)|µ(q,p)

)
. (2.26)

The on-shell limit is given by

G(E , E/2) =
√
E2/4−m2

π

8πE
16πE√
E2/4−m2

π

e−2iδs(E) − 1
−2i eiδs(E)|f(E2)| , (2.27)

= 2 sin δs(E)|f(E2)| = 2 Imf(E2) . (2.28)

Remarkably, the relation between the on-shell G function and Imf(E2) in fact holds for all
E2, as we prove in appendix A.3.

Returning to the general case, the final step is to perform the change of variables
x = (E − 2ωq)t2 to reach

cΘ
q,−q(t2|ω0) = Θ(2ωq − 2ω0,∆)Re

[
f
(
s(q2)

)]
−
∫ ∞
−(2ωq−2mπ)t2

dxκ(t2, x)G(x/t2 + 2ωq, ωq) ,

(2.29)
where

κ(t2, x) = ωq
π
e−x

Θ(x/t2 + 2ωq − 2ω0,∆)
x/t2 + 2ωq

P 1
x
, (2.30)

and P indicates the principal-value pole prescription. To reach this expression, one uses
the fact that cΘ is real so that one can take the real part of the right-hand side for free.
As G is also real this simply replaces: f(s(q2)) → Ref(s(q2)) and 1/(η − iε) → P[1/η].
Alternatively, one can demonstrate that the imaginary part of 1/(η − iε) explicitly cancels
that of f(s(q2)), as we review in appendix A.4, following ref. [1].

Equations (2.23), (2.29) and (2.30) summarize the main new technical results of this
section. In the following subsections we explore their implications for extracting scattering
information.

2.1 Threshold kinematics

As a first step we set ω0 = ωq − ε = mπ − ε to reach the threshold case already considered
in ref. [1]. For these choices (together with ∆ → 0) the Θ-function has no effect and only
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Figure 2. Plot of the first few I(n)(b) functions (solid lines), defined in eq. (2.34) of the main
text. The dashed lines show the large b expansion for each function, scaling as b−n−1/2 as shown
in eq. (2.35).

the two-pion channel contributes in G. We reach

cΘ
0,0(t2|mπ) = f(4m2

π)
[
1−

∞∑
n=0

gn I(n)(2mπt2)
]
, (2.31)

or, to give an explicit expression in terms of the Euclidean correlator,

〈
π̃0(t1)π̃0(t2)J(0)

〉
= Zπ

e−mπ(t1+t2)

4m2
π

f(4m2
π)
[
1−

∞∑
n=0

gn I(n)(2mπt2)
]
, (2.32)

where e−3mπt1 has been dropped. Here the gn coefficients arise in an expansion of the
amplitudes

gn ≡
1
n!m

n
π

dn

dωn

[
f(4ω2)
f(4m2

π)Ms
(
(2ω −mπ)2 −m2

π| 4ω2)∗]
ω=mπ

, (2.33)

and the functions I(n)(b) are integrals of the kernel κ times the phase space,√
E2/4−m2

π/(8πE), both in the limiting case of the threshold amplitude. They can be
expressed as follows

I(n)(b) ≡ 1
bn+1/2

∫ ∞
0

dxxn
e−x

32π2

√
2 + x/b√

x(1 + x/b)2 , (2.34)

=
√

2
32π2

1
bn+1/2 Γ(n+ 1/2)

[
1 +O

(
1/b
)]
. (2.35)

Expanding in powers of 1/b = 1/(2mπt2) generates the original series presented in ref. [1].
However, as we illustrate in figure 2, the leading terms converge slowly to the full integrals
and the latter may prove to be a better basis in describing the correlation function.
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Combining g0 =Ms(4m2
π) = 32πmπaππ with Γ(1/2) =

√
π gives the known result6

cΘ
0,0(t2|mπ) = f

(
4m2

π

)[
1− aππ

√
mπ

πt2
+O

(
t
−3/2
2

)]
, (2.36)

and thus

〈
π̃0(t1)π̃0(t2)J(0)

〉
= Zπ

e−mπ(t1+t2)

4m2
π

f
(
4m2

π

)[
1− aππ

√
mπ

πt2
+O

(
t
−3/2
2

)]
, (2.37)

where aππ is the two-particle scattering length. Our expressions allow one to easily reach
generalizations of this, for example

cΘ
0,0(t2|mπ) = f

(
4m2

π

)[
1− 32πmπaππI(0)(2mπt2)− g1I(1)(2mπt2) +O

(
I(2))] , (2.38)

with

g1 = 256πm3
πaππ

∂sf(s)
f(4m2

π) + 8m2
π ∂sMs(s)∗ + 4m2

π ∂ηMs(η|4m2
π)∗
∣∣∣∣
s=4m2

π , η=0
. (2.39)

This gives a more explicit expression for the leading off-shellness contaminating this cor-
relator. The η derivative represents a small variation in the virtuality of one external leg
away from the mass shell. The quantity is perfectly well defined but depends on the details
of the operator π(x) and has no physical meaning for pion scattering.

2.2 General kinematics

Next we take ω0 = ωq > mπ and write

cΘ
q,−q(t2|ωq) = Θ(0,∆)Re

[
f
(
4ω2

q

)]
−
∞∑
n=0

gnJ (n)(t2, ωq,∆) , (2.40)

where Θ(0,∆) = 1/2 for the specific choice given in eq. (2.5). For the second term we have
substituted the expansion

G
(
2ωq[1 + x/(2ωqt2)], ωq

)
≡
∞∑
n=0

gn
xn

(2ωqt2)n , (2.41)

and have introduced the basis of integrals

J (n)(t2, ωq,∆) ≡ 1
2π

1
(2ωqt2)n

∫ ∞
−2(ωq−mπ)t2

dxxne−x
Θ(x, t2∆)

1 + x/(2ωqt2)P
1
x
. (2.42)

Note here that the principal value is only required for n = 0. Substituting g0 = 2 Imf
(
4ω2

q

)
,

demonstrated in appendix A.3, then gives

cΘ
q,−q(t2|ωq) = Θ(0,∆)Re

[
f
(
4ω2

q

)]
− 2 Im

[
f
(
4ω2

q

)]
J (0)(t2, ωq,∆)−

∞∑
n=1

gnJ (n)(t2, ωq,∆) .

(2.43)
6Here we differ from eq. (10) of ref. [1] by a factor of 2 in the 1/

√
t2-dependent term. Note also that,

following ref. [1], we have set our convention for the scattering-length such that aππ < 0 for repulsive
interactions at threshold.
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Figure 3. Plot of the first few J (n)(t2, ωq,∆) functions, defined in eq. (2.42) of the main text, vs
t2 with ωq = 3mπ and ∆ = mπ.

As with the threshold case, the coefficients gn for n > 1 contain off-shell deriva-
tives of the scattering amplitude. [See e.g. eq. (2.39).] In figure 3 we plot the functions
J (n)(t2, ωq,∆) for fixed values of ωq and ∆, as a function of t2. We stress that these expres-
sions require ∆ > 0 in order for the principal-value pole prescription to properly regulate
the integral.

We close this subsection by addressing a final subtlety concerning the fact that the
sum over J (n) in eq. (2.43) [as well as that over I(n) in eq. (2.31)] is, in fact, a divergent
asymptotic series. The detailed properties of this series depend on the coefficients gn, but
the divergence is expected as J (n) ∼ n! for large n. We stress however that the task
here is to estimate the difference between cΘ and the first two terms on the right-hand
side of eq. (2.43). This difference is finite and the divergent asymptotic series provides a
representation of it in the usual way, i.e.

cΘ
q,−q(t2|ωq)−Θ(0,∆)Re

[
f
(
4ω2

q

)]
+ 2 Im

[
f
(
4ω2

q

)]
J (0)(t2, ωq,∆)

= −
N∑
n=1

gnJ (n)(t2, ωq,∆) +O(J (N+1)) . (2.44)

Given the clear hierarchy in the J (n) functions, it should be feasible to keep the first few
terms, with the gn as fit parameters and remove the contamination in order to extract the
form factor.

3 Two-to-two scattering amplitudes

We now imitate the results of the previous section, but focusing here on a four-point
function built from two nucleon and two pion fields. We begin with the four-point analog
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of eq. (2.4), defining

cΘ,Nπ
q′

1q
′
2q1q2

(t′, t|M0) ≡
2ωq′

2
e
ωq′

2
t′2ωq2e

−ωq2 t

ZN
Ca′b′Cab

× 〈πa′
, q′1|Ñ b′

q′
2
(0) Θ(M̂ −M0,∆) e−Ĥ(t′−t)e

ωq′
1
t′
e−ωq1 tN †b(0)|πa, q1〉 , (3.1)

where q′2 ≡ q1 + q2 − q′1 and we have included this subscript to give a more symmetric
notation.

Here a and a′ are isospin indices for the pions and b and b′ are combined spin and isospin
indices. The coefficients Cab and Ca′b′ are chosen to project to Nπ states with definite spin
and isospin. As above, here a sum over the repeated indices is implied and the tildes on
the operators indicate the projection to definite spatial momentum. Note that momenta
with a 1 subscript correspond to pion fields and those with a 2 to nucleons, such that

ωq1 =
√
m2
π + q2

1 , ωq2 =
√
m2
N + q2

2 , (3.2)

where mN is the nucleon mass. Up to the Θ function, this quantity is directly extractable
from a standard Euclidean correlator

Ca′b′ 〈π̃a′

q′
1
(t′′) Ñ b′

q′
2
(t′)N †b(t,0) π̃bq1

(0)〉Cab . (3.3)

The strategy for implementing Θ(M̂ −M0,∆) is discussed in the next section.7

Inserting a complete set of states then yields

cΘ,Nπ
q′

1q
′
2q1q2

(t′, t|M0) =
∑
k

∫
dΦk e

−(E(p)−ωq′
1
−ωq′

2
)t′
e+(E(p)−ωq1−ωq2 )t

×Θ
(
s(p)1/2 −M0,∆

)
Ak(q′1, q′2;p)A∗k(q1, q2;p) , (3.4)

in direct analog to eq. (2.13) above, here with

Ak(q′1, q′2;p) ≡ 2ωq′
2

Ca′b′ 〈πa′
, q′1|N b′(0) |k, out,p1 . . .pn〉√

ZN
, (3.5)

Ak(q′1, q′2;p) = δk,1(2π)32ωq′
1
2ωq′

2
δ3(p1 − q′1)− 2ωq′

2

Mk

(
η(q′,p)|µ(q′,p)

)∗
η(q′,p)− iε , (3.6)

where k = 1 represents the Nπ channel projected by Cab and only a single delta function
arises, since only a single contraction can appear in the disconnected contribution. Note
that this decomposition assumes that no two-particle bound state appears in the channel of
interest, an assumption we have already noted in footnote 3. If a bound state is present, this
can be subtracted from the correlator to reach a new quantity, for which the decomposition
here still applies.

Substituting eq. (3.6) into eq. (3.4) yields four terms: one doubly disconnected, two
singly disconnected, and the final term proportional to |M|2. Here we will assume the dou-
bly disconnected piece is subtracted, using a subscript c to denote the resulting connected

7Here we denote the inflection point of Θ by M0 rather than 2ω0, which is more convenient since the
two hadrons are non-degenerate.
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correlator. As we prove in appendix A.5, simplifying the remaining terms and setting
q1 = −q2 = q and q′1 = −q′2 = q′ then gives

cΘ,Nπ
q′,q (t′, t|M0)c = −e−[E(q)−E(q′)]t′Θ

(
E(q)−M0,∆

)
2ωN,q′

ReM
(
η(q′, q)|µ(q′, q)

)
η(q′, q)

− e−[E(q)−E(q′)]t Θ
(
E(q′)−M0,∆

)
2ωN,q

ReM
(
η(q, q′)|µ(q, q′)

)
η(q, q′)

+ C(t′, t|q′, q,M0,∆) ,

(3.7)

where we have suppressed the k = 1 index, introduced mass labels on the ωs (since the
momenta no longer give a distinction) and also introduced E(q) = ωπ,q + ωN,q and

η(q′, q) ≡
(
E(q)− ωπ,q′

)2 − (ωN,q′)2 , (3.8)

µ(q′, q) ≡
(
s, t
)

=
(
E(q)2 , (ωN,q − ωN,q′)2 − (q − q′)2

)
. (3.9)

In eq. (3.7) we have also used the fact that the imaginary parts cancel between the various
contributions, as we demonstrate in appendix A.5.

In the next paragraph we discuss the final term in eq. (3.7), C(t′, t|q′, q,M0,∆), a
direct analog of the last term in eq. (2.22) in section 2. Before doing so, we note here that
the first two terms are individually divergent as q → q′. However, these singularities cancel
between the two terms such that the final result is finite. Some tedious algebra finds the
following result for the q → q′ limit

cΘ,Nπq (t′, t|M0)c = ReM
(
µ(q′, q)

)[
Θ
(
E(q)−M0,∆

)
(t′ − t+ 1/ωN,q)−Θ(1,0)(E(q)−M0,∆

)]
− 4ωN,qΘ

(
E(q)−M0,∆

)[ E(q)
2ωN,q

ReM(1,0)(µ(q′, q)
)

+ ReM(1,0,0)(0|µ(q′, q)
)]

+ C(t′, t|q′, q,M0,∆) , (3.10)

where the superscript numbers indicate derivatives with respect to the arguments, referring
to η, s, t in the case of M. This is a striking result: up to the contaminations from the final
term, to which we turn shortly, the correlator gives an estimator of the on-shell Nπ → Nπ

scattering amplitude. This is contaminated by an off-shell term with superscript (1,0,0),
but with a different time dependence, such that the physical result can be disentangled.
This result holds for q = q′ and ReM

(
µ(q, q′)

)
simply represents the real part of on-shell

amplitude for N(q) + π(−q)→ N(q′) + π(−q′).
We turn now to C, the contamination resulting from the connected parts of both Ak

and A∗k. For the simplifying case of q′ = q, the fully connected quantity is given by

C(t′, t|q′, q,M0,∆) =
∫ ∞
mπ+mN

dE
2π e

−(E−E(q))(t′−t)Θ(E −M0,∆)

× H(E , q′, q) (2ωN,q)2

(E − ωπ,q + ωN,q)2

[
P 1
E − E(q)

]2
, (3.11)

where

H(E , q′, q) =
∑
k

∫
dΦk 2πδ

(
E − E(p)

)
Mk

(
η(q,p)|µ(q,p)

)∗Mk

(
η(q′,p)|µ(q′,p)

)
.

(3.12)
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Applying the change of variables x = (E − E(q))(t′ − t) then yields

C(t′, t|q′, q,M0,∆) =
∫ ∞
−(E(q)−mπ−mN )(t′−t)

dxH
(
x/(t′ − t) + E(q), q′, q

)
κ(x, t′ − t) , (3.13)

where

κ(x, t′ − t) = (t′ − t)
2π e−x Θ

(
x/(t′ − t) + E(q)−M0,∆

) (2ωN,q)2

[x/(t′ − t) + 2ωN,q]2
[
P 1
x

]2
. (3.14)

Equations (3.10), (3.12) (3.13), and (3.14) summarize the main new technical results
of this section. In the following subsections we explore their implications for extracting
scattering information. In direct analogy to our treatment in section 2, we divide the
discussion into threshold and general kinematics.

3.1 Threshold kinematics

For E near threshold and q = q′ = 0, the function H takes the form

H(E ,0,0) =
∫

d3p

2ωN,p(2π)3
1

2ωπ,p
2πδ

(
E − ωπ,p − ωN,p

)
|M1

(
η(0,p)|µ(0,p)

)
|2 , (3.15)

where the coordinates in the scattering amplitude are given explicitly by

η(0,p) = (ωπ,p + ωN,p −mπ)2 −m2
N , (3.16)

µ(0,p) = (s, t) =
(
(ωπ,p + ωN,p)2 , (ωπ,p −mπ)2 − p2

)
. (3.17)

Note here that, although the angular dependence is absent for q = q′ = 0, the amplitude
nonetheless depends on the Mandelstam variable t as an artifact of the off-shell kinematics.
Next, we use the fact that the Dirac delta function sets p2 = p2 = kNπ(E)2, with the
magnitude of back-to-back momenta for non-degenerate particles given by

kNπ(E)2 = E
2

4 −
m2
π +m2

N

2 + (m2
N −m2

π)2

4E2 . (3.18)

Introducing the shorthand

MNπ(E) = M1
(
η(0,p)|µ(0,p)

)∣∣∣∣
p2=kNπ(E)2

, (3.19)

and evaluating the remaining phase-space integral, we reach

H(E ,0,0) =
∣∣MNπ(E)

∣∣2kNπ(E)
4πE . (3.20)

Substituting these simplifications into the definition of C, the four-point function re-
duces to

cΘ,Nπ0 (t′,t|M0)c=8π(mN+mπ)aNπ(t′−t+1/mN )−2(mN+mπ)Re∂sMs(s)−4mNRe∂ηMs(η|s)

+ 1
2π

∫ ∞
0
dx

(t′−t)e−x

[1+x/[2mN (t′−t)]]2

[
P 1
x

]2∣∣MNπ(E)
∣∣2 kNπ(E)

4πE

∣∣∣∣
E=x/(t′−t)+mN+mπ

. (3.21)
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In this result, the top line depends only on Ms, the off-shell scattering amplitude projected
to zero orbital angular momentum. This differs from MNπ because, for terms that are
linear in the scattering amplitude, both the incoming and outgoing spatial momenta are
set to zero. As a result the Mandelstam t is set identically to zero and no higher partial
waves can contribute. Here we have also used the relation between the threshold scattering
amplitude and scattering length for the case of non-degenerate particles

Ms
(
(mN +mπ)2) = 8π(mN +mπ)aNπ . (3.22)

In direct analog to our analysis of the three-point function, the final step is to expand
the final term of eq. (3.21). We reach

cΘ,Nπ
0 (t′, t|M0)c = 8π(mN +mπ) aNπ (t′ − t+ 1/mN )− 2(mN +mπ)Re ∂sMs(s)

− 4mNRe ∂ηMs(η|s) + 4(t′ − t)
(1 +mπ/mN )2

∞∑
n=0

hnK(n)(b, δm) , (3.23)

where in the final term we have introduced b = (mN + mπ)(t′ − t) and δm = (mN −
mπ)/(mN +mπ). We have also introduced

K(n)(b, δm) ≡ 1
16π2bn+1/2

∫ ∞
0
dxxn e−x

√
x(x/b+ 2)(x/b+ 1− δm)
(x/b+ 1 + δm)3(x/b+ 1)4

[
P 1
x

]2
, (3.24)

=
√

2
16π2bn+1/2 Γ(n− 1/2)(1− δm)1/2

(1 + δm)3/2

[
1 +O

(
1/b
)]
, (3.25)

hn ≡
1
n! (mN +mπ)n d

n

dEn
∣∣MNπ(E)

∣∣2
E=mN+mπ . (3.26)

In the case of degenerate, non-identical particles the kernel simplifies to

K(n)(b, 0) ≡ 1
16π2bn+1/2

∫ ∞
0
dxxn e−x

√
x(x/b+ 2)

(x/b+ 1)3

[
P 1
x

]2
, (3.27)

=
√

2
16π2bn+1/2 Γ(n− 1/2)

[
1 +O

(
1/b
)]
, (3.28)

and in the case of identical particles one requires an additional factor of (1/2) in these
expressions.

Expanding K(0)(b, δm) in powers of t′ − t gives the direct analog of ref. [1] for the
four-point function

cΘ,Nπ
0 (t′, t|M0)c = 8π(mN +mπ) aNπ (t′ − t)

− 16 a2
Nπ

√
2π(mN +mπ)mNmπ(t′ − t) +O

(
(t′ − t)0) . (3.29)

This was already highlighted in the introduction, see eq. (1.10). The relation appears
promising as two separate time dependences, together with aNπ and a2

Nπ coefficients, may
give a strong constraint of this threshold observable. As with the three-point function, one
reaches a better description by working in the basis of K integrals. See figure 4.
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Figure 4. Plot of the first few K(n)(b, 0) functions (solid lines), defined in eq. (3.27) of the main
text. The dashed lines show the large b expansion for each function, scaling as b−n−1/2 as shown
in eq. (3.28).

3.2 General kinematics

Finally, the general-energy result for the four-point function, with M0 = E(q), reads

cΘ,Nπ
q (t′, t|M0)c = ReM

(
µ(q′, q)

)[ t′ − t+ 1/ωN,q
2 − 1

2∆

]
− E(q)ReM(1,0)(µ(q′, q)

)
− 2ωN,qReM(1,0,0)(0|µ(q′, q)

)
+ (t′ − t)

∞∑
n=0

hnL(n)(t′ − t, q,∆) ,

(3.30)

where we have used Θ(0,∆) = 1/2 and also substituted the derivative of the theta function.
The final term is built from the integrals

L(n)(t′ − t, q,∆) ≡ 1
2π

1
[E(q)(t′ − t)]n

∫ ∞
−(E(q)−mπ−mN )(t′−t)

dxxne−x

×
Θ
(
x,∆(t′ − t)

)(
1 + x/[2ωN,q(t′ − t)]

)2 [P 1
x

]2
, (3.31)

together with the coefficients hn, defined via

H
(
x/(t′ − t) + E(q), q′, q

)
≡
∞∑
n=0

hn
xn

[E(q)(t′ − t)]n . (3.32)

Substituting h0 = ImM
(
µ(q, q′)

)
, demonstrated in appendix A.5, then gives

cΘ,Nπ
q (t′, t|ωq)c = ReM

(
µ(q′, q)

)[ t′ − t+ 1/ωN,q
2 − 1

2∆

]
+ ImM

(
µ(q, q′)

)
(t′ − t)L(0)(t′ − t, q,∆)

− E(q)ReM(1,0)(µ(q′, q)
)
− 2ωN,qReM(1,0,0)(0|µ(q′, q)

)
+ (t′ − t)

∞∑
n=1

hnL(n)(t′ − t, q,∆) .

(3.33)
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Figure 5. Plot of the first few L(n)(t′ − t, ωq,∆) functions, defined in eq. (3.31) of the main text,
vs (t′ − t). Here we consider the functions in the case of two degenerate particles with mass mπ

and with ωq = 3mπ and ∆ = mπ.

The first two lines represent physical information and the final two represent the contami-
nations that one must remove via fitting.

This completes our presentation of strategies for extracting scattering information from
Euclidean correlators, at both threshold and general kinematics. We now turn to discussing
how the modified correlation function, defined with a smooth Θ function inserted with the
interpolating operators, might be extracted in practice, in a numerical lattice calculation.

4 Implementation strategies

In this section we discuss two possibilities to estimate the modified quantities cΘ and
cΘ,Nπ, defined in eqs. (2.4) and (3.1) respectively. We make one adjustment relative to
the previous section by replacing the Nπ → Nπ four-point function with the simplified
version built only out of pion fields. We denote the latter by cΘ,ππ. With straightforward
adjustments of the previous section, in particular setting δm = 0 and including the (1/2)
for identical particles, this can be used to extract the ππ → ππ scattering amplitude.

In the previous sections, we have not addressed the fact that numerical lattice calcu-
lations are necessarily confined to a finite space-time volume. In this section we consider
the effects of a finite cubic spatial volume, with periodicity L in each of the three spatial
directions, but continue to neglect the thermal effects of a finite temporal extent. Within
this set-up, suppose that one has extracted the matrix element

M i
3(t) ≡ 〈π, qi, L|π̃−qi(t)J̃0(0)|0〉 , (4.1)

from the relevant three-point function. Here the index i labels the values of non-equivalent
back-to-back momenta. In practice the combined pion state and pion field should be
projected to a definite two-pion isospin along the lines of the Nπ projections involving the
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Cab coefficients. For the scalar current, J̃0(t) =
∫
d3x J(x), the total isospin must be 0 or

2 to give a non-zero result.
Similarly, we consider the two-point function and also matrix elements from four-point

functions:

M2(t) ≡ 〈J̃0(t) J̃0(0)〉 , M ij
4 (t) ≡ 〈π, qi, L| π̃−qi(t) π̃qj (0) |π, qj , L〉 . (4.2)

It is then useful to assemble these quantities into a matrix of correlation functions

M(t) ≡
(
M2(t) MT

3 (t)
M3(t) M4(t)

)
, (4.3)

with rank dictated by the number of pion momenta available in the calculation. Following
refs. [7, 67], from the solution of the generalized eigenvalue problem on this matrix, one
can extract a series of finite-volume energies, En(L), and matrix elements

M i
3[n] = 〈π, qi, L|π̃−qi(0)|n,L〉 〈n,L|J̃0(0)|0〉 , (4.4)

M ij
4 [n] = 〈π, qi, L|π̃−qi(0)|n,L〉 〈n,L|π̃qj (0)|π, qj , L〉 , (4.5)

up to a maximal value of EN (L), depending on the size of the operator basis.
Then the matrix element used in eq. (2.4) to define the modified quantity cΘ

q,−q(t2|ωq)
can be constructed as

cΘ
qi,−qi(t2|ω0) ≡ 1

L3
2ωqieωqi t2√

Zπ

×
[
〈π, qi, L|π̃−qi(t2)J̃0(0)|0〉 −

N∑
n=1

Θ
(
2ωqi − En(L),∆

)
M i

3[n] e−(En(L)−ωqi )t2
]
, (4.6)

provided that the given value of 2ωqi is smaller than EN (L) to avoid systematic errors due
to the truncated sum. Here the factor of 1/L3 arises as we have applied the spatial Fourier
transform to all fields, in contrast to the definition in the previous sections.

The additional effort in measuring the various correlation functions required to con-
struct M(t) is compensated by the fact that we can study several kinematic points for the
2→ 1 transitions, together with the 2→ 2 amplitudes

〈π, qi|π̃−qi(0) Θ(M̂ − 2ωqi ,∆)e−(Ĥ−ωqi )t π̃qj (0)|π, qj〉

= 〈π, qi|π̃−qi(t)π̃qj (0)|π, qj〉 −
N∑
n=1

Θ
(
2ωqi − En(L),∆

)
M ij

4 [n] e−(En(L)−ωqi )t . (4.7)

Note that this procedure in fact relies on finite-L, in order to ensure that a finite
(and manageable) number of states appear in the regime where Θ

(
2ωqi − En(L),∆

)
has

support. Once the re-construction is achieved, the resulting cΘ and cΘ,ππ are expected
to have residual volume effects, scaling as O(e−L∆). Thus, exactly as with the methods
described in refs. [59, 60], it is important that L∆ is sufficiently large that these can be
removed or included in the systematic uncertainty. Future work, perhaps along the lines
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of refs. [68, 69] is needed to fully analyze the finite-L corrections to these correlators as a
function of the Θ width as well as the time and energy coordinates.

Alternatively, for situations where an exclusive study is not possible, e.g. for higher
center-of-mass energies where a variational approach would be impractical, approximate
solutions to the inverse problem represent a viable alternative. The approach is to define
coefficients, wΘ(t,∆, ωqi |t′), satisfying∑

t′

wΘ(t,∆, ωqi |t′) e−(E−ωqi )t
′ = Θ(E − 2ωqi ,∆) e−(E−ωqi )t , (4.8)

where the kernels w are found numerically, for each value of t, ∆ and ωqi , using Backus-
Gilbert-like methods [61, 70], or Chebyshev polynomials [62]. These then satisfy

〈π, qi|π̃−qi(0) Θ(M̂ − 2ωqi ,∆)e−(Ĥ−ωqi )t π̃qj (0)|π, qj〉

=
∑
t′

wΘ(t,∆, ωqi |t′) 〈π, qi|π̃−qi(t
′)π̃qj (0)|π, qj〉 . (4.9)

While a large ∆ improves the stability of the numerical solutions, the change of basis
from e−Et to Θ(E − 2ωqi ,∆)e−Et may also simplify the complexity of the inverse problem
(compared to a target Gaussian or Breit-Wigner peak, for example) thereby potentially
reducing systematic errors.

Finally, we note that it may also be useful to construct the coefficients to reproduce
1 − Θ(· · · ) instead, i.e. the reflected Θ-function that decreases with increasing E . The
resulting estimator can then be subtracted from the original correlator to reach the desired
quantity. This seems like a trivial adjustment as the two sets of coefficients should formally
be related as

wΘ(t,∆, ωqi |t′) = δt,t′ − w1−Θ(t,∆, ωqi |t′) . (4.10)

In practice, however, the algorithms used to determine the coefficients depend non-trivially
on the target functions and w1−Θ may give a better overall estimate.

5 Summary and outlook

In this article we have considered extensions of the work of Maiani and Testa [1]. These
divide into two main categories: (i) generalizing the results for threshold correlators and (ii)
proposing modified correlators that allow one to extend the reach of scattering extractions
above threshold.

In the case of threshold kinematics, the key results are presented in sections 2.1 and 3.1.
In the former we review the analysis of the ππJ three-point function (with J a scalar current
and π a single-particle interpolator) and consider an alternative expansion in kinematic
functions that replaces the original expansion of ref. [1], in powers of inverse time (1/t), and
appears to exhibit better convergence at small to moderate t values. We also give explicit
expressions for the leading off-shellness contaminating the correlator. In section 3.1, we
extend these considerations to four-point functions, focusing on Nπ → Nπ. This gives a
tool to extract the Nπ scattering length, aNπ, from a non-standard fit to the Euclidean time
dependence, with terms scaling as aNπt and a2

Nπ

√
t; see also eq. (1.10) in the introduction.
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The second class of extensions, targeting scattering information away from threshold,
are detailed in sections 2.2 and 3.2, again with a focus on three- and four-point functions,
respectively. The key idea is to consider a modified correlator, in which a smooth step func-
tion, denoted by Θ(M̂−M0,∆), is inserted with the operators. Here ∆ denotes the width of
the step, M̂ is the hamiltonian boosted to zero-momentum, and M0 a free parameter. This
modification effectively shifts the threshold to higher energies, so that the Maiani-Testa ap-
proach can be used to extract the form factor and scattering amplitude for general kinemat-
ics. As we stress in the main text, this method is analogous to those based in reconstructing
the spectral function [59, 60]. The key distinction here is that the target energy range is
isolated by the combined effect of the Θ-function and the Euclidean-time translation op-
erator, e−Ĥt. In particular, the latter naturally provides the damping of contributions
above the target energy, see also figure 1. This is formalized by the large time expansions
presented in sections 2.2 and 3.2. At leading order these give the real and imaginary parts
of the physical observables, separated by coefficients with different time dependencies.

In section 4 we briefly describe the implementation strategies for extracting the Θ-
modified correlator from numerical lattice calculations. We outline two methods there,
one based on the generalized eigenvalue problem (GEVP) and the other on reconstruction
methods such as that due to Backus and Gilbert [70]. In both cases, this approach may have
an advantage over the other methods because only the low-energy modes of the correlator
need to be modified. In particular, the contamination of higher energies is encoded in
the large t expansion of the correlation function and therefore profits from knowledge of
the functional form (ultimately arising from Lorentz invariance and the form of the time-
translation operator and threshold singularities). This information is not directly used, for
example, in refs. [59, 60]. In section 4 we also briefly discuss the role of finite volume, and
the importance of ∆ in suppressing volume effects.

Looking forward, the next steps are to test these methods in a lattice calculation. The
most likely initial applications might include extracting scattering lengths from standard
three- and four-point functions, especially on lattice ensembles where this information is
available from a finite-volume analysis and can provide a direct comparison. This can be
used to test, for example, whether one can achieve a more precise determination due to the
fact that the observable appears at leading order in the matrix element, rather than as a
shift to the energies. This will set the stage for the more ambitious implementation away
from threshold, with ultimate target observables including electroweak decay amplitudes,
QED corrections to hadronic matrix elements and long-range matrix elements. This will
require some extensions of the formal results presented here, but these are expected to be
relatively straightforward, along the lines of ref. [60].
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A Technical details

A.1 Matrix element decomposition

In this section we prove eq. (2.20) of the main text. Begin with a Minkowski-signature
representation of Ak(q1, q2;p)

(2π)4δ4(q1 + q2 − P )Ak(q1, q2;p) =
2ωq2√
Zπ

∫
d4x eiq

0
2x

0−iq2·x 〈π, q1|π(x)|k, out,p1 · · ·pnk〉 ,

(A.1)
where we have introduced the four-vectors q1 = (ωq1 , q1), q2 = (q0

2, q2) and

P ≡
(
E(p),P

)
=
(
ωp1 + · · ·+ ωpnk

, p1 + · · ·+ pnk
)
. (A.2)

Next we decompose the matrix element on the right-hand side into disconnected and con-
nected components to reach

(2π)4δ4(q1 + q2 − P )Ak(q1, q2;p)
= δk,1(2π)72ωq12ωq2

[
δ3(p1 − q1)δ4(p2 − q2) + δ3(p2 − q1)δ4(p1 − q2)

]
+ (2π)4δ4(q1 + q2 − P )2ωq2

Mk

(
η(q,p)|µ(q,p)

)∗
η(q,p)− iε . (A.3)

This result serves to define the off-shell amplitude Mk as the connected component of the
matrix element with a simple pole factor removed. The latter is defined using

η(q,p) = (E(p)− ωq1)2 − (P − q1)2 −m2
π . (A.4)

Note that the self-energy contributions from the external leg are absorbed into the off-shell
definition.

From the Lehmann-Symanzik-Zimmermann (LSZ) reduction formula then immediately
follows

lim
η→0

Mk

(
η|µ(q,p)

)
=Mk

(
µ(q,p)

)
, (A.5)

where the right-hand side here denotes the 2 → nk scattering amplitude, a function of
3nk − 4 Lorentz invariants arranged in the vector µ.

We conclude by cancelling the common delta function in eq. (A.3) to reach

Ak(q1,q2;p)=δk,1(2π)32ωq12ωq2

[
δ3(p1−q1)+δ3(p2−q1)

]
−2ωq2

Mk

(
η(q,p)|µ(q,p)

)∗
η(q,p)−iε

∣∣∣∣
q1+q2=P

,

(A.6)
matching eq. (2.20) of the main text.

A.2 General kinematics in the three-point function

In this section we extend our expressions for the three-point function, presented in section 2,
to arbitrary kinematics. We begin by rewriting eq. (2.13) as

cΘ
q1q2

(t2|ω0) =
∑
k

∫
dΦ?

k e
−(E(p)−ωq1−ωq2 )t2 Θ

(
s(p?)1/2 − 2ω0,∆

)
A?k(q?1, q?2;p?)B?

k(p?) ,

(A.7)

– 22 –



J
H
E
P
0
6
(
2
0
2
1
)
0
4
3

where the ? indicates that the quantity has been boosted with velocity β = −(q1 +
q2)/(ωq1 + ωq2). To be more concrete we introduce the boost matrix Λ(β) which sat-
isfies

Λ(β)µν

(
ωq1 + ωq2

q1 + q2

)ν
=

√(ωq1 + ωq2

)2 − (q1 + q2
)2

0

µ =
(
ω?q1

+ ω?q2

0

)µ
. (A.8)

We then define

Λ(β)µν

(
ωqi
qi

)ν
=
(
ω?qi
q?i

)µ
, Λ(β)µν

(
ωpi
pi

)ν
=
(
ω?pi
p?i

)µ
, (A.9)

which in turn allows us to introduce

A?k(q1, q2;p) = δk,1(2π)32ω?q1
2ω?q2

[
δ3(p?1 − q?1) + δ3(p?2 − q?1)

]
− 2ω?q2

Mk

(
η(q?,p?)|µ(q?,p?)

)∗
η(q?,p?)− iε ,

(A.10)

B?
k(p?) = Bk(p) . (A.11)

Then eq. (A.7) holds because dΦk2ωq2 , (2ωq2)−1Ak and Bk are each Lorentz scalars.
It remains only to rewrite the t2 dependence in the exponential. To do so we substitute

(E(p)− ωq1 − ωq2)t2 = (P − q1 − q2) · x2 = (E?(p)− ω?q1
− ω?q2

)t?2 , (A.12)

where we have introduced the four-vector xµ2 = (t2,0). The final line holds because q?1 +
q?2 = 0 and the Delta function inside dΦk then sets P ? = 0.

Thus, we conclude that eqs. (2.22), (2.29), (2.31), (2.36), (2.38), (2.40), (2.43), (2.44)
hold, also for q1 + q2 6= 0 provided the following replacements are made

q −→ q?1 , (A.13)
t2 −→ t?2 = γt2 , (A.14)

where
γ =

ωq1 + ωq2√(
ωq1 + ωq2

)2 − (q1 + q2
)2 . (A.15)

A.3 Optical theorem for the three-point function

In this section we demonstrate eq. (2.28) of the main text. Beginning with the definition
of G(E , E/2)

G(E ,E/2) =
∑
k

∫
dΦk 2πδ

(
E −E(p)

)
Mk

(
µ(q,p)

)∗
Bk(p) , (A.16)

=
∑
k

1
Sk

∫
d3p1

(2π)32ωp1

· · ·
d3pnk

(2π)32ωpnk
(2π)4δ3(P )δ

(
E −E(p)

)
Mk

(
µ(q,p)

)∗
Bk(p) , (A.17)
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we first apply the trick of ref. [1] to write the scattering amplitude as a difference of inner-
products

− i(2π)4δ3(P )δ
(
E − E(p)

)
Mk

(
µ(q,p)

)∗
= 〈ππ, in, q,−q|k, out,p1 · · ·pnk〉 − 〈ππ, out, q,−q|k, out,p1 · · ·pnk〉 . (A.18)

Inserting this into eq. (A.17) then gives

G(E , E/2) = i
∑
k

1
Sk

∫
d3p1

(2π)32ωp1

· · ·
d3pnk

(2π)32ωpnk
〈k, out,p1 · · ·pnk |J(0)|0〉 (A.19)

×
[
〈ππ, in, q,−q|k, out,p1 · · ·pnk〉 − 〈ππ, out, q,−q|k, out,p1 · · ·pnk〉

]
.

Finally we identify the combination of the integrals and the outer-product as an insertion
of the identity on the Hilbert space

I =
∑
k

1
Sk

∫
d3p1

(2π)32ωp1

· · ·
d3pnk

(2π)32ωpnk
|k, out,p1 · · ·pnk〉〈k, out,p1 · · ·pnk | , (A.20)

such that eq. (A.19) reduces to

G(E , E/2) = i
[
〈ππ, in, q,−q|J(0)|0〉 − 〈ππ, out, q,−q|J(0)|0〉

]
, (A.21)

= 2 Im 〈ππ, out, q,−q|J(0)|0〉 , (A.22)

thereby completing the proof.

A.4 Cancellation of imaginary parts in the three-point function

In this section we review the result of ref. [1], that the imaginary parts cancel between the
first and second terms of eq. (2.22), which we repeat here for convenience

cΘ
q,−q(t2|ω0) = Θ(2ωq − 2ω0,∆) f

(
s(q2)

)
+ Ξq(t2|ω0) , (A.23)

Ξq(t2|ω0) ≡ −2ωq
∫ ∞

2mπ

dE
2π e

−(E−2ωq)t2 Θ(E − 2ω0,∆) G(E , ωq)
(E − ωq)2 − ω2

q − iε
. (A.24)

As a first step in the proof, we need to demonstrate that G(E , ωq) is real, a result that
we have shown in the previous section for G(E , E/2) and now extend for all values of the
arguments. Beginning with the definition

G(E , ωq) =
∑
k

∫
dΦk 2πδ

(
E − E(p)

)
Mk

(
η(q,p)|µ(q,p)

)∗
Bk(p) . (A.25)

We then substitute

− i(2π)4δ3(P )δ
(
E − E(p)

)
Mk

(
η(q,p)|µ(q,p)

)∗
= 〈π, q; π̃(q), in|k, out,p1 · · ·pnk〉 − 〈π, q; π̃(q), out|k, out,p1 · · ·pnk〉 , (A.26)
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where we have introduced the shorthand

〈π, q; π̃(q), in|k, out,p1 · · ·pnk〉

≡ i [η(q,p)− iε]√
Zπ

∫
d4x eiq

0x0−i(−q)·x〈π, q|π(x)|k, out,p1 · · ·pnk〉 . (A.27)

This notation then allows us to directly imitate the derivation above to conclude

G(E , ωq) = i
[
〈π, q; π̃(−q), in|J(0)|0〉 − 〈π, q; π̃(−q), out|J(0)|0〉

]
, (A.28)

= 2 Im 〈π, q; π̃(−q), out|J(0)|0〉 , (A.29)

from which directly follows G(E , ωq) ∈ R.
Returning to eq. (A.23), we now evaluate the imaginary part of Ξq(t2|ω0) to reach

ImΞq(t2|ω0) =−2ωqIm
∫ ∞

2mπ

dE
2π e

−(E−2ωq)t2 Θ(E −2ω0,∆) G(E ,ωq)
(E −ωq)2−ω2

q − iε
, (A.30)

=−2πωq
∫ ∞

2mπ

dE
2π e

−(E−2ωq)t2 Θ(E −2ω0,∆)G(E ,ωq)δ
(
(E −ωq)2−ω2

q

)
, (A.31)

=−Θ(2ωq−2ω0,∆) Imf
(
s(q2)

)
. (A.32)

Thus, the imaginary part of Ξ cancels the imaginary part of Θ(2ωq − 2ω0,∆) f
(
s(q2)

)
, as

claimed.

A.5 Decomposition of the four-point function

In this section, we demonstrate eq. (3.7) of the main text. We begin by recalling the basic
definitions

cΘ,Nπ
q′

1q
′
2q1q2

(t′, t|M0) ≡
∑
k

∫
dΦk e

−(E(p)−ωq′
1
−ωq′

2
)t′
e+(E(p)−ωq1−ωq2 )t

×Θ
(
s(p)1/2 −M0,∆

)
Ak(q′1, q′2;p)A∗k(q1, q2;p) , (A.33)

where ωq1 =
√
m2
π + q2

1, ωq2 =
√
m2
N + q2

2, and

Ak(q′1, q′2;p) = δk,1(2π)32ωq′
1
2ωq′

2
δ3(p1 − q′1)− 2ωq′

2

Mk

(
η(q′,p)|µ(q′,p)

)∗
η(q′,p)− iε . (A.34)

The product of Ak and A∗k generates four terms, schematically represented by(
δ + 1

η + iε

)(
δ + 1

η − iε

)
= δ2 + δ

1
η − iε

+ 1
η + iε

δ + 1
η + iε

1
η − iε

. (A.35)

The doubly disconnected term is discarded and, for the single delta function term, the
integral is removed so that one can send ε→ 0 to recover(

δ + 1
η + iε

)(
δ + 1

η − iε

)
−→ δ

1
η

+ 1
η
δ + 1

η + iε

1
η − iε

. (A.36)
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As the final term is inside the integral, the iε must be treated carefully. The first step is
to break each pole into real and imaginary parts

δ
1
η

+ 1
η
δ+ 1

η + iε

1
η − iε

= δ
1
η

+ 1
η
δ+
[
Re 1
η + iε

+iIm 1
η + iε

][
Re 1
η − iε

+iIm 1
η − iε

]
. (A.37)

In the analysis below we will consider q 6= q′ and only take the limit q → q′ on combinations
of terms for which we know this is safe. Indeed, for many of the individual terms here the
limit does not exist.

After multiplying out the product of binomials on the right-hand side, one has a total
of six contributions to cΘ,Nπ

q′
1q

′
2q1q2

. We find it most instructive to introduce some additional
notation for this decomposition

cΘ,Nπ
q′

1q
′
2q1q2

(t′, t|M0)c =
6∑

n=1
c

Θ,Nπ,[n]
q′

1q
′
2q1q2

(t′, t|M0) , (A.38)

where schematically the correspondence is given by{
[1] = δ

1
η
, [2] = 1

η
δ, [3] = Im× Re, [4] = Re× Im, [5] = Im× Im, [6] = Re× Re

}
.

(A.39)
For example, cΘ,Nπ,[1] is given explicitly by

c
Θ,Nπ,[1]
q′

1q
′
2q1q2

≡ −
∫

d3p1
(2π)32ωp12ωp2

e
−(E(p)−ωq′

1
−ωq′

2
)t′
e+(E(p)−ωq1−ωq2 )t (A.40)

×Θ
(
s(p)1/2 −M0,∆

)
(2π)32ωq′

1
2ωq′

2
δ3(p1 − q′1) 2ωq2

M
(
η(q,p)|µ(q,p)

)
η(q,p) + iε

,

where the δk,1 projects us into a single two-particle channel and we drop the k = 1 subscript.
Using the Dirac delta function to evaluate the remaining integrals yields

c
Θ,Nπ,[1]
q′

1q
′
2q1q2

= −e+(ωq′
1
+ωq′

2
−ωq1−ωq2 )tΘ

(
s(q′)1/2 −M0,∆

)
2ωq2

M
(
η(q, q′)|µ(q, q′)

)
η(q, q′) , (A.41)

or, in the center-of-mass frame with q1 = −q2 = q,

c
Θ,Nπ,[1]
q′,q = −e(E(q′)−E(q))t Θ

(
E(q′)−M0,∆

)
2ωN,q

M
(
η(q, q′)|µ(q, q′)

)
η(q, q′) . (A.42)

This matches the second line of eq. (3.7), except for the fact that here we have the complex
valued M rather than only its real part. This is because cΘ,Nπ,[3] generates the exact
cancellation of the imaginary part, as we now show.

For general kinematics, cΘ,Nπ,[3] is given by

c
Θ,Nπ,[3]
q′

1q
′
2q1q2

≡ iπ
∑
k

∫
dΦk e

−(E(p)−ωq′
1
−ωq′

2
)t′
e+(E(p)−ωq1−ωq2 )t Θ

(
s(p)1/2 −M0,∆

)
× 2ωq′

2
δ
(
η(q′,p)

)
Mk

(
µ(q′,p)

)
2ωq2P

Mk

(
η(q,p)|µ(q,p)

)∗
η(q,p) ,

(A.43)
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and, in the case of back-to-back momenta, this reduces to

c
Θ,Nπ,[3]
q′,q = iπ

∑
k

∫
dΦk e

−(E(p)−E(q′))t′e+(E(p)−E(q))t Θ
(
E(q′)−M0,∆

)
× δ

(
E(p)− E(q′)

)
Mk

(
µ(q′,p)

)
2ωN,qP

Mk

(
η(q, p)|µ(q,p)

)∗
η(q, p) ,

(A.44)

=
i2ωN,q Θ

(
E(q′)−M0,∆

)
e+(E(q′)−E(q))t

η(q, q′) Ξ(q, q′) , (A.45)

where we have used η(q′,p) = (E(p)−ωπ,q′)−ω2
N,q′ = [E(p)−ωπ,q′ +ωN,q′ ][E(p)−E(q′)]

for the case of back-to-back momenta. In addition we have defined

Ξ(q, q′) ≡ π
∑
k

∫
dΦk δ(E(p)− 2ωq′)Mk

(
µ(q′,p)

)
Mk

(
η(q, p)|µ(q,p)

)∗
. (A.46)

Next, following the original argument of ref. [1], reviewed in appendix A.3, one can
show that Ξ is just the imaginary part of M:

Ξ(q,q′) =−iπ
∑
k

∫
dΦkδ(2ωq′−E(p))η(q,p)2ωq2

〈π,q1|π(0)|k,out,p1 · · ·pnk〉√
Zπ

×
[
〈k,out,p1 · · ·pnk |Nπ, in,q,−q〉−〈k,out,p1 · · ·pnk |Nπ,out,q,−q〉

]
,

(A.47)

= 1
2i
η(q,p)2ωq2√

Zπ

[
〈π,q1|π(0)|Nπ, in,q,−q〉−〈π,q1|π(0)|Nπ,out,q,−q〉

]
, (A.48)

= ImM
(
η(q,q′)|µ(q,q′)

)
. (A.49)

Note that strictly one should substitute only the connected part of the matrix element for
M. As the disconnected part is pure real, however, the final line holds as written. Setting
η(q, q′) = 0 on both sides of this equation also yields the result

h0 = ImM
(
µ(q, q′)

)
, (A.50)

used to reach eq. (3.33) of the main text.
Putting everything together yields

c
Θ,Nπ,[1]
q′,q + c

Θ,Nπ,[3]
q′,q = −e−(E(q)−E(q′))t Θ

(
E(q′)−M0,∆

)
2ωN,q

ReM
(
η(q, q′)|µ(q, q′)

)
η(q, q′) .

(A.51)
In addition, an essentially identical analysis gives the result for [2] and [4]

c
Θ,Nπ,[2]
q′,q + c

Θ,Nπ,[4]
q′,q = −e+(E(q′)−E(q))t′ Θ

(
E(q)−M0,∆

)
2ωN,q′

ReM
(
η(q′, q)|µ(q′, q)

)
η(q′, q) ,

(A.52)
where the only distinction is the exchange of q ↔ q′ and t↔ −t′. To conclude the tracking
of terms we note that

c
Θ,Nπ,[6]
q′,q = C(t′, t|q′, q, ω0,∆) , (A.53)

as defined in eq. (3.11) of the main text, and in addition that cΘ,Nπ,[5]
q′,q = 0. This final claim

holds because each term is defined away from q = q′, with the q → q′ limit to be performed
only on the sum. In this prescription, the double Delta function defining cΘ,Nπ,[5]

q′,q cannot
be satisfied. This completes the demonstration of eq. (3.7).
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