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Differential cross sections for deuteron breakup 1H(d, pp)n reaction were measured for a large set
of 243 geometrical configurations at the beam energy of 80 MeV/nucleon. The cross section data are
normalized by the luminosity factor obtained on the basis of simultaneous measurement of elastic
scattering channel and the existing cross section data for this process. The results are compared
to the theoretical calculations modeling nuclear interaction with and without taking into account
the three–nucleon force (3NF) and Coulomb interaction. In the validated region of the phase space
both the Coulomb force and 3NF play an important role in a good description of the data. There
are also regions, where the improvements of description due to including 3NF are not sufficient.

I. INTRODUCTION

One of the most basic topics in modern nuclear physics
is the nature of the forces acting between nucleons. Exact
knowledge of all features of the two–nucleon (NN) sys-
tem dynamics should provide a basis for understanding
of properties and interactions in heavier systems. This
presumption has been verified by applying models of the
NN interaction to describe systems composed of three
nucleons (3N). Theoretical predictions of observables are
obtained by means of the rigorous solution of Faddeev
equations [1–4], including NN interaction as so-called re-
alistic potential models, based on the meson exchange
theory, originally proposed by Yukawa [5] and confirmed
by Occhialini and Powell [6]. Early stage of experimen-
tal studies of the deuteron-proton elastic scattering in
the range of intermediate energies and theoretical efforts
[7] have proven the dominant, but not sufficient, role
of the pairwise NN interaction. The missing piece of
the dynamics, referred to as three–nucleon force (3NF),
also contributes. The effects of this force, much smaller
than parwise NN contribution, arise in systems consist-
ing of at least three nucleons. Modern NN potentials
like Argonne V18 (AV18) [8], CD Bonn (CDB) [9], and
Nijmegen I and II [10] have yielded a remarkably good
agreement (with a χ2 of around 1) between the predic-
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tions of the calculations with the experimental data for
two-nucleon systems. To describe three–nucleon systems
these realistic NN potentials are used in Faddeev equa-
tions together with present models of 3NF like Urbana
IX [11] or Tucson-Melbourne [12]. In another approach,
three–nucleon interaction can be introduced within the
coupled-channel (CC) framework by an explicit treat-
ment of the ∆-isobar excitation [13–15]. Alternatively,
contributions of NN and 3NF to the potential energy of
a 3N system can be calculated within the Chiral Pertur-
bation Theory [16, 17]. Here, the many-body interactions
appear naturally at higher orders (non-vanishing 3NF
at next-to-next-to leading order). Modern calculations
include also other ingredients of few–nucleon dynamics
such as Coulomb interactions [18, 19] or relativistic ef-
fects [20, 21]. Predicted effects in differential cross sec-
tions emerge in various parts of the phase space of the
deuteron-proton breakup reaction with different magni-
tude. Existing experimental data [22–28] demonstrate
quite sizable 3NF and Coulomb effects, and confirm their
importance for the correct description of differential cross
sections for the deuteron breakup reaction at energies
above 65 MeV/nucleon and below 400 MeV/nucleon.

The present work is a continuation of experimental
campaign focusing on the investigation of contributions
from various dynamical ingredients (3NF, Coulomb force
and relativistic component) of nuclear interaction via
measuring various observables in few-nucleon systems for
large parts of the phase space. Measured differential
cross sections at 80 MeV/nucleon enlarges the system-
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FIG. 1. Schematic side view of BINA detection system

atic database for the deuteron–proton breakup reaction
at intermediate energies. Produced feedback allows for
further validation of available and future theoretical mod-
els of nuclear interaction.

In Section II the experimental setup is described. Sec-
tion III gives an overview of the data analysis, while in
section IV the obtained results are presented. Section V
summarizes the main outcome of the presented studies.

II. EXPERIMENT

The experiment was performed at Kernfysisch Ver-
sneller Instituut (KVI) in Groningen, the Netherlands
(currently KVI-CART). The deuteron breakup reac-
tion, 1H(d, pp)n, was measured simultaneously with elas-
tic scattering of deuterons on liquid hydrogen target.
Deuteron beam of 80 MeV/nucleon energy was pro-
vided by the cyclotron AGOR (Accelerateur Groningen-
ORsay) [29], while charged reaction products were
detected by the BINA (Big Instrument for Nuclear-
polarization Analysis, [30]) setup. The BINA detection
system is characterized by: high angular acceptance (al-
most 4π), good (in forward region) and moderate (in
backward part) angular resolution, the ability to identify
and to provide complete kinematical information for two
or more charged particles in the final state. All these
features make the BINA detector an excellent tool for
studying the systems of few nucleons in the intermediate
energy range.

The BINA detection system, Fig. 1, consist of two main
parts, forward Wall and backward Ball. The liquid hy-
drogen target cell is positioned in the center of the Ball,
which served in this experiment as the scattering cham-
ber only. The front part, Wall, consists of three detector
elements positioned in planes perpendicular to the beam
line: a multi-wire proportional chamber (MWPC) and

two scintillator hodoscopes, forming a set of 120 ∆E–E
virtual telescopes. The Wall is optimized for detecting
protons and deuterons in the energy ranges of 20–130
MeV and 25–200 MeV, respectively.

Precise measurement of scattering angles is accom-
plished by MWPC [31] positioned directly behind the
thin vacuum window as the first detector intersected by
the reaction products. It consists of three active planes: a
plane measuring x-coordinate with vertical wires, a plane
measuring y-coordinate with horizontal wires, and a diag-
onal plane U with wires inclined by 45 degrees. All wires
within a plane are spaced by 2 mm and combined in pairs
to form 118, 118 and 148 separate detector channels for
X, Y and U planes, respectively. The active area of the
MWPC is 38×38 cm2. It forms a pixel system allowing
to precisely determine the crossing point of a charged
particle, and thus to reconstruct the emission angles of
the outgoing reaction products. The angular acceptance
of the detector in polar angles is ϑ ∈ (10◦, 40◦), with the
full azimuthal coverage up to 30◦.

The ∆E transmission detector consists of 24 vertical
strips of a 2 mm thick plastic scintillator (BICRON type
BC-408 [32]). The signals from each ∆E stripe are read
by one photomultiplier tube (PMT) coupled through a
light guide modeled for optimal light collection. As the
signals are proportional to the specific energy loss of
charged particles they play a crucial role in particle iden-
tification.

The E detector is made of horizontally–arranged
120 mm thick scintillator slabs (BICRON type BC-408
[32]). In order to minimize particle cross-overs between
neighboring scintillators central ten elements of E detec-
tor follow a cylindrical symmetry, with the cylinder cen-
ter at the target position (see Fig. 1). The additional
ten elements attached from the top and bottom to the
cylindrical part were not used in the present experiment.
Energy deposited by particles in the E slab was converted
to scintillation light registered by two PMTs, attached to
both ends of each detector. This allows to compensate
for the light attenuation along the scintillator resulting
in a position independent output.

Other details concerning the setup as well as electronic
and read-out systems used in the experiment can be
found in Ref. [33]. Data acquisition system was based
on GSI Multi-Branch System (MBS) [34].

III. DATA ANALYSIS

The data analysis started with the selection of time
periods characterized by stable operation of the cyclotron
and all elements of the detector. The selection was based
on the scaler rates recorded for all individual channels of
the detector. In order to minimize random coincidences,
additional time gates rejecting particles not correlated
with the trigger signal had been set.
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A. Tracking of individual particles

1. Track Reconstruction

Charged particles passing through the Wall detector
deposit their energy successively in MWPC, ∆E and E.
In the simplest case, for a single particle only three wires
(one wire per plane) in MWPC give a signal while in
reality, clusters of two or more wires are observed. As
no signal amplitude from MWPC was collected, in such
cases the hit position is represented by the center of the
cluster.

In order to accept the track information from the
MWPC several different strategies may be used. In
the analysis published in several earlier papers e.g. in
Ref. [35], a coincidence of all three planes was required,
with the X and Y planes defining (x, y) coordinates of the
intersection of the track with the MWPC and the U-plane
was used to validate this intersection. In the data analy-
sis of deuteron-deuteron scattering presented in Ref. [36]
we accepted also events with only two planes hit, with the
condition that no other hits are present in MWPC and
the resulting position information is correlated with hits
in ∆E and E detectors. This kind of tracks, which are
further referred to as ”weak–tracks” (as opposed to ”full–
tracks” indicating 3-plane coincidences), is important for
consideration of systematic effects such as e.g. energy
and position dependent MWPC efficiency. The analysis
presented in this paper is based on full–tracks and, in
addition, we take advantage from the position informa-
tion supplied by the U-plane. In such a case, the final
position is given by the center of a circle inscribed in the
triangle defined by corresponding cluster centroids pro-
jected (from the target center direction) onto a common
plane (see Fig. 2). Assuming equal position resolution of
all planes, this algorithm improves the final angular reso-
lution for the polar angle ϑ up to 0.4◦ and the azimuthal
angle ϕ to 0.67◦ − 1.39◦ (depending on the polar angle).
It is also clear that weak–tracks involving U-plane fea-
ture lower position resolution in one direction than those
defined by X and Y plane. It is important to mention
that 3-dimensional track parameters, in this case polar
and azimuthal angles, can be obtained by the following
formulas:

ϑ = arctan

(√
x2 + y2

ZY

)
, (1)

ϕ = atan2(y, x), (2)

under the assumption that the corresponding particle was
emitted from the target center (ZY is the distance of the
projection plane from this center). The atan2() function
calculates the principal value of the arctan

(
y
x

)
, using the

signs of the two arguments to determine the quadrant of
the result [37]. Smearing of the reaction point due to tar-
get thickness and beam size is included into systematic
uncertainty of the final results. Having those parame-
ters one may check if the track coincides, within given

FIG. 2. Panel a: Geometrical reconstruction of the (x, y)
coordinates of the full–track intersection with the Y-plane.
Lines X, Y and U represent centroids of clusters in the re-
spective planes projected onto Y-plane. Reconstructed (x, y)
coordinates for all three types of weak–tracks are shown as
green dots. Panel b: Distribution of d (defined in the panel
a) for the whole dataset. Limit of 7 mm for d corresponds to
the ∼ 3σ of the fitted gaussian distribution (red solid line).

position resolution, with hits in the E and ∆E detec-
tor elements – only such events are considered in further
analysis. In order to combine the hits in the individual
planes into the full–track event, a cut has been imposed
on the distance between the centroid of the cluster re-
constructed in the U-plane and the cross-point between
centroids in the X and Y planes (d-variable in Fig. 2).

2. Particle identification

Neglecting traces of heavier ions from beam interac-
tions with the target frames, the particle identification
can be reduced in this experiment to simple distinction
between protons and deuterons, while the later ones come
exclusively from the elastic scattering. The identification
is based on the linearization technique applied to the ∆E-
E spectra [38]. It allows for identification of reaction
products by analytically-determined conditions. Follow-
ing simplified consideration based on Bethe-Bloch for-

mula one introduces a new variable Ẽ = (E+∆E)κ−Eκ,
the value of which is constant for each type of particles
in wide energy range [39]. The index κ characterizes
the detector material, its internal structure (variations of
transparency, quality of the surface) and geometry and
is determined for each virtual telescope separately. As a

result, one-dimensional distribution of Ẽ variable is ob-
tained in which protons and deuterons are visible as dis-
tinct peaks (Fig. 3). In order to improve the sensitivity
of this method, the fine tuning of κ (as well as of the pa-
rameters: µp, σp, µd, σd corresponding to the centroids
and widths of proton and deuteron peaks, respectively)
was performed for each virtual ∆E-E telescope. For this
purpose a sample of the data with well balanced number
of protons and deuterons (from dd scattering experiment
at the same beam energy) has been used. The κ index
has been varied to get maximal separation between pro-
ton and deuteron peaks. The obtained final values of κ
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FIG. 3. Example of the identification spectra for a chosen
virtual telescope (∆E=13, E=8). Panel a: ∆E-E signal dis-
tribution. The violet line separates the proton and deuteron
bands and corresponds to the vertical line indicated in the
distribution on the right side. Panel b: Projection of the

linearized spectrum onto the Ẽ variable. The two peaks cor-
respond to the proton and deuteron bands. The 2σ ranges of
the fitted Gaussian functions are shown as red and blue lines
for protons and deuterons, respectively.

range from 1.63 to 1.85, while according to Bethe-Bloch
rule κ = 1.73 is expected for an ideal scintillator. This
method allows for controllable selection of different event
samples not biased by subjective cuts.

3. Energy Reconstruction

Energy calibration gives a relation between the reg-
istered ADC channel and the deposited energy (ED)
in a given scintillator element. Since 2 mm thick ∆E
stripes remove a relatively small fraction of particle en-
ergy and, furthermore, this information is strongly bi-
ased by light attenuation along the scintillator and the
light guide, only E detector was used for reconstruction of
particles energies. The calibration was carried out using
protons from elastic scattering and Monte-Carlo simu-
lations including full detector geometry implemented in
the GEANT4 simulation package [40, 41]. The detector
is characterized by noticeable variation of the PMT sig-
nal amplitude depending on the point of the interaction
along the scintillator. This dependence, caused by light
attenuation and losses, can be significantly suppressed
by applying geometrical mean of responses of the left
and right PMTs (C =

√
cL · cR). For the two middle E

slabs, partially cut in the center in order to accommodate
an opening for the beam pipe, plain sum of the signals
(C = cL + cR) was applied. The remaining small depen-
dence of the signal on position is taken into account in
the position dependent energy calibration.

In order to extend the calibration over energies of pro-
tons from the breakup reaction, a dedicated measurement
has been performed using energy degraders, placed be-
tween the ∆E and E detectors. Degraders were made of
steel plates of precisely-defined thicknesses, which were
mounted in several configurations allowing for satisfac-

FIG. 4. Energy calibration. Panel a: Example of the correla-
tion between experimentally obtained centroids of the distri-
bution of the variable C and of the corresponding distribution
of the simulated energy deposited in E detector together with
the fitted function defined in Eq. (3). Panel b: Set of poly-
nomials transforming energy deposited by proton, ED(ϑ), to
its initial kinetic energy at the reaction point.

tory coverage of the energy range. The elastically scat-
tered protons were selected according to kinematical con-
ditions: co-planarity and ϑp vs. ϑd relations. The detec-
tor plane was divided into 180 sectors, each of them la-
beled by the side (s = left, right), E-scintillator element
number (N = 0, 1, . . . , 9) and the polar angle bin number
(ϑ̄ = 0, . . . , 8). All the sectors were calibrated separately
using the information from GEANT4 simulations and the
following two-parameter function:

ED
s,N,ϑ̄

(C) = as,N,ϑ̄C + bs,N,ϑ̄

√
C, (3)

where take out: ED
s,N,ϑ̄

(C) stands for the energy de-

posited in this particular detector element as a function
of variable C, i.e. the combination of signals from left
and right PMTs defined above. An example of the fit is
shown in Fig. 4a.

Deuteron energy calibration was based on that for pro-
tons and corrected for different light output correspond-
ing to the same energy deposited by particles of differ-
ent mass. Particle-dependent light output for the known
scintillator material has been taken from Bicron data
sheets [32], and additionally validated in the dedicated
studies (see Ref. [42] for the details).

To reproduce the initial kinetic energy of a particle
at the reaction point (Ei), the conversion formula has
been found based on the energy loss of simulated mono-
energetic protons and deuterons on their way to and in-
side the E detector:

Ei(ϑ) = P 8
i,ϑ(ED

i (ϑ)), (4)

where subscript i stands for particle type (proton or
deuteron) and {P 8

i,ϑ} is a set of 8th–order polynomials
with factors calculated from deposited-to-initial energy
relations obtained from GEANT4 simulations of the ex-
periment (see Fig. 4b).

Final energy resolution reaches 2.1% for 123 MeV pro-
tons, and deteriorates with energy in accordance with
photon statistics.
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FIG. 5. Panel a: Kinematic relation between polar angles of
coincident coplanar particles with ±3σ cut around the theo-
retical kinematics of dp elastic scattering (black line). Panel

b: Energy distribution of particles identified on the basis of
coplanarity and polar angle cut (shown in the left panel) as
elastically scattered protons.
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FIG. 6. Relation of particle energies deposited in chosen
∆E-E telescope (E=1, ∆E=9). Panel a: spectrum for parti-
cles registered in coincidence with any other particle in Wall;
Panel b: the same with an additional condition that coinci-
dent particles meet angular kinematical relations of the elastic
scattering.

B. Process identification

Neglecting small admixtures of electromagnetic pro-
cesses, deuteron–proton interaction in the studied en-
ergy range may result in elastic scattering or breakup.
A deuteron in the exit channel uniquely identifies the re-
action as elastic scattering, while two protons have to
be identified in order to identify the breakup reaction.
This goal can be accomplished for most of the recorded
events using the PID procedure described in Sec. III A 2.
On the other hand, precise measurement of angles and
strict kinematic relations of the scattering angles and en-
ergies in the elastic deuteron-proton scattering (Fig. 5)
allow for correct identification of the process even when
the regular PID method fails. As a consequence two–
track events can be identified as deuteron-proton elastic
scattering even when one, or both particles underwent
hadronic interaction in the thick scintillator, which in-
fluences the energy measurement and prevents successful
application of ∆E-E–based the PID method (Fig. 6).

C. Detector efficiency

Determination of a true number of events of a given
type from the number of events registered by the detec-
tor requires knowledge of the detector efficiency. Since
successful registration of a single particle is conditioned
with complete information from three detectors (MWPC,
∆E and E), the total detection efficiency, ε(x, y), can be
considered as a product of individual efficiencies of those
detectors.

ε(x, y) = εMWPC(x, y) · ε∆E(x, y) · εE (5)

The efficiency of the E detector (εE) has been assumed
to be 100%. This is justified by a very tight fitting of the
detector slabs. The gap between adjacent elements is of
the order of 50 microns as compared to 10 cm width of
the front face of each element. Therefore, the problem
of efficiency reduces to particle-type dependent energy
threshold.

Since the main sources of inefficiency for both ∆E and
MWPC detectors are well localized, proper accounting
for them required construction of position-dependent ef-
ficiency maps. This was possible using the position in-
formation from MWPC.

The efficiency of the ∆E detector, ε∆E(x, y) (Fig. 7d),
is calculated directly on the basis of a single particle
events according to the following formula:

ε∆E(x, y) =
Nref+∆E(x, y)

Nref(x, y)
, (6)

where the reference number of events, Nref, corresponds
to the number of all particles registered by MWPC with
a correlated hit in the E scintillator, regardless of the
∆E information, while for Nref+∆E , additional matching
with information from the ∆E detector was required.

Position dependent efficiency maps of the multi-wire
proportional chamber have been obtained from single
plane efficiencies (εX , εY , εU ) according to the following
formulas:

εMWPC(x, y) = εX(x, y) · εY (x, y) · εU (x, y), (7)

εweak
MWPC(x, y) = εMWPC(x, y) (8)

+ εX(x, y) · εY (x, y) · (1 − εU (x, y))

+ εX(x, y) · (1 − εY (x, y)) · εU (x, y)

+ (1 − εX(x, y)) · εY (x, y) · εU (x, y).

The first one (Eq. (7)) corresponds to full–tracks, when
the coincidence of all 3 planes was required, and the sec-
ond (Eq. (8)) to the analysis in which also weak–tracks
were accepted (see section III A 1). Efficiencies of individ-
ual planes have been calculated using position informa-
tion from the remaining two planes, and requiring infor-
mation from both scintillator hodoscopes, in a way anal-
ogous to the one already introduced for ∆E. It is clear
that the efficiency in the approach allowing for weak–
tracks is much less sensitive to local defects (dead chan-
nels) present in each plane. Average efficiency in this
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case was as high as 98% (see Fig. 7c), as compared to
85% for full–tracks (see Fig. 7b). In order to better un-
derstand systematics associated with MWPC efficiency,
full analysis of cross section has been performed with and
without accepting weak–tracks. The good agreement ob-
tained strengthens our confidence in the final results of
efficiency calculations [43]. The data analysis is based on
the full–tracks due to better angular resolution achieved
in this way.

The MWPC efficiency depends also on the particle
type and energy and this effect is visible in efficiency
maps for full–tracks. This in fact can be traced back to
the dependence on the relative energy loss of a given par-
ticle within the detector gas-mixture. In order to account
for this effect, a new variable was introduced:

Eloss ∼ q2
m

Ek

, (9)

where q and m are the particles’ charge and mass, while
Ek denotes their kinetic energy. This variable was nor-
malized in a way that for the most energetic among all
the registered particles, elastically-scattered protons, it
equals to one. Fig. 7a presents distribution of the Eloss

(regardless the particle type) and the average efficiency
obtained for various bins in Eloss. In the final analy-
sis, in order to retain acceptable statistics in each bin
of the efficiency map, only three satisfactory populated
ranges of Eloss have been defined, as shown in Fig. 7a.
The final efficiency map for minimum ionizing particles
(Fig. 7b) registered in this experiment (region marked
as (1) in Eloss distribution) is compared to the efficiency
maps constructed for εweak

MWPC (Fig. 7c). Because of con-
tact problems at hardly accessible places, certain elec-
tronics channels of MWPC did not work. There are
quite numerous inefficient regions in MWPC, especially
for full–tracks corresponding to region (1) of Eloss. The
correction defined in Eq. (7) is not effective for crossing
inefficient wires in two or more planes. In any such cases
or in more general cases of low final detector efficiency
ε(x, y) < 0.5 (Eq. (5)) the affected detector region was
rejected from the analysis. The acceptance loss was cal-
culated with Monte Carlo simulation and corrected for,
as described in the next section.

1. Configurational Efficiency

When two particles enter the same detector element
the reconstructed information is distorted. This leads
to false energy reconstruction and may corrupt particle
identification. Such effect, further referred to as configu-
rational efficiency, depends strongly on geometry of the
final state and of the detector, and can be accounted for
by Monte–Carlo simulations.

Due to coplanarity condition, the loss of events cor-
responding to elastic scattering due to configurational
efficiency is practically negligible. For the breakup reac-
tion the efficiency strongly depends on breakup kinemat-
ics, defined by polar angles of emission of both protons,

150− 100− 50− 0 50 100 150

X [mm]

150−

100−

50−

0

50

100

150

Y
 [m

m
]

0.8
0.82
0.84
0.86
0.88
0.9
0.92
0.94
0.96
0.98
1b)

0 2 4 6 8 10 12 14

Arbitrary Energy Loss

0.8
0.82
0.84
0.86
0.88

0.9
0.92
0.94
0.96
0.98

1

E
ffi

ci
en

cy (1)

(2) (3)
a)

150− 100− 50− 0 50 100 150

X [mm]

150−

100−

50−

0

50

100

150

Y
 [m

m
]

0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1c)

150− 100− 50− 0 50 100 150

X [mm]

150−

100−

50−

0

50

100

150

Y
 [m

m
]

0.8
0.82
0.84
0.86
0.88
0.9
0.92
0.94
0.96
0.98
1d)

FIG. 7. Panel a: The average MWPC efficiency (blue dots
connected by line) as a function of the energy loss in the
gas mixture, Eq. 9. The distribution of events is shown in
gray. Panels b and c: Position dependence of the MWPC
efficiency shown only for the range (1), separately for full-
(b) and weak–tracks (c). Panel d: Analogous map of the ∆E
efficiency.

ϑ1 and ϑ2, and relative azimuthal angle, ϕ12, between
them. Due to axial symmetry of the cross section, the
so-defined configuration is rotated around the beam axis.
The configurational efficiency is determined by the anal-
ysis of a set of breakup events simulated with the use of
Geant4 framework with the Wall detector geometry in-
cluded. Since a good statistical accuracy of such correc-
tion has been ensured, the only significant uncertainty
may originate from the inaccuracies of the experimen-
tal setup (detector or beam geometry) and the applied
model of an event generator. In the following, the uni-
form 3-body breakup phase space distribution has been
used, which is well justified in the case of narrow angular
ranges applied in defining the configuration. The configu-
rational efficiency for a given geometry (ϑ1, ϑ2, ϕ12) is de-
fined as the ratio of the number of events for which both
particles were registered by separate detector elements,
to the number of all simulated events. As expected, the
configuration efficiency rises with increase of ϕ12, with
pronounced local minima reflecting the structure of the
E detector (Fig. 8). Due to much finer granularity of the
MWPC as compared to the hodoscopes, the contribution
of this detector to the configurational efficiency is very
small. In the simulation, the distribution of cluster sizes
observed in the experiment was used to account for hit
losses due to coalescence of clusters produced by differ-
ent particles. The final correction for acceptance losses
takes into account losses due to two particles registered
in the same element and, earlier-discussed regions of low
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FIG. 8. Configurational efficiency for a set of breakup proton-
proton configurations characterized with ϑ1 = 27◦, ϑ2 = 21◦

and ∆ϕ = 10◦. General trend, observed also for other com-
binations of polar angles, shows the decrease of the efficiency
with decreasing relative azimuthal angle between protons,
ϕ12, with local minima determined by the geometry of the
E detector.

efficiency. It is calculated as follows:

εc(ξ) =
Nrec(ξ)

Ntot(ξ)
, (10)

where ξ defines the geometry of the reaction products:
ξ = {ϑ1, ϑ2, ϕ12} for the breakup reaction and ξ = {ϑp}
for the elastic-scattering channel, Ntot is the total num-
ber of coincidences generated for this configuration and
Nrec counts only those events which are successfully reg-
istered by the virtual BINA detector.

The total correction factor related to the efficiencies
for registering of a number (N) of coincident events in
the chosen configuration ξ can be written as:

εξN = Nεc(ξ)



∑

<i,j>

1

ε(xi, yi) · ε(xj , yj)




−1

, (11)

where ǫ(xi, yi) is the single particle efficiency defined in
Eq. 11 and < i, j > symbolizes the set of N coincident
pairs.

2. Hadronic reactions

The calibration and particle identification procedures
fail when the particle undergoes a hadronic reaction with
large momentum transfer on its way to- or inside the E
detector. In such cases a part of particle energy is lost,
less light is produced in the scintillator, and as a con-
sequence, the reconstructed kinetic energy is underesti-
mated, leading to event rejection due to the PID cut.
The amount of affected events has been estimated based
on experimental ∆E–E spectra gated by kinematical con-
ditions defining dp elastic scattering (Fig. 9a) in order to
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FIG. 9. Panel a: sample of ∆E-E spectrum for chosen polar
angle of elastically-scattered protons ϑp = 31◦

± 1◦. Hor-
izontal band extending on the left from elastic spot corre-
sponds to hadronic interactions lowering the registered en-
ergy. Events below dashed line are used in the calculation
of tail-to-peak ratio R. Panel b: Obtained tail-to-peak ratio
(points) compared to theoretical calculations at lower energies
[44] (lines) and to simulations [35] (triangles). Solid line rep-
resents predictions of a simple model based on the material
composition of the scintillator [44] extrapolated to energies
above 100 MeV.

reject the breakup band. In these spectra hadronic inter-
actions are visible as horizontal band protruding on the
low-energy side from the elastic-scattering spot. Number
of events integrated within this band has been normal-
ized to the number of events inside the elastic peak (tail-
to-peak ratio R). Results obtained for several energies
are in satisfactory agreement with theoretical predictions
based on the effective inelastic cross section model for
protons in a combination of materials building the plastic
scintillator [44] extrapolated to energies above 100 MeV
(Fig. 9b). Therefore, the R values corresponding to the
solid line in Fig. 9, considered as validated, were used in
further analysis with up to 3.8% systematic uncertainty.
In order to account for the loss of breakup–originated
protons due to hadronic interactions, a dedicated correc-
tion factor (η(Ep)) has been introduced on the basis of
R:

η(Ep) = 1 + R. (12)

In the case of elastic scattering protons and deuterons are
identified on the basis of kinematical relations of angles.
As a consequence, events were lost only if hadronic in-
teractions had occurred before the particle reached scin-
tillators and the corresponding correction was negligible.

D. Luminosity

Direct measurement of absolute differential cross sec-
tions requires precise knowledge of the beam current, tar-
get thickness and scattering angles of the reaction prod-
ucts. In the present experiment, neither target cell sur-
face density nor very low beam current (in the range
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FIG. 10. Interpolated cross section for deuteron-proton elastic
scattering at the energy of 80 MeV/nucleon (violet) in the
laboratory frame in comparison to the theoretical calculations
based on CDB+TM99 potential [49]. The experimental data
used for this interpolation are shown in black.

of few pA) were known sufficiently precisely. The nor-
malization factor had to be obtained on the basis of
simultaneously-measured elastic dp scattering and the
corresponding cross section derived from previous exper-
iments. Since no published cross section data for the
dp elastic scattering process at 80 MeV/nucleon exist,
model independent interpolation has been done based
on all existing experimental data in the range of 65–
190 MeV/nucleon [45–48]. The obtained absolute val-
ues of the differential cross section, σlab, agree very well
with theoretical calculations based on the Charge De-
pendent Bonn potential supplemented with the TM99
three–nucleon force [49] (Fig. 10). The reference data
were subsequently used to calculate experimental inte-
grated luminosity according to:

L(ϑp) =
Npd(ϑp)

σlab(ϑp) · ∆Ω · ε(ϑp)
, (13)

where ∆Ω is the solid angle and Npd(ϑp) is the num-
ber of elastically-scattered protons registered in certain
bin in polar angle of proton emission. To reduce the
influence of acceptance losses resulting from reaching
edges of a square-like detector, the elastically-scattered
particles were collected from limited space close to di-
agonals of MWPC defined by azimuthal angle ϕ12 =
{45◦, 135◦,−45◦,−135◦} with tolerance ±15◦.

Obtained values are, as expected, consistent with
one another within experimental uncertainties (Fig. 11).
As the final integrated luminosity value, the average
L̄ = (19.68 ± 0.02stat ± 1.10syst) · 106[mb−1] was taken.

20 25 30
 [deg]pϑ

16

18

20

22
610×

]
-1

L 
[m

b

-1 mb6 10⋅ 1.10) ± 0.02 ± = (19.68 L

FIG. 11. Luminosity integrated over time determined on the
basis of elastic scattering, independently for each proton polar
angle. Statistical errors are negligible, while gray shade cor-
responds to the range of systematic errors of individual data
points. The average value of the luminosity (violet dashed
line) is known with accuracy dominated by systematic uncer-
tainty (dashed black lines).

E. Differential Cross Sections for Breakup Process

The breakup cross section has been determined for 243
angular configurations. The angular range for integration
of events has been chosen to 2◦ in polar and 20◦ in az-
imuthal angles. For each configuration, breakup events
are placed on the (E1, E2) plane, in which they group
along the corresponding kinematical curve (Fig. 12a).
The width of the distribution in the direction perpendic-
ular to the curve, D–coordinate, depends on the energy
resolution and spread of kinematics corresponding to the
size of the angular bin. Arc-length measured along the
kinematic curve is used to define S-coordinate [50].

The five-fold differential cross section for the deuteron
breakup reaction has been calculated according to the
following formula:

d5σ(ξ, S)

dΩ1dΩ2dS
=

NBR(ξ, S) · η(E1) · η(E2)

εξ
NBR · L · ∆Ω1 · ∆Ω2 · ∆S

, (14)

where L is the luminosity integrated over time and NBR

corresponds to the number of events falling into the
chosen geometry ξ within the ranges of integration de-
fined below. εξ is the total detector efficiency as defined
in Eq. (11), and η(E1), η(E2) account for the energy-
dependent hadronic interaction corrections. Ordering of
protons in the case of analysis of symmetric configura-
tions (ϑ1 = ϑ2) is random, while in the case of asymmet-
ric configurations (ϑ1 6= ϑ2), the proton scattered at a
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FIG. 12. Panel a: Distribution of events for a selected
breakup configuration together with the corresponding kine-
matic curve; definitions of variables S and D are presented
in a graphic way. Panel b: Measured cross section distribu-
tion as a function of S-variable compared to the theoretical
predictions for this configuration. See Sec. IV for details of
theoretical models specified in the legend.

larger polar angle is marked as the first one (ϑ1 > ϑ2).
Determining the cross section starts from the mea-

sured number of events (NBR) from the deuteron breakup
channel. All the accepted events are classified into
kinematic configurations defined by scattering angles
(ϑ1, ϑ2, ϕ12). The adopted grid assumes 9 intervals in
the relative azimuthal angle (with width of ∆ϕ12 = 20◦)
and 27 combinations of intervals in ϑ1 and ϑ2 angles, 2◦

wide. Centers of these intervals are given by the formula:

ϑ1,2 = 17◦ + 2◦k, k = 0, 1, 2, . . . , 6 (15)

ϕ1,2 = 20◦j, j = 1, 2, . . . , 9

For each geometry, the two–dimensional E2 vs. E1 dis-
tribution is constructed and events falling within a single
bin in S with ∆S = 8 MeV (see e.g. a hatched rectangle
in Fig. 12) are projected onto the axis locally perpendic-
ular to the S-curve (D-coordinate). For each S bin, a
gaussian function is fitted to the distribution of events
along D and integrated over ±3σ. The resulting NBR

value is normalized according to Eq. (14) and the cross
section distribution as a function of S is obtained (see
Fig. 12).

F. Experimental Uncertainties

The elastic scattering and breakup reactions were mea-
sured simultaneously, by the same detector and under the
same experimental conditions, like beam current, trig-
gers, dead–time etc.. Though some of the systematic ef-
fects are the same, the clear differences between both pro-
cesses (coplanarity of elastic scattering kinematics and
different particle types in the exit channels) lead to dif-
ferent balance of systematic uncertainties which will be
discussed separately for each reaction channel.

For the elastic scattering, systematic errors were calcu-
lated in bins of ϑp. These systematic factors bias the lu-
minosity and, as a consequence, the global normalization
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FIG. 13. Distribution of relative difference between breakup
cross section values obtained with 2σ and 3σ cut on proton
PID peak.

of the breakup cross section. Estimation of systematic
errors of differential cross sections for deuteron breakup
was performed separately for each configuration defined
by ξ or for an individual data point. Global results are
presented in Table I, while the individual uncertainties
of data points are shown as bands in the Figs. 18–26.

The methods adopted to reconstruct physical parame-
ters of the registered particles were studied as one of the
potential sources of systematic errors. Among them, un-
certainties associated with the reconstruction of angles
based on the assumption of a point-like target were de-
termined. For that purpose, reaction point was varied
within the volume of beam–target intersection and a cor-
responding range of variation of angles was determined.
The analysis was repeated with all angles shifted within
their uncertainty and the resulting change of cross section
was included into the systematic uncertainty.

The effect of the particle-identification method based
on linearization of the E–∆E spectra has been estimated
by data analysis for different ranges of accepted pro-

tons around the corresponding peaks in the Ẽ variable
(See Sec. III B). The shape of PID peaks is not exactly
gaussian, and corresponding factors have been calculated
from the real distribution. In an ideal case applying these
correction factors should result in the same cross section
values for any range of PID peak used in analysis, with
only statistical uncertainties affected. As the PID-related
uncertainty, the maximal deviation from this behavior
was taken, while the proton acceptance range was varied
between 2σ and 3σ of the corresponding peaks. Observed
percentage discrepancy for most measured cross section
points lie below 2% (see Fig. 13) which is adopted as
PID-related systematic uncertainty. In the case of elastic
scattering the effect of PID was limited to only one parti-
cle, since the coincident deuteron was identified based on
the strict kinematical relation of elastic scattering. Here,
PID affects additionally the value of luminosity by about
0.7%.
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TABLE I. Evaluation of total systematic errors.

Normalization factor (luminosity):

Reconstruction of angles 0.24%

Particle identification 0.7%

Cross-section interpolation 4.1%

Breakup cross section:

Reconstruction of angles 0.15–0.24%

Particle identification 0.12–7.6%

Hadronic reactions 3.8%

Configurational efficiency 0.1–16.3%

The systematic uncertainty related to the configura-
tional efficiency has been studied and presented in de-
tails in a former publication [36]. Discrepancies between
different methods of calculations of configurational effi-
ciency presented in that work allow to state that this
uncertainty is small for most of the configurations and
it rises with decreasing relative azimuthal angles, ϕ12.
In particular, the largest contribution corresponds to a
few selected configurations characterized by the small-
est ϕ12, while elastic scattering channel (ϕ12 = 180◦) is
practically immune to this component.

IV. RESULTS AND DISCUSSION

The measured 2944 points of differential cross sec-
tions for 243 geometrical configurations of the deuteron
breakup at 160 MeV were used to validate modern theo-
retical calculations.

In order to account for possibly large variations of
the theoretical calculations within the finite bin size,
the comparison must include values of the cross sec-
tion at the same angular range as in the experiment:
(ϑ1 ± ∆ϑ, ϑ2 ± ∆ϑ, ϕ12 ± ∆ϕ), where ∆ϑ = 1◦ and
∆ϕ = 10◦. The final value representing the theoreti-
cal cross section for a given configuration includes, beside
the value at the central point, also 26 points enclosing the
corresponding bin, all of them projected onto a common
relativistic kinematics calculated for the central geome-
try. The S–coordinate is defined individually for each
configuration, but the same step width, ∆S of 8 MeV,
has been set for all. As an example, the data compared to
the sample of raw and averaged predictions are presented
in the Fig. 14.

The predicted values of cross sections were calculated
for (by H. Wita la et al.) the set of nucleon–nucleon (2N)
phenomenological potentials (CD Bonn [9], Argonne V18
[8], Nijmegen I [10], Nijmegen II [10]) and for these poten-
tials supplemented with the Tucson-Melbourne (TM99)
[12] three–nucleon force (2N+TM99). The next group
of calculations (by A. Deltuva) is based on the Argonne
V18 potential in the variants with the added 3N force
model of Urbana IX (AV18 + UIX) [11] and taking into
account the Coulomb force (AV18+C, AV18+UIX+C).
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FIG. 14. Effect of averaging (CDB+∆+C) calculations for a
configuration given in region of large variations of the cross
sections. Black solid line presents the average, dashed blue
line is the prediction for central geometry while other dashed
lines represent predictions for the limits of accepted angular
range, each as a function of S along the central kinematic.
For comparison, the experimental data are also shown (red
points).

Another set of calculations (by A.Deltuva) is based on
the coupled channel formalism with Charge Dependent
Bonn potential with intermediate ∆ creation (CDB+∆)
[15], also taking into account the electromagnetic interac-
tion (CDB+∆+C). Calculation for 2N phenomenological
potentials are presented in the form of bands, the width
of which reflects the range of predictions obtained with
individual potentials. The calculations for 2N+TM99 are
presented in a similar way, while all other calculations are
presented as individual lines. The complete set of exper-
imental results is shown in Figs. 18–26. Each figure con-
sists of three parts corresponding to three combinations
of polar angles, as specified in the legends. The data are
shown as red dots (full circles) surrounded by gray bands
of systematic errors. Statistical errors are usually smaller
than data points. The most striking observation is that
the theories overestimate the cross section values for the
configurations with small relative angles ϕ12, and under-
estimate them for ϕ12 lager than 120◦. This effect is vis-
ible for all investigated polar angle combinations and is
consistent with the observations of dp breakup measure-
ment at 130 MeV (65 MeV/nucleon) [23]. The studies
at 65 MeV/nucleon showed that including Coulomb in-
teraction practically solved the problem of discrepancy,
provided 3NF effects were also taken into account. In
the present data, the effect is significantly reduced, but
not removed for models including Coulomb force. In the
certain areas of phase space the disagreement between
the experiment and theory is in general large and cannot
be accounted for by estimated systematical uncertainties.
These uncertainties are in the most cases comparable or
even larger than the differences between theoretical pre-
dictions given by the different calculations with or with-
out three–nucleon force.

In order to make a quantitative comparison of the data
and the theory and to conclude on the compatibility of
the theoretical models with the obtained results, the χ2

analysis was carried out. The variable χ2 was calculated
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FIG. 15. Maps of χ2 for individual geometries of breakup
reaction defined by polar (ϑ1, ϑ2 on vertical axis) and az-
imuthal (ϕ12 on horizontal axis) angles. Data are compared
to the center of the bands corresponding to 2N (panel a) and
2N+TM99 (panel b) calculations. For details see the text.

for each theoretical model and each geometrical configu-
ration as follows:

χ2/d.o.f =
1

N − 1

N∑

i=1

(
σexp
i − σth

i

∆σexp
i

)2

, (16)

where σexp corresponds to the measured experimental
value of the cross section, ∆σexp

i is the total experimental
error including both systematic and statistical uncertain-
ties added in squares. σth is the prediction of the theory
being validated. In case of 2N and 2N+TM99 calcula-
tions, σth corresponds to the center of the band. Tab. II
presents global values of χ2 obtained for all presented
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FIG. 16. Same as in Fig. 15 but for calculations with AV18
potential in combination with Coulomb interaction and/or
with Urbana IX force, as specified at the top of each panel.
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FIG. 17. Same as in Fig. 15 but for calculations with CDB+∆
potential, optionally in combination with Coulomb interac-
tion, as specified at the top of each panel.

geometrical configurations.

Data presented for a wide spectrum of geometries al-
low to select the most reliable subset characterized by
high experimental statistics, small value of estimated
systematic error and flawless agreement between all the
presented theoretical models predictions. For the data
set selected in this way, the agreement between exper-
iment and theory is significantly better (see Figs. 15–
17). Calculations based on the 2N interactions alone (see
Fig. 15a) provide very good description of the cross sec-
tion data in the central part of the studied angular range.
The quality of the description deteriorates significantly at
low ϕ12 values, where final state interactions (FSI) of the
proton pair play a more important role. In the FSI re-

TABLE II. Calculated global χ2 including all presented
breakup geometries.

d.o.f. 2944

2N 4.55 H. Wita la

2N+TM99 3.92 Group

AV18+UIX 3.42

AV18+C 3.89 A. Deltuva

AV18+UIX+C 2.60

CDB+∆ 3.51

CDB+∆+C 2.74 A. Deltuva

gion Coulomb interaction between protons should not be
neglected and, indeed, calculations including this ingre-
dient (AV18+C in Fig. 16b) provide results, which are
much closer to the data in this region. The dominance of
Coulomb interaction in the proton-proton FSI region was
also observed in the breakup cross section at other ener-
gies [28, 51, 52]. In extreme cases, like the configuration
ϑ1 = 21◦, ϑ2 = 21◦, ϕ12 = 20◦ (see Fig. 22), Coulomb
repulsion produces a dip in the middle of S distribution,
in the point corresponding to equal proton energies. Al-
though adding of the Coulomb force improves description
at low ϕ12, it has no positive impact in other regions
of discrepancies and even deteriorates the agreement at
ϕ12 ≥ 140◦ (see Fig. 18). The remaining discrepancies
can be attributed either to 3NF or relativistic effects.
Calculations including 3NF, like AV18+UIX (Fig. 16a),
CDB+∆ (Fig. 17a) or 2N+TM99 (Fig. 15b) show sig-
nificant improvement in the whole region of large ϕ12,
but only calculations including both Coulomb and 3NF,
AV18+UIX+C (Fig. 16c) and CDB+∆+C (Fig. 17b)
provide fairly good description for majority of the stud-
ied configurations. This success is also reflected in global
values of χ2 shown in Table II. We can conclude about
the importance of 3NF but, on the other hand, the im-
provement is not always sufficient. Generally, there are
two regions of remaining high χ2 values. In the first
one, at ϕ12 ≤ 100◦ and largest studied polar angles, ϑ1,
ϑ2 ≥ 25◦, all the calculations are above the data and
adding 3NF even increases χ2. In the second one, at
ϕ12 ≥ 140◦, improvements due to introducing the 3NF
are significant, but not sufficient.

V. SUMMARY

The measurement of 1H(d, pp)n at 80 MeV/nucleon
enlarged existing dataset of differential cross sections by
2944 data points for 243 geometrical configurations cre-
ating dense grid in solid angle limited by ϑ ∈ (17◦, 29◦).
A set of models including contributions from two–nucleon
interaction combined or not with 3NF or Coulomb force
dynamics was validated via the χ2–test method refer-
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ring each model predictions to the cross section distribu-
tions. In conclusion, evidence has been found that taking
Coulomb and three-nucleon forces into account for mod-
eling effective nuclear interaction globally improves the
quality of predictions. Sensitivity of the differential cross
section to Coulomb and 3NF effects varies significantly
across the studied phase space. There are also config-
urations where none of the models provides satisfactory
description of the data. Underestimation of the cross sec-

tion data by theoretical calculations was also observed in
the corresponding phase space regions in measurements
of 2H(p, pp)n reaction at 135 and 190 MeV [51, 52] and
recently for 1H(d, pp)n reaction at 170 MeV/nucleon [53].
This observation may suggest either important role of
relativistic effects or problem with 3NF at higher en-
ergies. Further experimental studies, as well as devel-
opment of fully relativistic calculations with 3NF and
Coulomb force included, are important for ultimate un-
derstanding of the nature of observed discrepancies.
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FIG. 18. Differential cross section for polar angles ϑ1, ϑ2: 17◦,17◦ (a); 19◦,17◦ (b); 21◦,17◦ (c). Details in the text.



15

60 80 100 120 140
0

0.2

0.4

0.6 °= 20
12

ϕ

50 100 150

°= 40
12

ϕ

100 150

°= 60
12

ϕ

100 150

°= 80
12

ϕ

100 150
S [MeV]

°= 100
12

ϕ

100 150
S [MeV]

0

0.05

0.1

0.15

0.2

°= 120
12

ϕ

100 150 200
S [MeV]

°= 140
12

ϕ

100 150 200
S [MeV]

°= 160
12

ϕ

100 150 200
S [MeV]

°= 180
12

ϕ °=172ϑ  °=231ϑ

2N

2N+TM99

AV18+UIX

AV18+C

AV18+UIX+C

∆CDB+

+C∆CDB+

]
-2

 s
r

-1
 [m

b 
M

eV
dS 2

Ω
d 1

Ω
d

σ5
d

a)

]
-2

 s
r

-1
 [m

b 
M

eV
dS 2

Ω
d 1

Ω
d

σ5
d

60 80 100 120
0

0.1

0.2

0.3

°= 20
12

ϕ

60 80 100 120 140

°= 40
12

ϕ

50 100 150

°= 60
12

ϕ

100 150

°= 80
12

ϕ

100 150
S [MeV]

°= 100
12

ϕ

100 150
S [MeV]

0

0.05

0.1

0.15

0.2 °= 120
12

ϕ

100 150
S [MeV]

°= 140
12

ϕ

100 150 200
S [MeV]

°= 160
12

ϕ

100 150 200
S [MeV]

°= 180
12

ϕ °=172ϑ  °=251ϑ

2N

2N+TM99

AV18+UIX

AV18+C

AV18+UIX+C

∆CDB+

+C∆CDB+

]
-2

 s
r

-1
 [m

b 
M

eV
dS 2

Ω
d 1

Ω
d

σ5
d

b)

]
-2

 s
r

-1
 [m

b 
M

eV
dS 2

Ω
d 1

Ω
d

σ5
d

60 80 100 120
0

0.1

0.2

°= 20
12

ϕ

60 80 100 120

°= 40
12

ϕ

60 80 100 120

°= 60
12

ϕ

50 100 150

°= 80
12

ϕ

100 150
S [MeV]

°= 100
12

ϕ

100 150
S [MeV]

0

0.05

0.1

0.15

0.2 °= 120
12

ϕ

100 150
S [MeV]

°= 140
12

ϕ

100 150
S [MeV]

°= 160
12

ϕ

100 150
S [MeV]

°= 180
12

ϕ °=172ϑ  °=271ϑ

2N

2N+TM99

AV18+UIX

AV18+C

AV18+UIX+C

∆CDB+

+C∆CDB+

]
-2

 s
r

-1
 [m

b 
M

eV
dS 2

Ω
d 1

Ω
d

σ5
d

c)

]
-2

 s
r

-1
 [m

b 
M

eV
dS 2

Ω
d 1

Ω
d

σ5
d

FIG. 19. Differential cross section for polar angles ϑ1, ϑ2: 23◦,17◦ (a); 25◦,17◦ (b); 27◦,17◦ (c). Details in the text.
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FIG. 20. Differential cross section for polar angles ϑ1, ϑ2: 29◦,17◦ (a); 19◦,19◦ (b); 21◦,19◦ (c). Details in the text.
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FIG. 21. Differential cross section for polar angles ϑ1, ϑ2: 23◦,19◦ (a); 25◦,19◦ (b); 27◦,19◦ (c). Details in the text.
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FIG. 22. Differential cross section for polar angles ϑ1, ϑ2: 29◦,19◦ (a); 21◦,21◦ (b); 23◦,21◦ (c). Details in the text.
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FIG. 23. Differential cross section for polar angles ϑ1, ϑ2: 25◦,21◦ (a); 27◦,21◦ (b); 29◦,21◦ (c). Details in the text.
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FIG. 24. Differential cross section for polar angles ϑ1, ϑ2: 23◦,23◦ (a); 25◦,23◦ (b); 27◦,23◦ (c). Details in the text.



21

30 40 50 60 70
0

0.1

0.2

0.3
°= 20

12
ϕ

40 50 60 70 80

°= 40
12

ϕ

40 60 80 100

°= 60
12

ϕ

60 80 100

°= 80
12

ϕ

60 80 100 120
S [MeV]

°= 100
12

ϕ

100 150
S [MeV]

0

0.05

0.1

°= 120
12

ϕ

100 150
S [MeV]

°= 140
12

ϕ

100 150
S [MeV]

°= 160
12

ϕ

100 150
S [MeV]

°= 180
12

ϕ °=232ϑ  °=291ϑ

2N

2N+TM99

AV18+UIX

AV18+C

AV18+UIX+C

∆CDB+

+C∆CDB+

]
-2

 s
r

-1
 [m

b 
M

eV
dS 2

Ω
d 1

Ω
d

σ5
d

a)

]
-2

 s
r

-1
 [m

b 
M

eV
dS 2

Ω
d 1

Ω
d

σ5
d

40 60 80
0

0.1

0.2

0.3

0.4 °= 20
12

ϕ

60 80 100

°= 40
12

ϕ

60 80 100

°= 60
12

ϕ

60 80 100 120

°= 80
12

ϕ

60 80 100 120 140
S [MeV]

°= 100
12

ϕ

100 150
S [MeV]

0

0.05

0.1

°= 120
12

ϕ

100 150
S [MeV]

°= 140
12

ϕ

100 150
S [MeV]

°= 160
12

ϕ

100 150
S [MeV]

°= 180
12

ϕ °=252ϑ  °=251ϑ

2N

2N+TM99

AV18+UIX

AV18+C

AV18+UIX+C

∆CDB+

+C∆CDB+

]
-2

 s
r

-1
 [m

b 
M

eV
dS 2

Ω
d 1

Ω
d

σ5
d

b)

]
-2

 s
r

-1
 [m

b 
M

eV
dS 2

Ω
d 1

Ω
d

σ5
d

40 50 60 70
0

0.1

0.2

0.3

0.4 °= 20
12

ϕ

40 50 60 70 80

°= 40
12

ϕ

60 80 100

°= 60
12

ϕ

60 80 100

°= 80
12

ϕ

60 80 100 120 140
S [MeV]

°= 100
12

ϕ

100 150
S [MeV]

0

0.05

0.1

°= 120
12

ϕ

100 150
S [MeV]

°= 140
12

ϕ

100 150
S [MeV]

°= 160
12

ϕ

100 150
S [MeV]

°= 180
12

ϕ °=252ϑ  °=271ϑ

2N

2N+TM99

AV18+UIX

AV18+C

AV18+UIX+C

∆CDB+

+C∆CDB+

]
-2

 s
r

-1
 [m

b 
M

eV
dS 2

Ω
d 1

Ω
d

σ5
d

c)

]
-2

 s
r

-1
 [m

b 
M

eV
dS 2

Ω
d 1

Ω
d

σ5
d

FIG. 25. Differential cross section for polar angles ϑ1, ϑ2: 29◦,23◦ (a); 25◦,25◦ (b); 27◦,25◦ (c). Details in the text.
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FIG. 26. Differential cross section for polar angles ϑ1, ϑ2: 29◦,25◦ (a); 27◦,27◦ (b); 29◦,27◦ (c). Details in the text.
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