The Prototype Hardware Design of **Global Common Module for Global Trigger System of the ATLAS Phase-II Upgrade on HL-LHC Shaochun Tang** 

> Onbehalf of the ATLAS TDAQ Collaboration



a passion for discovery

2020 NSS/MIC Conference



Office of Science

## Outline

- **An Introduction of LHC/HL-LHC**
- An Overview of ATLAS Experiment and Level-O Trigger System
- Global Trigger System
- Global Common Module Hardware Design
- Global Common Module Status
- **Summary**



### The Large Hadron Collider: LHC/HL-LHC

### LHC / HL-LHC Plan





- The world's largest and most powerful particle accelerator
- **Physics motivation**: Higgs particles (2013 Nobel Prize in Physics)/Dark matter and dark energy/Supersymmetric particles
- The Phase II upgrade will be installed in the Long Shutdown 3 (2025-2027), and operating in Run 4-5 (2027 to 2039). 5-7 x nominal luminosity. Quoted from :https://hilumilhc.web.cern.ch/content/hl-lhc-project



3

### **The ATLAS Experiment**



- ATLAS consists of several sub-detectors.
  - Inner Tracker
  - Tile Calorimeter
  - LAr Calorimeter
  - Muon



### ATLAS Trigger in Run 4 (After Phase-II Upgrade)



| Level-0 trigger data            | 40.08 MHz (BC=25 ns)    |
|---------------------------------|-------------------------|
| Level-0 accept trigger rate     | 1 MHz                   |
| Level-0 accept trigger features | ≤4 in 5 BC; ≤4 in 20 BC |
| Level-0 latency                 | 10 µs                   |
| Deadtime                        | < 0.1%                  |

- The Level-0 Trigger utilizes custom hardware featuring large FPGA for the calorimeter, muon, and central systems.
- The Global Trigger is a new subsystem
  - perform offline-like algorithms on full-granularity calorimeter data
  - identify topological signatures, replace and extend the functionality of the Level-1 Topological (L1Topo) system

NATIONAL LABO

- receive all trigger information from legacy systems
- send processed trigger information to Central Trigger Processor

Quoted from : https://cds.cern.ch/record/2285584/files/ATLAS-TDR-029.pdf (CTP) for final decision

### **Global Trigger System - Nodes**

- Concentrates data for full event onto single processor for analysis at 40 MHz
  - approx. 60 Tb/s into Global Trigger
    - exploits data aggregation and time multiplexing
  - primarily a <u>firmware</u> project
    - different functions implemented in firmware rather than in hardware → common hardware
  - GCM: Global Common Module
    - MUX: GCM Node for data aggregation & time multiplexing
    - **GEP**: GCM Node for event processing & trigger algorithms
    - **CTPi**: GCM Node for CTP Interface (runs on a MUX Node)



### **Global Trigger System - Data Flow**



- With the basic configuration of 48 GEP.
  - All the trigger event of the same bunch crossing from different detectors will be send to the same GEP for processing.
  - All the processed trigger information will be sent to CTP for final decision.



# **GCM Hardware Requirements**

- **Based on successfully experience in** Phase-I projects in ATLAS, ATCA platform is adopted.
- **Power limitation from ATLAS ATCA** chassis. Front board <350W, RTM < **50W**
- Each Node needs at least 84 MGT links @ 25.78125 Gb/s.
- Large FPGA resources are required for GEP node
- >25Gb/s Optical modules are required

| l                                          | nput/Output Con                  | nections for GCM                 |                                  |
|--------------------------------------------|----------------------------------|----------------------------------|----------------------------------|
| Node                                       | MUX                              | GEP                              | СТРі                             |
| <b>Input</b><br>(per Node)                 | 72 Rx detector                   | 72 Rx from MUX                   | 72 Rx GEP                        |
| <b>Output</b><br>(per Node)                | Up to 72 Tx to<br>GEP            | 1 Тх СТРі                        | 12 Tx CTPCORE                    |
| Internal<br>(per Node)                     | 8 x 25 G                         | 8 x 25 G                         | 8 x 25 G                         |
| Command/Con<br>trol/Readout<br>(per blade) | 4 Rx from FELIX<br>4 Tx to FELIX | 4 Rx from FELIX<br>4 Tx to FELIX | 4 Rx from FELIX<br>4 Tx to FELIX |

- Based on the number of MGTs, resources, and power consumption, etc. The Xilinx VU13P is chose as the MUX/GEP/CTPi node; the ZYNQ UltraScale+ FPGA is chosen as Command/Control Unit (CCU).
- To mitigate power risk, a RTM named GRM with one SoC FPGA is being designed.

2020 IEEE NSS/MIC 10/31/20 - 11/07/20

8

### **Block Diagram of GCM Hardware Design**



### Main components/functions:

- 2 XCVU13P-L2FLGA2577 FPGA (Processor Node) and 1 ZU19EG-2FFVD1760 (CCU)
  - **1** J23 at ZONE 2 for GbE and Fabric interface
- **1** GbE Ethernet switch
- 1 RJ45 to IPMC/GbE SW/ZYNQ+ PS (Total 3)
- 1 SD/ 2 QSPI/ 1 UART to ZYNQ+ PS
- 8 Pairs of Firefly to each Processor Node
- **1** pair Firefly to ZYNQ+ GTY
- 1 pair Firefly to RTM for backup
- 2 DDR4 VLP DIMM to each FPGA (Total 6)
- 1 Power/2 EBTF-RA connector at ZONE 3
- Hot Swap support for GRM (by defaut **8A** is maximum)
- **1** CERN IPMC is planned to be used
- 2 SI5345 are used for LHC clock and 156.25MHz clock respectively



### **Power Design of GCM**



| Power on sequence of GC | M Demons                                                                                                                                                 | strator                                                                                                                                                     |                                                                                                                                                                  |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Second                  | Third                                                                                                                                                    | Forth                                                                                                                                                       | Fifth                                                                                                                                                            |
| VCCINT_IO_A_0P85V       | 1P8V                                                                                                                                                     | 2P5V                                                                                                                                                        | DDR4_VDDQ_1P2V                                                                                                                                                   |
| VCCINT_IO_B_0P85V       |                                                                                                                                                          | 3P3V                                                                                                                                                        | DDR4A_VTT_0P6V                                                                                                                                                   |
| VCCINT_IO_Z_0P85V       |                                                                                                                                                          |                                                                                                                                                             | DDR4B_VTT_0P6V                                                                                                                                                   |
| MGTYAVTT_A_1P2V         |                                                                                                                                                          |                                                                                                                                                             |                                                                                                                                                                  |
| MGTYAVTT_B_1P2V         |                                                                                                                                                          | i i                                                                                                                                                         |                                                                                                                                                                  |
| MGTAVTT_Z_1P2V          | l                                                                                                                                                        | i i                                                                                                                                                         | l l                                                                                                                                                              |
|                         | Power on sequence of GC<br>Second<br>VCCINT_IO_A_0P85V<br>VCCINT_IO_B_0P85V<br>VCCINT_IO_Z_0P85V<br>MGTYAVTT_A_1P2V<br>MGTYAVTT_B_1P2V<br>MGTAVTT_Z_1P2V | Power on sequence of GCM DemonsSecondThirdVCCINT_IO_A_0P85V1P8VVCCINT_IO_B_0P85VVCCINT_IO_Z_0P85VMGTYAVTT_A_1P2VMGTYAVTT_B_1P2VMGTAVTT_Z_1P2VMGTAVTT_Z_1P2V | Power on sequence of GCM DemonstratorSecondThirdForthVCCINT_IO_A_0P85V1P8V2P5VVCCINT_IO_B_0P85V3P3VVCCINT_IO_Z_0P85VMGTYAVTT_A_1P2VMGTYAVTT_B_1P2VMGTAVTT_Z_1P2V |

Separate core power rails for three FPGA ADM1066 is used to monitor UV/OV and control the power sequence required by VU13P/ZYNQ+ FPGAs IPMC and ADM1066 are used to control the +12V together



**Brookhaven Science Associates** 

### **Clock Distribution**



2 SI5345 used to generate different required clock frequencies from different clock sources. Clock sources can be LHC clock from ZYNQ+ or GRM or XO156.25MHz

- 9 SI53344 used to buffer the clocks
- Clock frequencies should support different data rate for Processor Nodes/FELIX (Possible
  - 9.6/10.24/11.2/12.8/14?/25.78125 Gb/s)
- 300M XO for system use, like DDR4 DIMM controller, IDELAY, etc.
- 33.333MHz for ZYNQMP PS
- 240.474MHz XO for FELIX TTC receiver links
- 156.25MHz XO for 25.78125Gb/s reference clock source



### **ZYNQ+PS Interfaces**



- As shown in the left configuration, the PS side interface includes:
  - 2 QSPI 0
  - **1** SD1 3.0  $\bigcirc$
  - 2 I2C Master 0
  - 2 SPI Master 0
  - **1**UARTO 0
  - 2 GEM2-3 0
  - 1DDR4 0
- A common Linux from CERN will run on this SoC to provide control, and monitoring.



**Brookhaven Science Associates** 

### **Optical Module - Firefly**



- 25Gx12 and 14Gx12 module will be installed on GCM for different configurations.
- These two different type of modules are pin compatible. The same connectors are used for both of them
- The Firefly can come with Y cable of 24 channels, which can be configured as 24 TX, 24RX or 12 TX+12 RX.



### **Floor Plan on GCM Hardware**



As shown in the left connections for the Processor Node FPGA design:

- B piars of Firefly x12 are connected to 96 GTY links, covers all the floor plan of different Nodes.
  - 2 DDR4 connected to SLR0/3
  - 8 GTY links from/to GRM

8 GTY links from/to ZYNQ+



### **GCM Prototype Stack-up and Layout**



| ~          | U          | U             | U           | L -       |              | 0            | 1.00       |                     | J            | I N            | -              |
|------------|------------|---------------|-------------|-----------|--------------|--------------|------------|---------------------|--------------|----------------|----------------|
|            |            |               |             |           |              |              |            |                     |              | Date:          | May.04.2020    |
| Π          | MT         | ech           | noloa       | ies Cus   | tomer P/N:   | Part REV     |            |                     |              |                |                |
| Time-I     | b-Market A | sterconnect 5 | iolutions - | Ir        | iternal P/N: | SJ5969A_RM   | ASCircuits | BNLGCMProto         | typeV2_2     | 6LYRS          |                |
|            |            |               |             |           | Contact:     | Yadira Gutie | rrez       | Phone:              |              |                |                |
|            |            |               |             | Custome   | er Req Thk:  | 100+/-10 mil | s Measure  | ed:Over mask on     | plated co    | pper           |                |
|            | Cu         | Cu Foil       |             |           |              |              |            |                     |              |                |                |
|            | Thick.     | wt            |             |           | 1987         | Lam. Thick.  |            |                     |              |                |                |
| Layer<br>1 | (mils)     | (0Z)          |             |           | DK           | (mils)       | Eoil 5 oz  | n                   |              |                |                |
| 2          | 0.60       | 05.07         |             |           | 3.04         | 3.25         | Prepreg Ta | achyon 100G 1078(   | 70.5) 18.254 | Gx24.25        |                |
| 3          | 1 20       | 1.07          |             |           | 3.09         | 3.00         | Core Tach  | yon 100G 3.00mils   | 1078 0.5 oz  | / 1 oz VLP2 1  | 8.25Gx24.25    |
| 4          | 0.60       | 0.5.07        | 11 1111     |           | 3.04         | 2.95         | Prepreg Ta | achyon 100G 1078(   | 70.5) 18.254 | Gx24.25        |                |
| -          | 0.00       | 0.5 02        |             |           | 3.09         | 3.00         | Core Tach  | yon 100G 3.00mils   | 1078 0.5 oz  | / 0.5 oz VLP2  | 2 18.25Gx24.25 |
|            | 0.00       | 0.5 02        |             |           | 3.02         | 3.10         | Prepreg Ta | achyon 100G 1078(   | 72) 18Gx24   |                |                |
| -          | 0.00       | 0.5 02        |             | )         | 3.09         | 3.00         | Core Tach  | yon 100G 3.00mils   | 1078 0.5 oz  | / 0.5 oz VLP2  | 2 18.25Gx24.25 |
| ,          | 0.00       | 0.5 02        |             |           | 3.02         | 3.10         | Prepreg Ta | achyon 100G 1078(   | 72) 18Gx24   |                |                |
| 8          | 0.60       | 0.5 0Z        |             | · · · · · | 3.09         | 3.00         | Core Tach  | yon 100G 3.00mils   | 1078 0.5 oz  | / 0.5 oz VLP2  | 2 18.25Gx24.25 |
| 9          | 0.60       | 0.5 oz        |             |           | 3.02         | 3.10         | Prepreg Ta | achyon 100G 1078(   | 72) 18Gx24   |                |                |
| 10         | 0.60       | 0.5 oz        | -           |           | 3.09         | 3.00         | Core Tach  | yon 100G 3.00mils   | 1078 0.5 oz  | / 0.5 oz VLP2  | 2 18.25Gx24.25 |
| 11         | 0.60       | 0.5 oz        |             |           | 3.02         | 3.10         | Prepreg Ta | achyon 100G 1078(   | 72) 18Gx24   |                |                |
| 12         | 0.60       | 0.5 oz        |             |           | 3.07         | 4.00         | Core Tach  | yon 100G 4.00mils   | 2x1035 0.5   | oz / 1 oz VLP  | 2 18Gx24       |
| 13         | 1.20       | 1 oz          |             |           | 3.04         | 2.80         | Prepreg Ta | achyon 100G 1078(   | 70.5) 18.250 | Gx24.25        |                |
| 14         | 1.20       | 1 oz          | -           |           | 3.07         | 4.00         | Core Tach  | yon 100G 4.00mils   | 2x1035 0.5   | oz / 1 oz VLP  | 2 18Gx24       |
| 15         | 0.60       | 0.5 oz        |             |           | 3.02         | 3.10         | Prepreg Ta | achyon 100G 1078(   | 72) 18Gx24   |                |                |
| 16         | 0.60       | 0.5 oz        | -           |           | 3.09         | 3.00         | Core Tach  | yon 100G 3.00mils   | 1078 0.5 oz  | / 0.5 oz VLP2  | 2 18.25Gx24.25 |
| 17         | 0.60       | 0.5 oz        |             |           | 3.02         | 3.10         | Prepreg Ta | achvon 100G 1078(   | 72) 18Gx24   |                |                |
| 18         | 0.60       | 0.5 oz        | -           | -         | 3.09         | 3.00         | Core Tach  | von 100G 3.00mils   | 1078 0.5 oz  | / 0.5 oz VLP2  | 2 18.25Gx24.25 |
| 19         | 0.60       | 0.5 oz        |             |           | 3.02         | 3.10         | Prepreg Ta | achvon 100G 1078(   | 72) 18Gx24   |                |                |
| 20         | 0.60       | 0.5 oz        |             |           | 3.09         | 3.00         | Core Tach  | von 100G 3.00mils   | 1078 0.5 oz  | / 0.5 oz VLP2  | 2 18 25Gx24 25 |
| 21         | 0.60       | 0.5 oz        |             |           | 3.02         | 3.10         | Prepreo Ta | achvon 100G 1078(   | 72) 18Gx24   |                |                |
| 22         | 0.60       | 0.5 oz        | -           |           | 3.09         | 3.00         | Core Tach  | won 100G 3.00mils : | 1078.0.5.07  | /0.5 oz \/I.P2 | 18 25Gy24 25   |
| 23         | 0.60       | 0.5 oz        |             |           | 3.04         | 2.95         | Prenreo Tr | achyon 100G 1078/   | 70 5) 18 25  | Gy24 25        |                |
| 24         | 1.20       | 1 oz          |             |           | 3.00         | 3.00         | Core Tach  | waa 100G 3 00mile   | 1078 0 5 07  | /1 oz \/I D2 1 | 18 25Cv24 25   |
| 25         | 0.60       | 0.5 oz        |             |           | 3.04         | 3.00         | Drepres T  | achuon 100G 1078/   | 70 5) 19 25  | CV24 25        | 0.200/24.20    |
| 26         | 1.80       | .5 oz         |             |           | 0.04         | 0.20         | Foil .5 oz |                     | 0.0710.20    | 0027.20        |                |
|            |            |               |             |           |              | 94.80        | Thickness  | over Laminate       |              |                |                |
|            |            |               |             |           |              | 98.40        | Thickness  | over Copper         |              |                |                |
|            |            |               |             |           |              | 22.40        | Inckness   | over Soudermask     |              |                |                |

**Brookhaven Science Associates** 

2020 IEEE NSS/MIC 10/31/20 - 11/07/20

26 1.8

NATIONAL LABORATOR

### **Thermal Consideration**

- ATCA airflow is around 500 LFM when setting the fan in middle range.
- The ATS and ALPHA models are compatible with PCB design.

| FPGA   | Vendor | Heat-Sink Part Number     | WxLxH (mm)         | Install type | Rt(C/W @500LFM) | Target Temp. (C) |
|--------|--------|---------------------------|--------------------|--------------|-----------------|------------------|
| ZU19EG | ATS    | ATS-FPX054054013-17-C2-R0 | 54.0 x 54.0 x 12.7 | Push-Pin     | 0.8             | 41.0 @ 20W       |
| ZU19EG | ALPHA  | UBH54-12BP                | 54.0 x 54.0 x 12   | Push-Pin     | 1.2             | 49.0@20W         |
| VU13P  | ATS    | ATS-FPX070070015-28-C2-R0 | 70.0 x 70.0 x 15.0 | Push-Pin     | 0.5             | 66.5@83W         |
| VU13P  | ALPHA  | UBM70-15B                 | 70.0 x 70.0 x 15.0 | Push-Pin     | 0.6             | 75.0@83W         |



### **GCM Hardware Design Status**



Hardware design has been finished and gone through internal and external reviews. Then it has been sent to **fabrication house on Sept. 9th**.



Brookhaven Science Associates

## Summary

- Level-0 Trigger system is very critical for the HL-LHC to meet the significantly increased luminosity in the Run 4.
- Global Trigger is a new subsystem designed to meet the trigger requirements.
- Global Trigger consists of MUX, GEP and CTPi.
- A common hardware design is proposed for all these three nodes to simplify system design and long-term maintenance, and minimises the complexity of firmware development
- The GCM prototype has been submit for fabrication in September this year. It will be tested around December this year, and results will be included in the paper which is planned to be submitted to TNS.



18

# Thanks



**Brookhaven Science Associates** 

### **The LHC/HL-LHC Experiments**



- Four main experiments
  - ATLAS
  - CMS
  - LHCb
  - ALICE



**Brookhaven Science Associates** 

### ATLAS Trigger in Run 3 (After Phase-I Upgrade)



- Overview of the TDAQ system after the Phase-I upgrade
  - Level-1 trigger data is about 40MHz
  - Level-1 trigger acceptance (L1A) rate is around 100 kHz
  - $\circ~$  L1A latency is about 2.5  $\mu s.$
  - Approx. 1000 event/s for recording to permanent storage (O(1) Pb/s observed to O(1) Pb/year recorded).
- Limitations of the Run 3 Level-1 Trigger System
  - Front-end electronics systems were built at the time of their construction
  - Current hardware restricts rate to 100 kHz
  - Maximum latency 2.5 μs
  - Limited acceptance and reduced efficiency
  - Without a higher rate or longer latency, the Level-1 Trigger algorithms cannot be improved enough to cope with HL-LHC conditions.



### **ZONE 3 Design**

| 4 pair      6, 8 and 10      2.0mm      84, 112 and 140        6 pair      6, 8, 10, and 12      2.0mm      120, 160, 200, and 240          Figure 1      Examax EBTF-Figure 2      Examax EBTF-Figure 2 | er column | Number of Columns | Column Spacing | Number of Positions<br>(Including Grounds) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------|----------------|--------------------------------------------|
| 6 pair 6, 8, 10, and 12 2.0mm 120, 160, 200, and 240                                                                                                                                                     | 4 pair    | 6, 8 and 10       | 2.0mm          | 84, 112 and 140                            |
| EXAMAX EBTF-I                                                                                                                                                                                            | 6 pair    | 6, 8, 10, and 12  | 2.0mm          | 120, 160, 200, and 240                     |
| <b>H S</b>                                                                                                                                                                                               |           |                   | EXAMAX E       | BTM-RA                                     |

- EBTF-4-10-2.0-S-RA-1-L/R from Samtec
- Enables 56 Gbps electrical performance on
  2.00 mm column pitch
- Meets industry specifications such as PCI Express<sup>®</sup>, Intel OPI abd UPI, SAS, SATA, Fibre Channel, Infini Band<sup>™</sup> and Ethernet
- □ 4 pairs per column/ 10 Columns
- **2**.00 mm (.0787") pitch
- Press fit termination
- Right-angle orientation
- □ 120943-1 from TE
- Receptacle/3 Positions-RA
- Given State For 3.3V/GND/12.0V
- Hotswap is supported by TPS2458



### **FRONT Panel Design**

