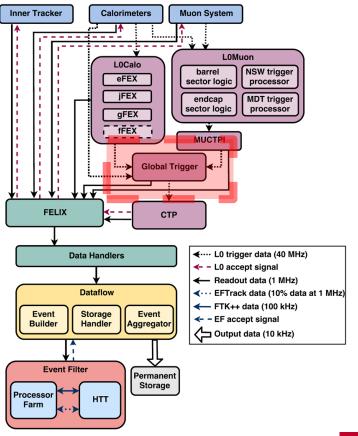
Global Trigger Technological Demonstrator for ATLAS Phase-II upgrade

Virtual 2020 IEEE Nuclear Science Symposium (NSS) and Medical Imaging Conference (MIC)

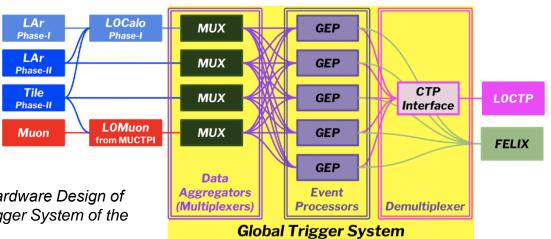
4 November 2020

Viacheslav Filimonov, Bruno Bauss, Volker Büscher, Ulrich Schäfer, Duc Bao Ta On behalf of the ATLAS TDAQ Collaboration



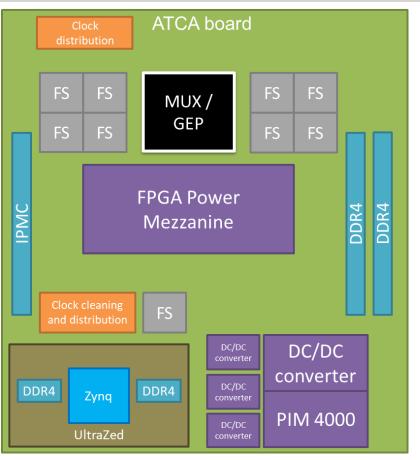
Introduction

Phase-II Global Trigger system: Functionality


- As part of the Phase-II Level-0 Trigger System, the Global Trigger uses fullgranularity calorimeter cells to refine L0Calo & L0Muon output
- Allows iterative algorithms such as topoclustering and use of higher level synthesis
- Reconstructs taus, jets, MET, & calorimeter-based isolation
- Applies topological requirements

Phase-II Global Trigger system: Implementation

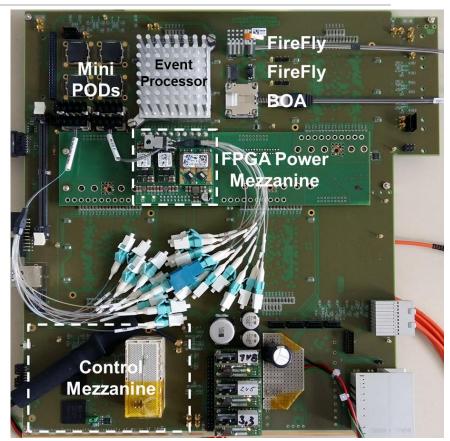
- Time-multiplexed system concentrates data of full event into a single processor
- Composed of 3 main layers
 - Multiplexing (MUX) layer
 - Global Event Processor (GEP) layer
 - Demultiplexing Global-to-Central Trigger Processor (CTP) Interface
- Input: >2300 optical fibers with link speeds up to 25.8 Gb/s
- Global Common Module (GCM) is used as the building block in each layer
 - See talk by S. Tang: "The Prototype Hardware Design of Global Common Module for Global Trigger System of the ATLAS Phase II Upgrade"


Phase-II Global Trigger system: Deployment Module

- Production Firmware Deployment Module (PFM):
 - Serves a dual purpose
 - A hardware platform required by each group involved in the GCM firmware development
 - Used for pre-commissioning of regular firmware upgrades with the production system in place
 - Represents a **slice of the GCM** (including a processing unit, a control FPGA and a number of optical modules) in any layer of the Global Trigger system
 - Will be **available well before the production GCM** to allow for early development, testing and debugging of the algorithm and infrastructure firmware
- Design based on the Technological Demonstrator R&D

4 Nov 2020

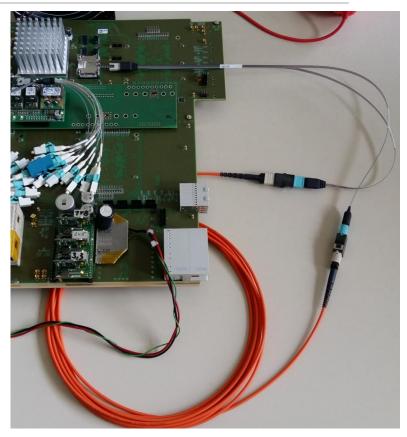
Phase-II Global Trigger system: PFM Structure


- ATCA board
- Single MUX / GEP FPGA (Xilinx Ultrascale+ VU13P)
- Up to 8 Finisar BOA modules for real-time data path
- Single Finisar BOA module for interface to FELIX
- UltraZed board with **Zynq UltraScale+**
- IPMC
- Power mezzanines
- DDR4 RAMs
 - Many PCB design blocks tested on the Technological Demonstrator
- PCB design is complete

Global Trigger Technological Demonstrator

Technological Demonstrator

- GCM and PFM required an R&D for the new generation of optical modules and FPGAs running at high data rates (up to 25.8 Gb/s) → Technological Demonstrator board designed and tested
- A custom designed ATCA board
- One Xilinx Virtex UltraScale+ 9P FPGA
- Two 28G 2x4 bidirectional Samtec FireFly modules
- One 28G 2x12 bidirectional Finisar BOA module
- Six MiniPODs: 3 RX + 3 TX
- Mezzanines: Power, Control
- Optical modules implemented on-board

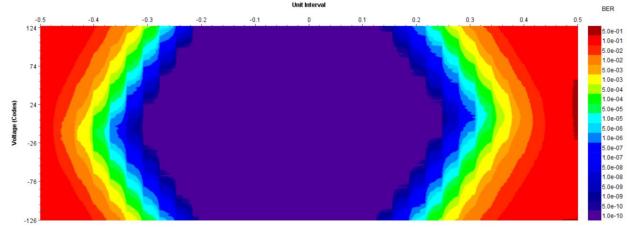


Technological Demonstrator

Finisar BOA IBERT loopback test: test setup

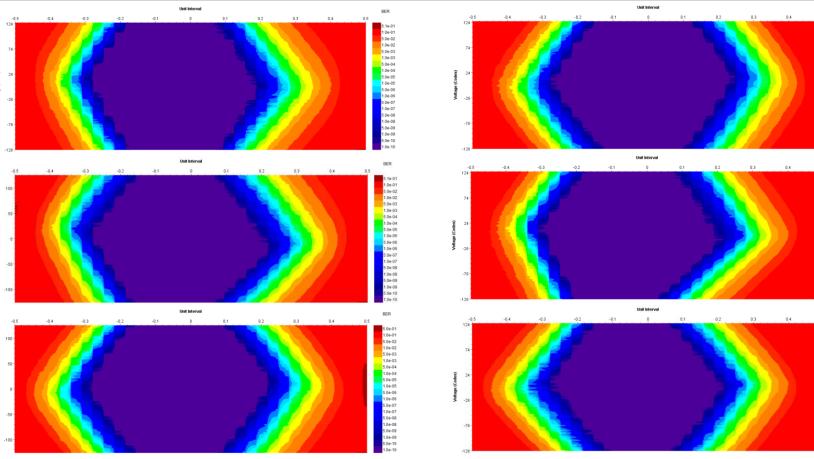
- Performance of the high-speed optical modules and the FPGA on the Technological Demonstrator has been evaluated with long-run loopback Integrated Bit Error Ratio Tests (IBERT)
- 12 transmitter links of the optical module were looped back to 12 receiver links of the same module with a help of a 24 to 2x12-fiber Y-cable and a 12-fiber trunk cable

Link status


- A day-long IBERT test run at 25.65 Gb/s performed
- 31-bit PRBS pattern used
- 1.9E-15 BER reached
- All 12 links functional
- No bit errors detected

Name	TX	RX	Status	Bits	Errors	BER	BERT Reset	TX Pattern		RX Pattern		TX Pre-Cursor		TX Post-Cur
Ungrouped Links (0)														
 Link Group 0 (12) 							Reset	PRBS 31-bit	~	PRBS 31-bit	~	0.00 dB (00000)	~	0.00 dB (000
% Link 0	MGT_X0Y43/TX	MGT_X0Y40/RX	25.652 Gbps	5.27E14	0E0	1.897E-15	Reset	PRBS 31-bit	~	PRBS 31-bit	~	0.00 dB (00000)	~	0.00 dB (00
% Link 1	MGT_X0Y40/TX	MGT_X0Y43/RX	25.651 Gbps	5.27E14	0E0	1.897E-15	Reset	PRBS 31-bit	~	PRBS 31-bit	~	0.00 dB (00000)	~	0.00 dB (00
% Link 2	MGT_X0Y42/TX	MGT_X0Y41/RX	25.651 Gbps	5.27E14	0E0	1.897E-15	Reset	PRBS 31-bit	~	PRBS 31-bit	~	0.00 dB (00000)	~	0.00 dB (000
% Link 3	MGT_X0Y41/TX	MGT_X0Y42/RX	25.651 Gbps	5.27E14	0E0	1.897E-15	Reset	PRBS 31-bit	~	PRBS 31-bit	~	0.00 dB (00000)	~	0.00 dB (00
% Link 4	MGT_X0Y35/TX	MGT_X0Y22/RX	25.651 Gbps	5.27E14	0E0	1.897E-15	Reset	PRBS 31-bit	~	PRBS 31-bit	~	0.00 dB (00000)	~	0.00 dB (000
% Link 5	MGT_X0Y34/TX	MGT_X0Y23/RX	25.651 Gbps	5.27E14	0E0	1.897E-15	Reset	PRBS 31-bit	~	PRBS 31-bit	~	0.00 dB (00000)	~	0.00 dB (000
% Link 6	MGT_X0Y33/TX	MGT_X0Y20/RX	25.651 Gbps	5.27E14	0E0	1.897E-15	Reset	PRBS 31-bit	~	PRBS 31-bit	~	0.00 dB (00000)	~	0.00 dB (000
% Link 7	MGT_X0Y32/TX	MGT_X0Y21/RX	25.650 Gbps	5.27E14	0E0	1.897E-15	Reset	PRBS 31-bit	~	PRBS 31-bit	~	0.00 dB (00000)	~	0.00 dB (000
% Link 8	MGT_X0Y19/TX	MGT_X0Y15/RX	25.651 Gbps	5.27E14	0E0	1.897E-15	Reset	PRBS 31-bit	~	PRBS 31-bit	~	0.00 dB (00000)	~	0.00 dB (000
% Link 9	MGT_X0Y18/TX	MGT_X0Y13/RX	25.651 Gbps	5.27E14	0E0	1.897E-15	Reset	PRBS 31-bit	~	PRBS 31-bit	~	0.00 dB (00000)	~	0.00 dB (000
% Link 10	MGT_X0Y17/TX	MGT_X0Y14/RX	25.651 Gbps	5.27E14	0E0	1.897E-15	Reset	PRBS 31-bit	~	PRBS 31-bit	~	0.00 dB (00000)	~	0.00 dB (000
% Link 11	MGT_X0Y16/TX	MGT_X0Y12/RX	25.651 Gbps	5.27E14	0E0	1.897E-15	Reset	PRBS 31-bit	~	PRBS 31-bit	~	0.00 dB (00000)	~	0.00 dB (000

Eye diagram


- A typical eye diagram
- Low Power Mode of the GTY receiver
- Open area: 7608, Open UI: 57.58 %, 25.65 Gb/s data rate
- Good performance

Summary		Metrics		Settings	
Name:	SCAN_113	Open area:	7608	Link settings:	N/A
Description:	40-43	Open UI %:	57.58	Horizontal increment	2
Started:	2020-Oct-30 17:04:45			Horizontal range:	-0.500 UI to 0.500 UI
Ended:	2020-Oct-30 17:40:54			Vertical increment	2
				Vertical range:	100%

Eye diagrams: other channels

4 Nov 2020

BER

5.0e-01 1.0e-01

5.0e-02

1.0e-02

5.0e-03

1.0e-03

5.0e-04 1.0e-04

5.0e-05

1.0e-05

5.0e-06

1.0e-06

5.0e-07

1.0e-07

5.0e-08

1.0e-08

5.0e-09

1.0e-09 5.0e-10

REF

1e-01

1.0e-01 5.0e-02

1.0e-02

5.0e-03

1.0e-03

5.0e-04

1.0e-04

0e-05

1.0e-05

0e-06

.0e-06

0e-0

.0e-07

0e-08

.0e-08

.0e-09

.0e-09

0e-10

5.0e-01 1.0e-01 5.0e-02

1.0e-02

5.0e-03

1.0e-03

5.0e-04

1.0e-04

5.0e-05 1.0e-05

5.0e-06

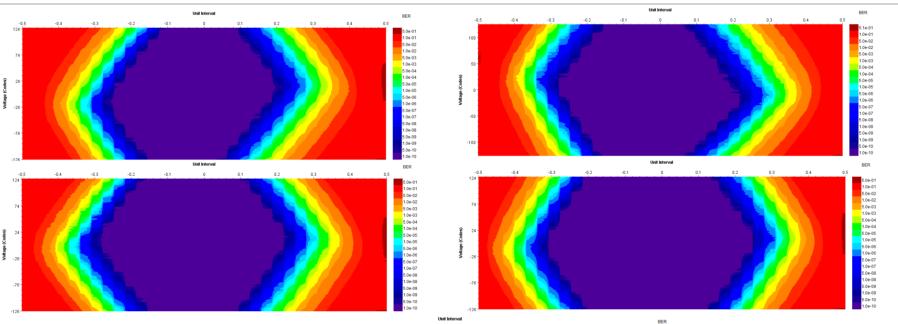
1.0e-06

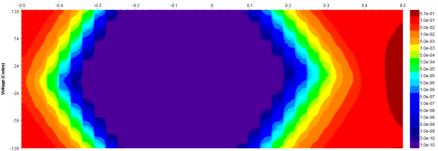
5.0e-07

1.0e-07

5.0e-08

1.0e-08 5.0e-09 1.0e-09 5.0e-10 1.0e-10


JGU


0.5

4 Nov 2020

JGU

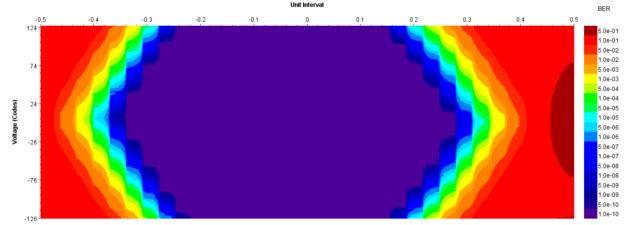
Eye diagrams: other channels

Samtec FireFly IBERT loopback test: test setup

 4 transmitter links of the optical module were looped back to 4 receiver links of the same module with a help of a 12-fiber MTP to LC breakout cable

4 Nov 2020

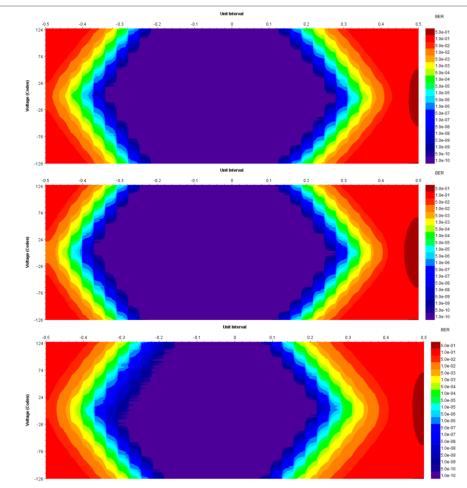
Link status


- A day-long IBERT test run at 27.58 Gb/s performed
- 31-bit PRBS pattern used
- 1.7E-15 BER reached
- All 4 links functional
- No bit errors detected

Name	ТХ	RX	Status	Bits	Errors	BER	BERT Reset	TX Pattern	RX Pattern		TX Pre-Cursor		TX Post-Curs
Ungrouped Links (0)													
Sink Group 0 (4)							Reset	PRBS 31-bit	 PRBS 31-bit 	~	0.00 dB (00000)	~	0.00 dB (0000
% Link 0	MGT_X0Y54/TX	MGT_X0Y54/RX	27.576 Gbps	5.732E14	0E0	1.744E-15	Reset	PRBS 31-bit	 PRBS 31-bit 	~	0.00 dB (00000)	~	0.00 dB (0000
% Link 1	MGT_X0Y55/TX	MGT_X0Y55/RX	27.575 Gbps	5.732E14	0E0	1.744E-15	Reset	PRBS 31-bit	 PRBS 31-bit 	~	0.00 dB (00000)	~	0.00 dB (0000
% Link 2	MGT_X0Y53/TX	MGT_X0Y52/RX	27.575 Gbps	5.732E14	0E0	1.744E-15	Reset	PRBS 31-bit	 PRBS 31-bit 	~	0.00 dB (00000)	~	0.00 dB (000(
% Link 3	MGT_X0Y52/TX	MGT_X0Y53/RX	27.575 Gbps	5.732E14	0E0	1.744E-15	Reset	PRBS 31-bit	 PRBS 31-bit 	~	0.00 dB (00000)	~	0.00 dB (000(

Eye diagram

- A typical eye diagram
- Low Power Mode of the GTY receiver
- Open area: 8612, Open UI: 63.64%, 27.58 Gb/s data rate
- Good performance



ummary		Metrics		Settings				
Name:	SCAN_11	Open area:	8612	Link settings:	N/A			
Description:	52-53_E10_2	Open UI %:	63.64	Horizontal increment:	2			
Started:	2020-Oct-26 15:06:55			Horizontal range:	-0.500 UI to 0.500 UI			
Ended:	2020-Oct-26 15:42:44			Vertical increment	2			
				Vertical range:	100%			

4 Nov 2020

Eye diagrams: other channels

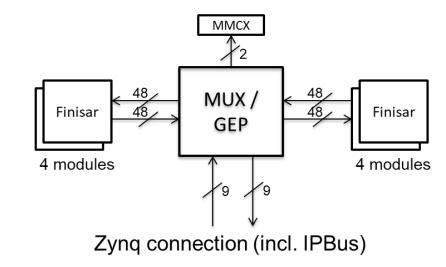
Summary

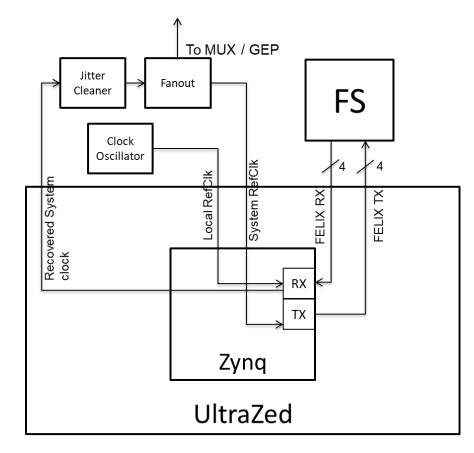
- The high-speed link support is essential for the Global Trigger system in order to cope with the transmission of high-granularity calorimeter data which drives the bandwidth requirements
- A technological demonstrator has been designed and used for evaluation of 25+ Gb/s Samtec FireFly and Finisar BOA optical modules implemented on-board together with the Xilinx Virtex UltraScale+ 9P FPGA
- A good performance and absence of bit errors during long runs have been demonstrated for both high-speed optical modules

BACKUP

VU13P PFM Floor plan

OM = Optical Module connection Connections to a single optical module are grouped with braces

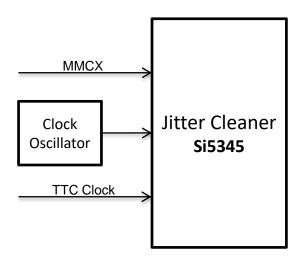

ſ	I: 4xOM O: 4xOM I: 4xOM	GTY Quad 135 X0Y60-X0Y63 AA [LN] GTY Quad 134 X0Y56-X0Y59 Z [LN] GTY Quad 133	CMAC X0Y11 CMAC X0Y10	HP VO Bank 75 K Readout HP DDR4 ^{k 74} Memory	ILKN X1Y7 SYSMON Configuration	GTY Quad 235 X1Y60-X1Y63 K [RN] GTY Quad 234 X1Y56-X1Y59 J [RN] GTY Quad 233	I: 4xOM O: 4xOM I: 4xSoC O: 4xSoC I: 4xSoC
1	O: 4xOM I: 4xOM	X0Y52-X0Y55 Y [LN] (RCAL) GTY Quad 132 X0Y48-X0Y51	ILKN HP I/O Bank 73	Configuration PCIE4	X1Y52-X1Y55 I [RN] (RCAL) GTY Quad 232 X1Y48-X1Y51	O: 4xSoC I: 4xOM	
Ļ	O: 4xOM	X [LN]	X0Y9	SLR Crossing	X0Y3	H [RN]	O: 4xOM
	I: 4xOM	GTY Quad 131	0140			GTY Quad 231	
	0: 4x0M	X0Y44-X0Y47 W [LUC]	CMAC X0Y8	HP I/O Bank 71 H (Partial)	ILKN X1Y5	X1Y44-X1Y47 G [RUC]	
4	I: 4xOM O: 4xOM	GTY Quad 130 X0Y40-X0Y43 V [LUC]	CMAC X0Y7	HP I/O Bank 70 G	SYSMON Configuration	GTY Quad 230 X1Y40-X1Y43 F IRUC1	I: 4xOM O: 4xOM
	I: 4xOM O: 4xOM	GTY Quad 129 X0Y36-X0Y39 U [LUC] (RCAL)	ILKN X0Y4	HP I/O Bank 69	Configuration	GTY Quad 229 X1Y36-X1Y39 E [RUC] (RCAL)	
ľ	I: 4xOM O: 4xOM	GTY Quad 128 X0Y32-X0Y35 T [LUC]	CMAC X0Y6	HP I/O Bank 68	PCIE4 X0Y2	GTY Quad 228 X1Y32-X1Y35 D [RUC]	
- 1		GTY Quad 127		SLR Crossing		GTY Quad 227	
1	I: 4xOM O: 4xOM	X0Y28-X0Y31 S [LLC]	CMAC X0Y5	HP I/O Bank 67	ILKN X1Y3	X1Y28-X1Y31 C [RLC]	I: 2xIPBUS O: 2xIPBUS, 2xMMCX
	I: 4xOM O: 4xOM	GTY Quad 126 X0Y24-X0Y27 R [LLC]	CMAC X0Y4	HP I/O Bank 66 B (Partial)	SYSMON Configuration	GTY Quad 226 X1Y24-X1Y27 B [RLC]	
- [I: 4xOM O: 4xOM	GTY Quad 125 X0Y20-X0Y23 Q [LLC] (RCAL)	ILKN X0Y2	HP I/O Bank 65 C	Configuration	GTY Quad 225 X1Y20-X1Y23 A [RLC] (RCAL)	I: 4xOM O: 4xOM
4	I: 4xOM O: 4xOM	GTY Quad 124 X0Y16-X0Y19 AF [LLC]	CMAC X0Y3	HP I/O Bank 64	PCIE4 X0Y1 (tandem)	GTY Quad 224 X1Y16-X1Y19 P [RLC]	I: 4xOM O: 4xOM
- 1				SLR Crossing			
	I: 4xOM O: 4xOM	GTY Quad 123 X0Y12-X0Y15 AE [LS]	CMAC X0Y2	HP I/O Bank 63 F	ILKN X1Y1	GTY Quad 223 X1Y12-X1Y15 O [RS]	I: 4xOM O: 4xOM
	I: 4xOM O: 4xOM	GTY Quad 122 X0Y8-X0Y11 AD [LS]	CMAC X0Y1	DDR4	SYSMON Configuration	GTY Quad 222 X1Y8-X1Y11 N [RS]	I: 4xOM O: 4xOM
	I: 4xOM O: 4xOM	GTY Quad 121 X0Y4-X0Y7 AC [LS] (RCAL)	ILKN X0Y0	HP I/O Bank 61	Configuration	GTY Quad 221 X1Y4-X1Y7 M [RS] (RCAL)	I: 4xOM O: 4xOM
l	I: 4xOM O: 4xOM	GTY Quad 120 X0Y0-X0Y3 AB [LS]	CMAC X0Y0	HP I/O Bank 60	PCIE4 X0Y0	GTY Quad 220 X1Y0-X1Y3 L [RS]	I: 4xOM O: 4xOM


MUX / GEP MGT connections

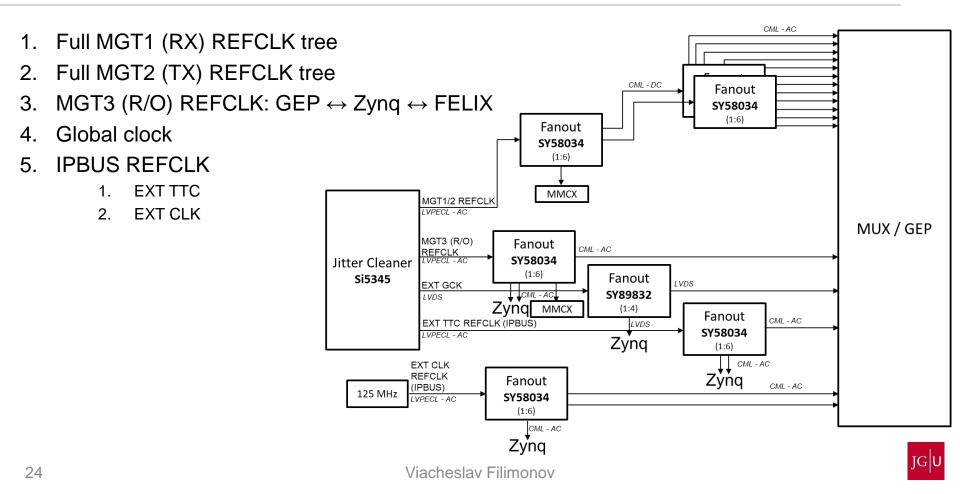
- 32 GTY quads (128 RX, 128 TX) available, providing the following connectivity
 - Connection to optical modules (96 RX, 96 TX)
 - Zynq connection (8 RX, 8 TX)
 - IPBus connection: Zynq ↔ MUX / GEP (1 RX, 1 TX)
 - Debug (2 TX)
 - Spare (23 RX, 21 TX)

MGTs + Finisars operation tested on the Demonstrator

Clock distribution for FELIX interface


- FELIX RX
 - TTC
- FELIX TX
 - Data
 - Busy
- Samtec high-speed boardto-board connector
 - Speed rating: 14GHz / 28Gbps

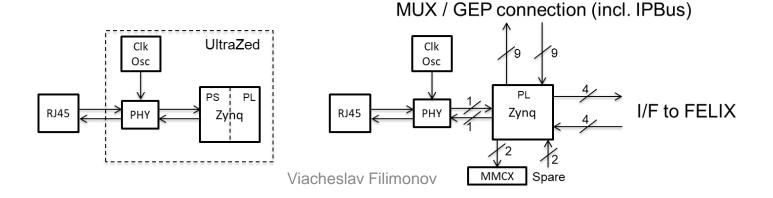
http://suddendocs.samtec.com/testreports/hsc-reportsma_seam8-seaf8-07mm_web.pdf


Clock scheme: Jitter Cleaner's input options

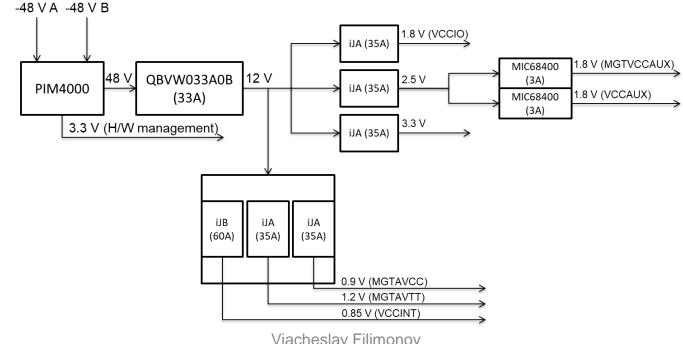
- Three input options
 - Recovered TTC clock
 - Clock oscillator
 - MMCX connectors

Clock trees

- The MGTs reference clock scheme is designed to minimize the number of signals routed on the PCB
- The reference clocks for a QUAD can also be sourced from one QUAD below or above for high data rates (16.375 – 28.21 Gb/s) and for up to two QUADs below or above for low data rates (below 16.375 Gb/s)
- Reference clock sharing between different SLRs is not allowed


Control block

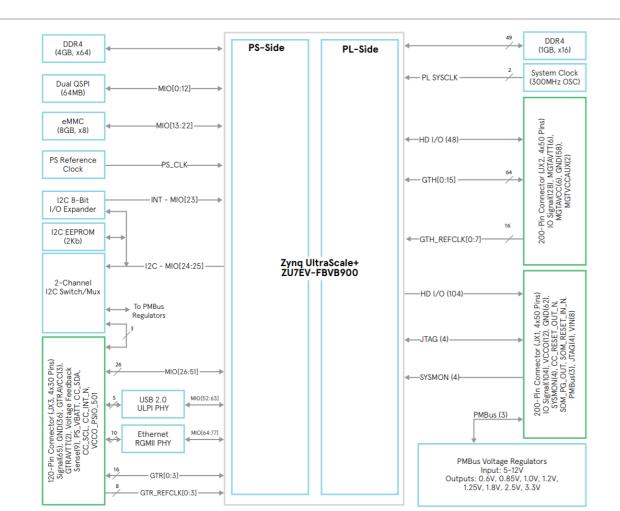
- The Control block provides many of the (non-real-time) services required on the PFM prototype
 - Hosts the control FPGA of the PFM prototype
 - Hosts the MasterSPI configuration circuitry for processor and control FPGAs
 - Clock cleaning and distribution
 - Monitoring and slow control
 - IPbus master
 - Interface to FELIX (Incl. TTC clock recovery)
- ZYNQ Ultrascale+ (XCZU7EV-FBVB900) device is used as the control FPGA
- The Control FPGA is located on a commercial system on a module (SoM) from Avnet (UltraZed-EV SOM)



Zynq MGT connections

- Four quads (16 RX, 16 TX) available, providing the following connectivity
 - Interface to FELIX (4 RX, 4 TX)
 - MUX / GEP connection (8 RX, 8 TX)
 - IPBus connection: PHY chip (on the main board) \leftrightarrow Zynq, Zynq \leftrightarrow MUX / GEP (2 RX, 2 TX)
 - Debug (2 TX)
 - Spare (2 RX)
- IPBus connection can also use the PS side of the Zynq
 - PHY chip on UltraZed
 - Flexibility of implementing IPBus either in the PL or PS side of the Zynq

PIM4000 converter, QBVW033A0B DC/DC converter, power mezzanines (based on the TDK-Lambda iJX series of DC/DC converters), linear MIC68400 regulators


4 Nov 2020

Power sequencing and operating voltages

- Power on sequence is controlled by a dedicated CPLD, which monitors the Power Good signals of every power regulator
 - 1. Board level 2.5 V and 3.3 V
 - 2. VCCINT, MGTAVCC
 - 3. MGTAVTT, VCCAUX, MGTVCCAUX
 - 4. VCCIO
- Operating voltages
 - VCCINT: 0.85 V
 - MGTAVCC: 0.9 V
 - MGTAVTT: 1.2 V
 - VCCAUX, MGTVCCAUX, VCCIO: 1.8 V

UltraZed

