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We discuss a possible connection between the recent NANOGrav results and the primordial black holes
(PBHs) for the LIGO-Virgo events. In particular, we focus on the axionlike curvaton model, which provides
a sizable amount of PBHs and gravitational waves (GWs) induced by scalar perturbations around the
NANOGrav frequency range. The inevitable non-Gaussianity of this model suppresses the induced GWs
associated with PBHs for the LIGO-Virgo events to be compatible with the NANOGrav results. We show
that the axionlike curvaton model can account for PBHs for the LIGO-Virgo events and the NANOGrav
results simultaneously.
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Introduction.—The NANOGrav Collaboration has
recently reported the results of the 12.5-yr pulsar timing
observation, which shows strong evidence of a stochastic
process around OðnHzÞ with a common amplitude and a
common spectral index across all pulsars [1]. Although
quadrupolar spatial correlations of the stochastic process,
which should exist for gravitational wave (GW) signals,
have not been found yet, it is worth investigating potential
implications of the process in terms of stochastic GWs.
In this Letter, we discuss a potential connection between

the NANOGrav results and the primordial black holes
(PBHs) [2–4]. PBHs have recently attracted a lot of
attention as candidates of dark matter (DM) [5–7] and
the black holes (BHs) detected by the LIGO-Virgo
Collaboration [8–10] (see also Refs. [11–13] for recent
reviews). As a probe of PBHs, GWs induced by scalar
perturbations are often discussed because a sizable amount
of PBHs require large-amplitude scalar perturbations on
small scales, which makes the GWs large enough to be
investigated by the current and future GW experiments
[14–33]. In particular, the LIGO-Virgo PBHs with
∼Oð10ÞM⊙ predict the large GWs around OðnHzÞ, which
is close to the NANOGrav frequency.

There are already some works discussing the
NANOGrav results in the context of the induced GWs
associated with PBHs. Reference [34] showed that the
NANOGrav signal is too small to be compatible with the
induced GWs associated with PBHs for the LIGO-Virgo
events in their setups, but, on the other hand, it can be
consistent with the PBHs as the primordial seeds of
supermassive BHs. Also, possible connections of the
NANOGrav results with the PBHs for DM [35],
Oð1ÞM⊙ BHs [36], and planet-mass BHs [37] were
discussed (see also Refs. [38,39]).
The main aim of this Letter is to show that the axionlike

curvaton model [19,40,41] can generate PBHs for the
LIGO-Virgo events that are consistent with the
NANOGrav results. The key difference from the setups
in Ref. [34] is that we take into account the primordial non-
Gaussianity of curvature perturbations, which is inevitably
produced in the curvaton model. The primordial non-
Gaussianity suppresses the induced GWs with the PBH
abundance fixed, which enables our model to explain PBHs
for the LIGO-Virgo events and the NANOGrav results
simultaneously.
Axionlike curvaton model.—First, we summarize the

basic properties of the axionlike curvaton model (see
Refs. [19,41,42] for detail). This model was originally
introduced in the framework of supersymmetry [43,44].
The relevant field corresponds to the flat direction,
denoted as Ψ ¼ φeiθ=

ffiffiffi
2

p
. After taking into account the

supergravity effect, we can approximate the effective
potential for φ as
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VðφÞ ¼ 1

2
cH2ðφ − fÞ2; ð1Þ

where H is the Hubble parameter during the inflation, c is
the coefficient coming from the supergravity effect, and f is
a symmetry breaking scale. We assume that c is of Oð1Þ
and the initial value of φ is much larger than f, which
makes φ roll down the potential to the minimum f during
inflation.
Once φ reaches the minimum f, the curvaton is given by

σ ≡ θf. Similarly to the QCD axion, we assume that a
certain nonperturbative dynamics generates a mass to
the curvaton at some point after reheating. Its potential
is given by

VðσÞ ¼ Λ4

�
1 − cos

�
σ

f

��
≃
1

2
m2

σσ
2; ð2Þ

where Λ is the scale of the nonperturbative dynamics and
the curvaton mass is obtained from mσ ≡ Λ2=f. The
second equality is valid when the curvaton is near its
minimum. Once the curvaton acquires its mass, it starts to
oscillate around the minimum and behaves as the non-
relativistic matter component. During a radiation-
dominated (RD) era, its energy fraction in the total energy
continues to grow. In this work, we consider the case where
the curvaton decays to radiation before it dominates the
Universe.
In the axionlike curvaton model, the power spectrum of

curvature perturbations on small scales, relevant to the PBH
production, can be approximated by

Pζðη; kÞ ¼
�AζðηÞð kk�Þn1−1 for k < k�

AζðηÞð kk�Þn2−1 for k ≥ k�
; ð3Þ

where η is the conformal time and k� is the inverse of the
horizon scale at the arrival of φ to the minimum f. Note
that, on large scales observed by CMB, the power spectrum
is dominated by the inflaton fluctuations and hence differ-
ent from Eq. (3). Aζ is given by

AζðηÞ ¼
�

2r
4þ 3r

�
2
�
Hjη¼1=k�
2πfθ

�
2

; ð4Þ

where Hjη¼1=k� denotes its value at η ¼ 1=k� and θ is the
misalignment angle of the curvaton. r stands for the ratio
between the energy densities of the curvaton and radiation
until the curvaton decay, and it is frozen after its decay, i.e.,

rðηÞ ¼
�
rD

η
ηD

for η < ηD

rD for η ≥ ηD
; ð5Þ

where the subscript D indicates the value at the curvaton
decay. The tilt n1 is related to the coefficient c in Eq. (1):

n1 − 1 ¼ 3 − 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4

9
c

r
; ð6Þ

which originates from the evolution of the radial direction φ
during the inflation. Since a typical size of fluctuations of
the phase-direction field at the horizon exit is H=ð2πÞ
regardless of the value of φ at that time, the fluctuation of
the misalignment angle is given by δθ ¼ H=ð2πφexitÞ, with
φexit being the value at the horizon exit. The curvaton
perturbation, δσ ¼ fδθ, gets more suppressed for a larger
value of φexit corresponding to perturbations at a larger
scale, i.e., a smaller k. On the other hand, the other tilt n2
stems from the time dependence ofH, which was not taken
into account in our previous work [19]. As we consider
slow-roll inflation, n2 − 1 should be smaller than unity.
Note that n2 is the tilt of the small-scale perturbations and
therefore can be different from that on larger scales,
determined by the Planck Collaboration [45,46].
PBH abundance.—Next, we introduce equations con-

necting the power spectrum and the PBH abundance. The
scale of the perturbation for the PBH production is related
to the PBH mass as [7],

MPBH≃M⊙

�
γ

0.2

��
g

10.75

�
−1=6

�
k

1.9×106Mpc−1

�
−2

ð7Þ

≃M⊙

�
γ

0.2

��
g

10.75

�
−1=6

�
f

2.9 × 10−9 Hz

�
−2
; ð8Þ

where γ is the fraction of the PBH mass in the horizon mass
at the production and g is the effective degrees of freedom
of radiation at that time. As fiducial values, we take γ ¼ 0.2
[4] and g ¼ 10.75. We do not include the effect of the
critical collapse [47–50] for simplicity because Ref. [51]
implies that it does not modify the PBH abundance
so much.
We adopt the Press-Schechter formalism throughout this

work [52]. In this formalism, the production rate of PBHs at
the time of formation β is given by

βðMÞ ¼
Z
δc

dδ
1ffiffiffiffiffiffi

2π
p

σðMÞ exp
�
−

δ2

2σ2ðMÞ
�
; ð9Þ

where δc is the threshold of the PBH formation. Here we
have assumed the perturbations follow the Gaussian sta-
tistics and wewill explain how to take into account the non-
Gaussianity later. The variance of the smoothed density
contrast is denoted by σ2. (Hereafter, it does not indicate the
curvaton field.) The variance is obtained from

σ2ðMÞ ¼
Z

∞

0

dq
q
W̃2ðq;RÞD2ðqRÞ 16

81
ðqRÞ4Pζðη ¼ R; qÞ;

ð10Þ
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where M denotes the PBH mass, R ¼ 1=kðMÞ is the
smoothing scale for the PBH production of mass M, W̃
is a window function in Fourier space, and DðxÞ is the
transfer function of the gravitational potential Φ, with the
normalization of Φ ¼ −ð3=2Þζ in the superhorizon limit.
Remember that the wave number is related to the PBHmass
through Eq. (7). We take the following transfer function
regardless of the scales:

DðxÞ ¼ 9

x2

�
sinðx= ffiffiffi

3
p Þ

x=
ffiffiffi
3

p − cosðx=
ffiffiffi
3

p
Þ
�
: ð11Þ

Although the transfer function for k≳ kDð≡1=ηDÞ could
be modified [19], we expect such modification does not
change our results so much because the main contribution
comes from the scales of k� < k < kD. In this Letter, we
take the real-space top-hat window function as a fiducial
example and take δc ¼ 0.51 for a pure RD era [53] (see also
Ref. [54] for the discussion on the window function
dependence). We also take into account a small modifica-
tion of δc during the QCD phase transition based on the
results in Ref. [55]. Note that, with the real-space top-hat
window function, σ2ðMÞ ≃ PζðkÞ holds for a scale-invari-
ant spectrum [19,54]. The current fraction of PBHs in DM
over a logarithmic interval is

fPBHðMÞ≡ 1

ΩDM

dΩPBHðMÞ
d lnM

≃
�

βðMÞ
1.84 × 10−8

��
M
M⊙

�
−1=2

;

ð12Þ

where ΩDM is the current energy density parameter of DM
and ΩPBHðMÞ is the density parameter of PBHs whose
masses are smaller than M.
Induced gravitational waves.—Here we briefly review

the fundamental equations of GWs induced by scalar
perturbations. We take the conformal Newtonian gauge

ds2 ¼ a2
�
−ð1þ 2ΦÞdη2þ

�
ð1− 2ΨÞδijþ

1

2
hij

�
dxidxj

�
;

ð13Þ
where a is the scale factor, Φ andΨ are scalar perturbations,
and hij is the tensor perturbation corresponding to GWs.
Since we focus on the early Universe, we may assume
the perfect fluid condition,Φ ¼ Ψ. See Refs. [56–67] for the
recent discussion on the gauge (in)dependence of the
induced tensor perturbations.
The energy density parameter of the induced GWs is

ΩGWðη; kÞ ¼
1

24

�
k

HðηÞ
�

2

Phðη; kÞ; ð14Þ

where H is the conformal Hubble parameter. Ph is the
time-averaged power spectrum of the induced GWs, given
by [19]

Phðη; kÞ ¼
1

4

Z
∞

0

dv
Z

1þv

j1−vj
du

�
4v2 − ð1þ v2 − u2Þ2

4vu

�
2

× I2ðu; v; k; ηÞ
�
4þ 3rD

rD

�
4

× PζðηD; kuÞPζðηD; kvÞ: ð15Þ

The integrand Iðu; v; k; ηÞ is obtained from

Iðu; v; k; ηÞ ¼
Z

x

0

dx̄
aðη̄Þ
aðηÞ kGkðη; η̄ÞFðku; kv; η̄Þ; ð16Þ

where x ¼ kη and x̄ ¼ kη̄. Since the curvaton energy is
assumed to be subdominant in the Universe in our scenario,
we may use Green’s function in a RD era, namely,

kGkðη; η̄Þ ¼ sin½kðη − η̄Þ�Θðη − η̄Þ; ð17Þ

where ΘðxÞ is the Heaviside step function. The function F
in Eq. (16) can be expressed by means of the transfer
function of the gravitational potential, Tðη; kÞ:

Fðku; kv; η̄Þ ¼ 4½3Tðη̄; kuÞTðη̄; kvÞ
þ 2H−1ðη̄ÞT 0ðη̄; kuÞTðη̄; kvÞ
þH−2ðη̄ÞT 0ðη̄; kuÞT 0ðη̄; kvÞ�; ð18Þ

where the prime means a derivative with respect to η̄.
A concrete expression of Tðη; kÞ is given in Sec. IV of
Ref. [19]. For scales that enter the horizon after the
curvaton decay, Tðη; kÞ is almost the same as DðkηÞ, given
in Eq. (11), except for the normalization. On the other hand,
for scales that enter the horizon before the curvaton decay,
we need to pay attention to some issues overlooked in
our previous work [19]. In the previous work, we implicitly
assumed that the curvaton decay occurs instantaneously,
and impose continuity on T and T 0 before and after the
curvaton decay. However, in a realistic situation, the
curvaton decay occurs gradually on a timescale of its
decay rate and such an approximation might not be valid,
given the results in Ref. [68]. Although the situation of this
work is not exactly the same as that of Ref. [68], some
suppression of gravitational potential during the curvaton
decay might occur similarly. The study of this effect is
beyond the scope of this Letter and we use the expression of
Tðη; kÞ in Ref. [19] for simplicity. For this reason, we
should keep in mind that the GWs spectrum of this work
could possibly be more suppressed on scales k > kD.
During a RD era, the density parameter in Eq. (14)

finally asymptotes to a constant value after the scalar
perturbations on the peak scale (k≳ k�) enter the horizon
because the induced GWs behave as radiation. Taking into
account the subsequent matter-dominated and dark-energy-
dominated era, we obtain the following expression of the
density parameter at present [19]:
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ΩGWðη0; kÞ ¼ 0.83

�
gconst
10.75

�
−1=3

Ωr;0ΩGWðηconst; kÞ; ð19Þ

where ηconst is the conformal time when ΩGW becomes
constant at the RD era, gconst is degrees of freedom at ηconst,
and Ωr;0 is the current radiation density parameter.
Non-Gaussianities.—In the axionlike curvaton model,

the curvature perturbations that produce PBHs inevitably
have the primordial non-Gaussianity. Besides, the non-
linear relation between the density perturbations and the
curvature perturbations induces the intrinsic non-
Gaussianity for the density perturbations [69–71]. The
non-Gaussianity is characterized by

δðxÞ ¼ δgðxÞ þ
μ3
6σ

½δ2gðxÞ − σ2�; ð20Þ

where δg follows the Gaussian statistics and σ2 is its
variance. Using the equations in Ref. [69], we numerically
evaluate the skewness μ3 as

μ3
σ
≃ pðnsÞfNL −

9

4
; ð21Þ

where the first term is the contribution from the primordial
non-Gaussianity and the second term is from the intrinsic
nonlinear relation. The coefficient pðnsÞ depends on the tilt
of the power spectrum of curvature perturbation, e.g.,
pð1Þ ≃ 3.8 (scale invariant) and pð0.8Þ ≃ 4.4 (red-tilted,
used later). In the curvaton model, fNL is related to rD as

fNL ¼ 5

12

�
−3þ 4

rD
þ 8

4þ 3rD

�
: ð22Þ

The probability distribution function (PDF) of the
Gaussian part is given by

PGðδgÞ ¼
1ffiffiffiffiffiffi
2π

p
σ
exp

�
−

δ2g
2σ2

�
: ð23Þ

Solving Eq. (20) with respect to δg, we obtain

δg�ðδÞ ¼
3σ

μ3

"
−1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2μ3

3

�
μ3
6
þ δ

σ

�s #
: ð24Þ

The PDF of the non-Gaussian part is now written as

PNGðδÞ ¼
X
i¼�

���� dδg;iðδÞdδ

����PG½δg;iðδÞ�: ð25Þ

Then, we can express β as

β ¼
Z
δc

dδPNGðδÞ

¼
8<
:

R∞
δgþðδcÞPGðδgÞdδg þ

R δg−ðδcÞ
−∞ PGðδgÞdδg for μ3 > 0R δg−ðδcÞ

δgþðδcÞ PGðδgÞdδg for μ3 < 0
:

ð26Þ

Since ΩGW is roughly proportional to P2
ζ , we define the

suppression factor of ΩGW as

Q≡
�

PζðηD; k�Þ
Pμ3¼0

ζ ðηD; k�Þ

�
2

: ð27Þ

Here Pμ3¼0
ζ is the power spectrum with μ3 ¼ 0 which gives

the same β as that for Pζ with nonzero μ3 in the numerator.
We take into account the non-Gaussianity effect on the
induced GWs multiplying this suppression factor to the
ΩGW that is calculated with Pμ3¼0

ζ . Note that the non-
Gaussianity also modifies Eq. (15) itself by OðP4

ζf
2
NLÞ,

shown in Refs. [22,25]. Although this modification affects
the shape of the GW spectrum in fNL ≫ 1, we consider the
case of fNL ∼Oð1Þ in the following and therefore can
safely neglect the modification.
Results.—As a fiducial example, we take the following

parameter values:

Pμ3¼0
ζ ðηD; k�Þ ¼ 0.0067; k� ¼ 5 × 105 Mpc−1;

kD ¼ 1 × 108 Mpc−1; n1 ¼ 2.5; n2 ¼ 0.8:

ð28Þ
Figure 1 shows the PBH mass spectrum with this parameter
set. We can see fPBH ∼ 10−3 at M ¼ 30 M⊙, which is

FIG. 1. PBH mass spectrum (black solid curve) with the
parameter set (28). The shaded regions are constrained by
EROS/MACHO [74,75], caustic crossing events [76], CMB
anisotropy with the assumption of the spherical and the disk
accretion onto PBHs [73], and GWs from mergers [77]. See also
Ref. [12] for other constraints.
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consistent with the merger rate estimated by the LIGO-
Virgo Collaboration [10,11,72]. The bump around M ∼
1 M⊙ is due to the suppression of the PBH threshold during
the QCD phase transition [55]. Although the mass spectrum
seems inconsistent with the constraint from the CMB
anisotropy in Ref. [73], we should keep in mind that it
still has uncertainties in accretion models, as the reference
itself mentions.
Figure 2 shows the spectra of GWs induced by the scalar

perturbations that realize the mass spectrum in Fig. 1. Note
again that the non-Gaussianity, dependent on rD, changes
the relation between the abundance of PBHs and the power
spectrum of curvature perturbations. From this figure, we
can see that if we take rD ≳ 0.6, the induced GWs are
consistent with the 2σ region of the NANOGrav stochastic
process. On the other hand, for a small rD ≲ 0.6, corre-
sponding to fNL ≳ 2.1, the non-Gaussianity suppresses the
induced GWs too much to explain the NANOGrav results.
For comparison, we also provide the induced GWs neglect-
ing the primordial non-Gaussianity from the curvaton.
We can see that, if there is no primordial non-
Gaussianity, the induced GWs are too large to be compat-
ible with the NANOGrav results. This is qualitatively
consistent with Ref. [34].
Regarding the parameters except for kD, we cannot take

them much differently from the values in Eq. (28) to be
consistent with the LIGO-Virgo observation and the
NANOGrav result. Only the kD is independent of the
observation results and we can change it freely as long as

kD is larger than the NANOGrav frequency range. Note
again that the GW spectrum on the frequency correspond-
ing to k > kD has the uncertainty [see below Eq. (18)].
Conclusion.—In this Letter, we discuss the implications

of the recent NANOGrav results in terms of PBHs
that explain the BHs detected by the LIGO-Virgo
Collaboration. Such PBHs for the LIGO-Virgo events
predict large GWs, which are induced by scalar perturba-
tion, around the NANOGrav frequency. We pursue the
possibility to explain the NANOGrav results by these
induced GWs. We study the axionlike curvaton model as
a concrete example, which inevitably produces the pri-
mordial non-Gaussianity. We have demonstrated that the
curvaton model can account for the LIGO-Virgo PBH
scenario and the NANOGrav results at the same time,
which is enabled by the non-Gaussianity suppressing the
induced GWs with the PBH abundance fixed. Our result
implies that the NANOGrav results could be a signal from
the LIGO-Virgo PBHs in the case where the primordial
non-Gaussianity exists.
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