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6.1 Beam Optics and Lattice Design in High Energy Particle
Accelerators

B. J. Holzer

Lattice design in the context we will describe it here is the design and optimization
of the principle elements—the lattice cells—of a circular accelerator, and it includes
the dedicated variation of the accelerator elements (as for example position and
strength of the magnets in the machine) to obtain well defined and predictable
parameters of the stored particle beam. It is therefore closely related to the theory
of linear beam optics that has been described in Chap. 2 [1].
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6.1.1 Geometry of the Ring

For the bending force as well as for the focusing of a particle beam, magnetic fields
are applied in an accelerator. In principle, electrostatic fields would also be possible
but at high momenta (i.e. if the particle velocity is close to the speed of light) the
usage of magnetic fields is much more efficient. In its most general form, the force
acting on the particles is given by the Lorentz-force

F = q (E + v × B) (6.1)

In high energy accelerators, the velocity v is close to the speed of light and
so represents a nice amplification factor whenever we apply a magnetic field. As
a consequence, it is much more convenient to use magnetic fields for bending
and focusing the particles. Neglecting the E component therefore in Eq. (6.1), the
condition for a circular orbit is defined as the equality of the Lorentz force and the
centrifugal force:

qvB = mv2

�
(6.2)

In a constant transverse magnetic field B, the particle will see a constant
deflecting force and the trajectory will be a part of a circle, whose bending radius ρ

is determined by the particle momentum p = mv and the external B field.

ρ = p

qB
(6.3)

The term Bρ is called beam rigidity. Inside each dipole magnet in a storage
ring the bending angle—sketched out in Fig. 6.1—is given by the integrated field
strength via

α =
∫

Bds

Bρ
(6.4)

Requiring a bending angle of 2π for a full circle, we get the condition for the
magnetic dipole fields in the ring. In the case of the LHC e.g. for a momentum of
p = 7000 GeV/c a number of 1232 dipole magnets are needed each having a length
of ~15 m with a B-field of 8.3 T. As a general rule in high energy rings, about
66% (2/3) of the circumference of the machine should be foreseen to install dipole
magnets, as they define the maximum particle momentum that can be carried by
the machine. This basic dipole structure is completed with focusing elements, beam
diagnostic tools etc. and forms the arcs of the ring. They are connected by long
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Fig. 6.1 B-field in a storage ring dipole magnet and schematic particle orbit

straight sections, so-called insertions, where the optics are modified to establish
conditions needed e.g. for particle injection or extraction and the installation of the
radio-frequency resonators for the particle acceleration. In the case of collider rings
so-called mini-beta insertions are included, where the beam dimensions are reduced
considerably to increase the particle collision rate and where space is needed for the
installation of the particle detectors.

The lattice and correspondingly the beam optics therefore are split in different
characteristic parts: arc structures that are used to guide the particle beam and define
the geometry of the ring; they establish a regular pattern of focusing elements. And
the straight sections, that are optimised for the installation of a manifold of technical
devices, including the high-energy physics detectors.

6.1.2 Lattice Design

An example of such a high-energy lattice and the corresponding beam optics is
shown in Fig. 6.2. In the upper part of the figure the regular pattern of the beta
function is plotted in red and green for the two transverse planes. As a consequence
of the periodic structure of the lattice, the beta function—and so the beam size—
reaches a maximum value in the centre of the focusing, and a minimum in the centre
of the defocusing quadrupoles. The lower part of the figure shows the horizontal and
vertical dispersion function. The lattice of the complete machine is designed on the
basis of small periodic lattice structures—called cells—that repeat many times in
the ring. One of the most widespread lattice cells used in high-energy rings is the
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Fig. 6.3 Basic element of a high-energy storage ring: the FODO cell

so-called FODO cell: A magnet structure consisting of focusing and defocusing
quadrupole lenses in alternating order. In between the focusing elements the dipole
magnets are located and any other machine elements like orbit corrector dipoles,
multipole correction coils or diagnostic instruments can be installed.

In Fig. 6.3 the optical solution of such a FODO cell is plotted: The graph shows
the β-function in the two transverse planes (red curve for the horizontal, green curve
for the vertical plane). In the lower part of the plot the position of the magnet
lenses, the lattice, is indicated schematically. In first order the optical properties
of such a lattice are determined only by the parameters of the focusing (F) and
de-focusing (D) quadrupole lenses. In between these two quadrupole magnets only
lattice elements are installed that have zero (“O”) or negligible influence on the
transverse particle dynamics. Hence the acronym FODO for such a structure. Due
to the symmetry of the cell the solution for the β function is periodic (in general
such a FODO cell is the smallest periodic structure in a storage ring) and it reaches
its extreme values at the position of the quadrupole lenses. As a consequence, at
these locations in the arc, the beam will reach its maximum dimension σ = √

εβ,
and the aperture need will be highest.

Accordingly, the “Twiss” parameter α, which is the derivative of β is generally
zero in the middle of the FODO quadrupoles. Based on the thin lens approximation
a number of scaling laws and rules can be established to understand the properties
of such a FODO structure [2]: How do we arrange the strength and position of the
quadrupole lenses in the lattice to obtain a certain beta-function? How does the cell
length influence the phase advance of the particle trajectories? How do we guarantee
that, turn by turn, a stable particle oscillation is obtained?
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In the following we briefly summarise these rules.

• Stability of the motion: the strengths of the focusing (and defocusing) elements
in the lattice have to be such that the particle oscillation does not increase. This
condition—the stability criterion for a periodic structure in a lattice—is obtained
in a FODO if the focal length of the magnets is larger than a quarter of the cell
length:

f = 1

kl
= Lcell

4
. (6.5)

• The beta function—and so the beam size—is determined by the phase advance
of the cell and its length:

βmax,min = 1 ± sin (ϕcell/2)

sin ϕcell

Lcell . (6.6)

• A similar scaling law is obtained for the dispersion:

Dmax,min = L2
cell

4ρ

1 ± 1
2 sin (ϕcell/2)

sin2 (ϕcell/2)
. (6.7)

In general, small values for the β functions as well as for the dispersion are
desired. It will be the intention of the lattice designer to minimise the beam size, and
so to optimise the aperture need of the beam. In addition the β-function indicates
the sensitivity of the beam with respect to external fields and field errors. A change
in a quadrupole field e.g. will shift the tune of the beam by

	Q = 1

4π

∫
	k(s)β(s)ds. (6.8)

The effect is proportional to the size of the applied change in quadrupole field,
	k but also to the value of the beta function at this position. Therefore, the phase
advance of the FODO cell has to be chosen to obtain smallest values for β in both
transverse planes, which leads in the case of protons or heavy ions to an optimum
phase advance of 90◦ per cell. It will be no surprise that the focusing structure
of typical high energy proton rings like SPS, Tevatron, HERA-p and LHC were
optimised for this value.

In addition to the main building blocks, the dipoles and quadrupole magnets, the
FODO will be equipped with a number of correction magnets for orbit correction,
compensation of higher harmonic field errors of the main magnets, and sextupoles
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Fig. 6.4 FODO cell of LHC. In addition to the two main quadrupoles and six dipole magnets,
diagnostic instruments and multipole compensation coils are included in the arc lattice

for chromaticity compensation of the machine. The FODO cell of LHC, including
these corrector magnets is illustrated in Fig. 6.4.

Six dipoles and two main quadrupoles are forming the basic structure of the cell;
they are complemented by orbit correction dipoles, trim quadrupoles that are used
for fine tuning of the working point and multipole correction coils to compensate
higher order field distortions up to 12 pole [3].

Among the higher order correction coils mentioned above the sextupoles play
the most critical role in the arc structure, as they are indispensable to compensate
the chromatic errors in the lattice. Chromaticity is an optical error that describes the
distortion of the focusing properties in a lattice under the presence of momentum
spread of the particle beam. In general a sextupole magnet will be installed to
support each quadrupole in the arc. At least two sextupole families are required,
one for each transverse plane. In some cases several families per plane are installed
to improve the region of stability in the transverse plane (the so-called dynamic
aperture of the storage ring). They have to be strong enough to correct the
chromaticity created in the arc cells as well as in the insertion sections. The
mechanism of chromaticity correction is based on the combination of the dispersion
function that sorts the particles according to their momentum and the nonlinear field
of a sextupole magnet:

Bz = 1

2
∼
g

(
x2 − z2

)
, (6.9)

where

∼
g = d2Bz

dx2 (6.10)

describes the sextupole “gradient”.
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Normalizing the sextupole field to the beam rigidity we write the contribution of
each sextupole to the chromaticity as

	Q = 1

4π

∫
ksextDβdl (6.11)

and it depends indeed on the value of both, beta function and dispersion. Therefore
the sextupole magnets that are needed to compensate the natural chromaticity in the
ring will be located in the lattice at places where at the same time the dispersion and
the beta function are large, i.e. close to the corresponding quadrupole lenses.

6.2 Lattice Insertions

B. J. Holzer

The arc structure of a storage ring is usually built out of regular patterns like FODO
cells that are repeated periodically and determine the geometry of the machine.
Straight sections are inserted to combine these arcs and provide the space required
for beam injection, extraction, or dispersion free lattice parts to install e.g. RF
systems. Finally space is needed to establish the conditions that are required for the
collisions of the two counter rotating beams. As an example of the general layout
of a storage ring we refer again to the LHC lattice. Eight straight sections connect
eight arcs: four of them are used for beam injection, extraction and collimation,
the remaining four are optimised to house the high-energy detectors (IR1, 5, 2, 8
in Fig. 6.5). Here the storage ring lattice has to provide the free space needed for
the installation of a large modern particle detector and the beam optics has to be
modified to provide the strong focusing needed at the collision point.

6.2.1 Low Beta Insertions

The most important “insertion” for a particle collider ring is the so-called mini beta
structure: The key issue of a collider is its luminosity [4] that defines the rate of
produced collision events (particles or particle reactions of interest) in the machine.
Its value is defined by the machine lattice and under the assumption of equal beam
properties in the two colliding beams it is given by the stored currents in the two
beams, Ip1, Ip2, the revolution frequency f0, the number of stored bunches, nb, and
most of all by the transverse size of the two beams, σ ∗

x and σ ∗
y . In the simplest case

we get:

L = 1

4πe2f0nb

Ip1Ip2

σ ∗
x σ ∗

y

. (6.12)
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Fig. 6.5 Lattice geometry of
the LHC

A more general formula that includes geometric and optical reduction factors
is presented in Sect. 6.4 [4]. At the interaction point “IP”, the intention of the
lattice designer will be to reduce the beta function as much as possible in order
to obtain the smallest possible beam. The main limiting factor comes from a
basic principle which is valid for any system of particles under the influence of
conservative forces (“Liouville’s Theorem”): Under conservative forces, the density
of the particle’s phase space volume is constant. Applying this law to a particle
beam in an accelerator it means that the beam dimension and divergence are not
independent of each other. Namely for the design of symmetric drift space in a
storage ring we can deduce a rule for the beta function: Starting from a waist (α∗ = 0
at the collision point) the beta function develops as

β(s) = β∗ + s2

β∗ . (6.13)

The star refers to the value at the waist (e.g. the interaction point “IP”). This
relation is a direct consequence of Liouville’s theorem and therefore of fundamental
nature. As a consequence the behaviour of β in a symmetric drift cannot be changed
and has a strong impact on the design of a storage ring: Small beta functions at
the collision point and a large distance to the first focusing element lead to high
values of the beta function and correspondingly to large beam dimensions at the
first focusing element in front and after the IP.

The preparation of the beam optics for the installation of modern high-energy
detectors therefore needs special treatment in the lattice design to provide the
large space needed for the detector hardware. An illustrative example is shown in
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Fig. 6.6 Layout of a mini beta insertion scheme. The example shows a low beta insertion based
on a quadrupole doublet. The vertical beta function (green line) starting with smaller values at
the IP shows a stronger increase than the beta in the horizontal plane. Accordingly the doublet
quadrupoles are powered in QD-QF polarity

Fig. 6.6: a long symmetric drift space that holds the experiment is centred around
the interaction point of the colliding beams. Depending on the respective value of
beta at the IP the beta functions increase in the horizontal (red) and vertical (green)
plane and are focused back using a couple of strong, large aperture and high quality
quadrupole lenses. Depending on the particular situation (namely the ratio of the
two β∗ values in the two planes a quadrupole doublet or triplet arrangement will
be the adequate choice for these mini beta quadrupoles. Additional independent
quadrupole magnets (i.e. individually powered magnets) will be needed to create a
smooth transition of the optics from the IP to the periodic solution of the FODO
cells in the arc. In general eight parameters have to be optimised: the β and α values
in the two planes, the dispersion and its derivative and the phase advance of the
complete mini beta system. As a consequence such a mini beta insertion will have
to be equipped with at least eight individually powered quadrupole magnets to fulfil
this requirement.

It has been pointed out in the previous chapter that the emittance of a particle
beam is not constant during acceleration but depends on the energy of the particle
beam. In the case of a proton or ion beam the adiabatic shrinking is the dominant
effect and the emittance follows the rule ε ∝ 1/βγ where β and γ are the relativistic
parameters. As a consequence the emittance in a proton storage ring is highest at
injection energy and the beam optics has to be optimised to limit the beta function at
any place in the machine to values that guarantee sufficient aperture. At high energy
(the so-called flat-top) the emittance is small enough that the mini beta concept can
be used to full extend and only here the β∗ can be reduced to the small values that
are required to deliver the design luminosity values. The lattice of the mini beta
insertion therefore has to be optimised in a way, that two quite different beam optics
can be established by corresponding adjustment of the quadrupole gradients: A low
energy optics for injection and the early steps of the acceleration and a true mini
beta optics that will be used for the collider run at high energy.

The procedure to pass from the injection optics to the luminosity case is often
called “beta squeeze” and is a critical situation as optics, orbits and global beam
parameters like tune and chromaticity have to be maintained constant and well
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Fig. 6.7 (Left) Beam optics for the LHC: 450 GeV injection optics optimised for small values
of beta to gain highest aperture in the machine. (Right) Low beta optics for the LHC luminosity
operation: due to the small values at the IP the beta function reaches large values in the low beta
quadrupole lenses. (Note the different scale of the vertical axis)

controlled during the changing quadrupole settings. Several intermediate steps
might be needed to guarantee a smooth transition between the two operation modes.
In the case of the LHC the 450 GeV injection case and the 7 TeV luminosity optics
are compared in Fig. 6.7.

6.2.2 Injection and Extraction Insertions

In addition to the mini beta insertions where the beams are optimised for highest
collision rates, additional insertions are needed in the storage ring for beam injection
and extraction. In these cases the same rules are valid as for the mini beta insertions
but in general the consequences are more relaxed. Additional hardware that has to
be installed for the injection process (fast kicker magnets and septum dipoles to
inject the new beam) is much smaller than the detectors at the collision points. Still,
however, some modifications of the lattice will be needed and the optics will have to
be re-matched to establish the required space. A special additional feature should be
mentioned here: the new beam that is being injected has to match perfectly in energy
and in phase space to the optical parameters of the storage ring or synchrotron. At
the end of the beam transfer line as well as in the storage ring the focusing fields
have to be optimised to obtain the same values of the Twiss functions α and β in both
transverse planes. As in the case of the mini beta insertions additional individually
powered quadrupole magnets are needed. As an example the beam optics of the SPS-
LHC transfer-line is plotted in Fig. 6.8. At the beginning and the end of the lattice
structure—indicated by red markers in the figure—the beta function is modified to
match the optics from the SPS to the FODO channel of the transfer line and from
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Fig. 6.8 Transfer line between the SPS and the LHC. Two matching sections have to be introduced
to adopt the beam optics from the SPS to the transfer line and to the LHC

the FODO to the LHC insertion at IR2 and IR8 where the injection elements are
located.

6.2.3 Dispersion Suppressors

The dispersion function D(s) has already been introduced in Sects. 2.4 and 6.1. It
describes the trajectory in the case of a momentum deviation of the particle and is
the consequence of the corresponding error in the bending strength of the dipole
magnets. In the arc structure with its regular pattern of dipole magnets, dispersive
effects cannot be avoided (but they should be minimised) and the additional
amplitude due to the dispersion has to be considered if we are talking about particle
trajectories or beam sizes. In linear approximation and for a small momentum spread
	p/p in the beam, the amplitude of a particle oscillation is obtained by

x(s) = xβ(s) + D(s)
Δp

p0
, (6.14)

where xβ describes the solution of the homogeneous differential equation (the usual
betatron oscillations of the particle) and the second term—the dispersion term—
corresponds to the additional oscillation amplitude for particles with a relative
momentum error 	p/p0. At the interaction point where the smallest beam sizes are
required to obtain the highest luminosity, we intend to suppress the dispersion and
as the collision point is generally located in a straight section of the accelerator,
techniques have been developed to obtain dispersion free sections inside the lattice.
The insertions that are used to reduce the dispersion function from its periodic value
in the arc to zero are called dispersion suppressors [2, 5, 6].

http://dx.doi.org/10.1007/978-3-030-34245-6_2


6 Design and Principles of Synchrotrons and Circular Colliders 217

It has to be mentioned in this context that especially in the case of synchrotron
light sources a variety of lattice types has been developed with the goal to achieve
small or even zero dispersion in the ring or in parts of it. However, these lattices
are optimised for the purpose of high brilliant synchrotron radiation and are not
ideal for high-energy particle accelerators, where FODO cells are usually the most
appropriate choice.

Referring to high energy colliders we will concentrate therefore on the interaction
region, i.e. a straight section of a ring where two counter rotating beams collide
in a dispersion free part of the storage ring. A non-vanishing dispersion dilutes
the luminosity of the machine and leads to additional stop bands in the working
diagram of the accelerator (“synchro-betatron resonances”), that are driven by the
beam-beam interaction. Therefore sections are inserted in our magnet lattice that are
designed to reduce the function D(s) to zero. Three main techniques are widely used:
the quadrupole based dispersion suppressor, the missing bend scheme and the half
bend scheme. We will not present all of them in detail but instead restrict ourselves
to the basic idea behind it.

6.2.3.1 The “Straightforward” Way: Dispersion Suppression Using
Quadrupole Magnets

Let us assume here that a periodic lattice is given in the arc (see Fig. 6.2) and that
this FODO structure simply is continued through the straight section—but with
vanishing dispersion. Given an optical solution in the arc cells, as for example
shown in Fig. 6.9, we have to guarantee that starting from the periodic solution

Fig. 6.9 Periodic FODO and horizontal dispersion function in a regular FODO structure
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of the optical parameters α(s), β(s) and D(s) we obtain a situation at the end of the
suppressor where we get D(s) = D’(s) = 0 and the values for α and β unchanged.

The boundary conditions after the suppressor section

D(s) = D′(s) = 0,

βx(s) = βx arc, αx(s) = αx arc, (6.15)

βy(s) = βy arc, αx(s) = αy arc,

can be fulfilled by introducing six additional quadrupole lenses whose strengths
have to be matched individually in an adequate way. This can be done by using one
of the beam optics codes that are available today in every accelerator laboratory. An
example is shown in Fig. 6.10, starting from a FODO structure with a phase advance
of ϕ ≈ 70

◦
per cell.

The advantages of this scheme are:

• it works for any phase advance of the arc structure;
• matching works also for different optical parameters α and β before and after the

dispersion suppressor as—within a certain range—the quadrupoles can be used
to match the Twiss functions to different values;

• the ring geometry is unchanged as the number and location of dipole magnets in
the ring is unchanged.

Fig. 6.10 Periodic FODO and horizontal dispersion function in a regular FODO structure
dispersion suppressor scheme based on individually powered quadrupole lenses
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On the other hand there are a number of disadvantages that have to be men-
tioned:

• as the strength of the additional quadrupole magnets have to be matched
individually the scheme needs additional power supplies and quadrupole magnet
types which can be an expensive requirement;

• the required quadrupole fields are in general stronger than in the arc;
• the β function reaches higher values (sometimes really high values) which leads

to higher beam sensitivity and larger aperture needs.

There are alternative ways to suppress the dispersion, which do not need
individually powered quadrupole lenses but instead change the strength of the dipole
magnets at the end of the arc structure.

6.2.3.2 The “Clever” Way: Half Bend Schemes

This dispersion suppressing scheme is made up of n additional FODO cells that are
added to the periodic arc structure but where the bending strength of the dipole
magnets is reduced. As before we split the lattice into three parts: the periodic
structure of the FODO cells in the arc, the lattice insertion where the dispersion
is suppressed, followed by a dispersion free section which can be another FODO
structure without bending magnets or a mini beta insertion.

Starting from the dispersion free straight section the basic idea of this scheme
is to create with a special arrangement of dipole magnets inside the dispersion
suppressor—exactly the dispersion that corresponds to the periodic solution of the
arc FODO cells. The solution will depend on the phase advance of the cells as well
as on the strength of the bending magnets inside the suppressor magnets.

As explained before in the beam optics chapter, the matrix for a periodic part of
the lattice (namely one single cell in our case) can be expressed as

Mcell =
⎛

⎝
C S D

C′ S′ D′
0 0 1

⎞

⎠ =
⎛

⎜
⎝

cos φc βC sin φc D

− 1
βc

sin φC cos φc D′

0 0 1

⎞

⎟
⎠ , (6.16)

where the index “c” reflects the solution of a cell, φc denotes the phase advance for
a single cell and the elements D and D’ correspond to its periodic dispersion.

As usual the dispersion elements are obtained by

D(l) = S(l)

l∫

0

C
(∼
s
)

�
(∼
s
) d

∼
s − C(l)

l∫

0

S
(∼
s
)

�
(∼
s
)d

∼
s . (6.17)
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The functions C(s) and S(s) are the cosine and sine like matrix elements of the
lattice element in the sense that e.g. C(s) = M[1,1], and the integral is executed over
one complete cell.

In the dispersion suppressor section, the dispersion D(s) starts with the value D0
the end of the arc cell and is reduced to zero. Or turning it around and thinking from
right to left: the dispersion has to be created inside the suppressor part by proper
arrangement of the dipole magnets, starting from D = D’ = 0 in the straight section
to reach the values that correspond to the periodic dispersion of the arc cells. Solving
the equation above by integrating over a certain number of cells will determine the
bending strength 1/ρ and the number n of cells in the suppressor part that is needed
to fulfill the boundary condition and get the values of the dispersion in the following
periodic arc cell.

For a given phase advance ϕc per cell two conditions for the dispersion matching
are obtained that combine the number of suppressor cells, n, and the strength of the
suppressor dipoles, δsupr:

2δsuprsin2
(

nφc

2

)
= δarc

sin (nφc) = 0

}

δsupr = 1

2
δarc. (6.18)

If the phase advance per cell in the arc fulfills the condition sin(nφc) = 0, the
strength of the dipoles in the suppressor region is just half the strength of the arc
dipoles. In other words the phase advance has to fulfill the condition

nφc = kπ, k = 1, 3, . . . . (6.19)

There are a number of possible phase advances that fulfill that relation, but clearly
not every arbitrary phase is allowed. Possible constellations would be for example,
φc = 90

◦
, n = 2 cells, or, φc = 60

◦
, n = 3 cells in the suppressor.

Figure 6.11 shows such a half bend dispersion suppressor, starting from a FODO
structure with 60◦ phase advance per cell. The focusing strength of the FODO cells
before and after the suppressor are identical, with the exception that—clearly—the
FODO cells on the right are “empty”, i.e. they have no bending magnets.

It is evident that unlike to the suppressor scheme with quadrupole lenses now the
beta function is unchanged in the suppressor region.

Again this scheme has advantages:

• no additional quadrupole lenses are needed and no individual power supplies;
• in first order the β functions are unchanged; aperture needs and beam sensitivity

are not increased;

and disadvantages:

• it works only for certain values of the phase advance in the structure and therefore
restricts the free choice of the optics in the arc;

• special dipole magnets are needed (having half the strength of the arc types);
• the geometry of the ring is changed.
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Fig. 6.11 Dispersion suppressor based on the half bend scheme

It has to be mentioned here, that in theses equations the phase advance of the
suppressor part is equal to the one of the arc structure—which is not completely
true as the weak focusing term 1/�2 in the arc FODO differs from the term 1/(2ρ)2

in the half bend scheme. As, however, the impact of the weak focusing on the beam
optics can be neglected in many practical cases Eq. (6.18) is nearly correct.

The application of such a scheme is very elegant, but as it has a strong impact on
the beam optics and geometry it has to be embedded in the accelerator design at an
early stage.

6.2.3.3 The “Missing Bend” Dispersion Suppressor Scheme

A similar approach is used in the case of the missing bend dispersion suppressor: It
consists of a number of n cells without dipole magnets at the end of the arc, followed
by m cells that are identical to the arc cells. The matching condition for this missing
bend scheme with respect to the phase advance is

2n + m

2
φc = (2k + 1)

π

2
. (6.20)

For the number m of the required cells after the empty cells we get:

sin
mφc

2
= 1

2
, k = 0, 2, . . . , or sin

mφc

2
= −1

2
, k = 1, 3, . . . . (6.21)

The following example is based on φc = 60
◦
, where the conditions above are

fulfilled for m = n = 1, Fig. 6.12.
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Fig. 6.12 Dispersion suppressor based on the missing bend scheme. The FODO cell without
dipoles and the following standard cell are indicated by blue and green markers in the plot

There are more scenarios for a variety of phase relations in the arc and the
corresponding bending strength needed to reduce D(s), see [2, 3]. In general, one
will combine one of the two schemes (missing or half bend suppressor) with a
certain number of individual quadrupole lenses to guarantee the flexibility of the
system with respect to phases changes in the lattice and to keep the size of the beta-
function moderate.

6.3 Injection and Extraction Techniques

B. Goddard

Transfer of a beam between accelerators or onto external dumps, targets and
measurement devices is a specialized topic and requires dedicated systems for
injection and extraction [7], as well as beam transfer lines. Injection is the final
process of the transfer of beam between one accelerator and another, either from
a linear to a circular accelerator or between circular accelerators. Extraction is the
removal of beam from an accelerator, either for the transfer to another accelerator or
to deposit the beam on a target, dump or measurement system. Both injection and
extraction systems need to be designed to transfer beam with minimum beam loss,
to achieve the desired beam parameters and usually to minimize the dilution of the
beam emittance.

Single-turn injection and extraction methods are rather straightforward for both
lepton and hadron machines. They generally involve a kicker system to deflect the
beam onto or away from the closed orbit, a septum (or series of septa for higher
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energy beams) to deflect the beam into or out of the accelerator aperture, and
frequently also a closed orbit bump to approach the septum and reduce the required
kicker strength. For these single-turn methods, the beam losses can be very low,
and the emittance dilution associated with the injection or extraction can be very
small, defined by the delivery precision, the optics mismatch, the kicker flat top
ripple and septum stability. For both injection and extraction, the circulating beam
can be adversely affected by septum stray fields penetrating into the circulating
beam region and by the kicker field rise time which can overlap temporally with
circulating bunches. Injecting a bunched beam into another accelerator also requires
that the momentum spread and phase be matched to the RF bucket, and that the RF
system can accept the transient beam loading which arises from the sudden change
in beam intensity.

Multiple-turn injection is used to fill the circumference of a receiving accelerator
and to accumulate bunch intensity. A wide variety of multiple-turn injection and
extraction schemes exist, and these can be very different for lepton and hadron
machines. Lepton injection schemes can take advantage of synchrotron radiation
damping to achieve high beam brightness, while for hadron machines space charge
effects dominate, especially at low energy. High brightness proton injection can
make use of phase-space “painting” to precisely tailor the transverse and longitu-
dinal distributions, particularly with H− charge exchange injection or slip stacking;
while resonant multiple-turn extraction schemes have been developed to provide
quasi-continuous particle fluxes for periods which range from milliseconds to hours.
The additional hardware systems required for these more advanced injection and
extraction techniques include multiple RF systems, programmed fast closed-orbit
bumps, stripping foils and non-linear lattice elements.

Overall, injection and extraction techniques share many similarities and hardware
requirements [8]: one important difference between them is that extraction is usually
at higher beam rigidity, which implies less effect from space charge and also
stronger and hence longer deflecting systems, which can have a significant effect
on lattice and insertion design [9–11].

6.3.1 Fast Injection

Fast injection [12–14] is typically used to fill another machine with bunch-to-bucket
transfer, or to fill a collider over several injections with ‘boxcar’ stacking, where
bunches or trains of bunches are added sequentially like boxcars (wagons) to a
train. The system design depends critically on the aperture needed for the beam,
and the kicker rise time, fall time and flat top duration. Very fast kicker rise times
are often required to maximize the amount of beam which can be injected, especially
in machines with small circumferences, since the kicker rise and fall times must be
significantly shorter than the revolution time.
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6.3.2 Slip-Stacking Injection

In slip-stacking [15], two trains of bunches are merged to increase the bunch
intensity, using separate RF systems. A first train of bunches is injected on the closed
orbit and captured by the first RF system. This train of bunches is then decelerated,
and as a result circulates on a different orbit. A second batch is then injected on the
closed orbit and captured by the second RF system. The two trains of bunches have
slightly different energies and can be made to move relative to each other in phase.
When the phase difference reaches zero, both sets of bunches are captured together
and merged, by a rapid change of the RF frequency. The accelerator needs enough
momentum aperture to accept both beams, and sophisticated RF control to make
the manipulations. The final longitudinal emittance is the sum of the two individual
emittances multiplied by an unavoidable blowup factor, typically around 1.5.

6.3.3 H− Charge-Exchange Injection

High brightness, low energy proton machines frequently make use of H− charge
exchange injection [16]. In this technique, a linac accelerates H− ions which are
then merged with the circulating proton beam in a dipole magnet, Fig. 6.13, before
the two loosely-attached electrons are stripped away in a foil which is almost
transparent to the circulating beam.

This technique allows the accumulation of high brightness beams, since unlike
other methods it allows injection into the already occupied phase space area.
Transverse particle distributions can be controlled using phase space painting, to
ameliorate space charge effects, reduce beam losses and increase accumulated
intensity. The stripping is achieved with thin foils of carbon or diamond-like carbon,
with a thickness typically in the micron range, which is a compromise between
obtaining high stripping efficiency and minimizing the beam losses and emittance
growth from scattering.

Fast painting bumpers or kickers in both planes are used to displace the
circulating beam access with respect to the foil, and the waveform of the bumper

Fig. 6.13 Merging H− and
p+ beams in H− charge
exchange injection H-

p+ p+

Stripping foil

Merging 
dipole
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field can be varied to achieve the desired phase space density distribution. This is
the process of phase space painting, where the small emittance LINAC beam is the
brush and the large acceptance of the receiving machine is the canvas.

In addition to beam loss from scattering at the foil, another significant source of
beam loss can be the field-stripping in the third chicane magnet of excited H0. In
ISIS [17] the injection is made on the ramp, and the dispersion at the foil provides
some of the transverse phase space painting. For SNS [18], where the average beam
power is over 1 MW, the uncontrolled beam losses must be kept extremely low and
the accumulation is made over 1160 turns.

The use of stripping foils is disadvantageous for several reasons, in particular
the associated uncontrolled beam losses, but also due to the simple mechanical
and radiological difficulties in handling such fragile objects. A foil-free method
of H− stripping using a high-powered laser to resonantly excite neutral H0 before
field stripping in a dipole has been proposed and demonstrated in principle, and is
promising for very high energy H− injection systems [19].

6.3.4 Lepton Accumulation Injection

Injection of leptons can take advantage of the strong damping which is present
from synchrotron radiation to accumulate intensity. This is very commonly used
at Synchrotron Radiation rings, where top-up operation [20] consists of frequently
injecting small amounts of beam to replace beam losses and keep the beam and
synchrotron radiation intensities stable in a very small range.

In betatron injection, Fig. 6.14, the injected bunch or train is injected with an orbit
offset with respect to the circulating beam, which is moved towards the injection
septum with a fast closed-orbit bump. The offset between the injected beam and the
circulating beam must be large enough to accommodate the injection septum. The
particles of the newly-injected bunches then perform damped betatron oscillations

Fig. 6.14 Betatron injection.
The injected beam is
mismatched and performs
betatron oscillations until
damped by emission of
synchrotron radiation

Injected beam

Bumper
magnet

Bumper
magnet

Septum magnet

QF

QD

QF

QD

QF

Bumped
circula�ng beam

Mismatched 
injected beam
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δδp

⋅ δp

Fig. 6.15 Synchrotron injection. The injected beam has a momentum offset, and the injection
trajectory is matched to the local dispersion orbit. The beam then performs oscillations about the
closed orbit determined by the dispersion function, as the momentum changes with the synchrotron
oscillations

around the closed orbit, until they merge with the already circulating beam. This
technique has the disadvantage that the betatron amplitude may be large in regions
of the accelerator where the β-function is large. In the alternative synchrotron
injection [21], Fig. 6.15, the new particles are injected with a momentum offset δp
and a position offset X into a region with dispersion D, such that X = δp × D.
The particles are injected onto the matched betatron orbit for their momentum,
and thus only perform synchrotron oscillations around the stored particles, with
the transverse offsets following the dispersion function. For LEP a combination of
betatron and synchrotron injection was preferred [22], since the dispersion in the
long straight sections was very small and the background to the experiments could
be significantly improved.

6.3.5 Fast Extraction

Fast extraction is typically used to provide beam to a higher energy machine with
bunch-to-bucket transfer. As for fast injection, the system design depends critically
on the aperture needed for the beam, and the kicker rise time, fall time and flat
top duration. Achieving fast kicker rise time with sufficient deflection angle at high
beam rigidity is a common challenge, as is the design of the extraction insertion
where the septum strength must be sufficient to provide enough clearance at the next
downstream accelerator element. As beam energies increase, protection from mis-
steered beam of the extraction septum and of other accelerator components becomes
important; for the LHC beam extraction system at 7 TeV [23], the synchronization
of the kicker system and protection from asynchronous kicker firing is a critical
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Fig. 6.16 Schematic of fast
extraction system with kicker,
septum and orbit bumpers.
For higher energy machines,
protection devices to intercept
and dilute any mis-kicked
extracted beam are placed in
front of the septum and
downstream QF quadrupole

Extracted beam

Bumper
magnet

Bumper
magnet

Septum magnet Kicker magnet

QF

QD

QF

QD

QF Bumped
circula�ng beam

system design feature. Closed orbit bumps can be used to move the beam closer to
the septum, to reduce the required kick strength, Fig. 6.16.

6.3.6 Resonant Extraction

Many rate-limited applications such as physics experiments, test beams or medical
treatment beams require a slow flux of particles with as uniform a time structure as
possible. Resonant extraction using the third integer is the most common method of
providing such uniform spills. In this ‘slow’ extraction [24], a triangular stable area
in phase space (usually horizontal) is defined by exciting sextupole elements, and
by moving the machine tune close to the third integer resonance. Before the start of
the extraction process, particles remain stable if their single-particle emittances are
smaller than the area of the stable triangle.

The beam is extracted by driving some particles unstable in a controlled way.
The unstable particle amplitudes increase rapidly, following the outward-going
separatrix every three turns, and the particles eventually move into the high-field
region of a very thin electrostatic septum and are extracted, Fig. 6.17. The rate of
extraction is controlled either by modulating the excitation process or by controlling
the stable area. Several techniques for driving the particles unstable are possible:

i) the stable area can be reduced by increasing the resonance (sextupole) strength
or by moving the tune closer to the third integer. Increasing the resonance
strength reduces the stable area, but the smallest amplitude particles cannot
be extracted, and changing the resonance affects the machine optics. Crossing
the resonant tune offers the advantage that all of the beam can be extracted;
however, the optics is still perturbed and in addition the position of the extracted
beam in phase space changes as particles are extracted;
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Fig. 6.17 Resonant
extraction in normalised
phased space. The amplitudes
of particles outside the stable
area grow rapidly, following
the outward-going separatrix
lines every three turns until
they reach the electrostatic
septum

PX

X

Turn n Turn n+3

Turn n+1

Turn n+2

Septum 
wire

Septum 
kick

Unstable 
fixed points

Stable area

Separatrix

ii) the particle amplitudes can be increased by use of a transverse excitation.
The stable area is kept fixed and the particle amplitudes increased, as in
RF-knockout [25] where a high-frequency damper is used near the betatron
resonance frequency to excite the beam. The machine optics is not changed
and this method allows very fine control of the spill flux, suitable for medical
machines;

iii) the particles can be accelerated into the resonance where the chromaticity
couples the momentum and the tune. A betatron core can be used [26] to
accelerate the beam smoothly through the resonance. As the momentum of
the beam changes, this is coupled via the chromaticity into a tune change.
This method provides stability and insensitivity to power supply ripple. An
alternative method (Constant Optics Slow Extraction) is to change the strengths
of all machine elements to achieve the same effect, where the beam momentum
remains fixed but the accelerator momentum changes [27];

iv) RF noise can be applied to gradually diffuse particles longitudinally, which
through the chromaticity are brought into resonance. This stochastic extraction
[28] allows extremely long and uniform spills, and again has the advantage of
leaving the machine lattice functions unchanged.

It should be noted that extraction can also be made using the second order
resonance, where octupole fields are used to define a stable area in phase space.
The amplitude growth with time is much faster, and the beam can be extracted in
several hundred turns.

The use of a physical septum means that losses and activation are key perfor-
mance aspects for slow extraction. Several interesting techniques exist to reduce
beam losses at extraction [29], including the use of scatterers to reduce the particle
density at the septum, multipoles to manipulate the separatrix density and techniques
to reduce the angular spread of the beam and reduce the effective septum width.
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6.3.7 Continuous Transfer Extraction

A frequent requirement in an accelerator complex is to fill a large circumference
machine with the contents of a smaller machine. One way of doing this is boxcar
stacking; another technique is continuous transfer [30], where the beam in the first
machine is extracted over a number of turns, like peeling the skin from an orange
in a continuous strip. The machine tune is brought near to the appropriate integer n,
where the beam will be extracted in n+1 turns. A fast closed bump is then applied
to the circulating beam with kickers to move the beam partly across a septum,
such that a fraction of the beam is cut and extracted. The machine tune rotates the
beam in phase space such that subsequent slices are extracted—when the nth turn
is extracted, the bump amplitude is increased to extract the remaining central part.
This process is of use where the injector can service other machines or experiments
while the receiving machine is accelerating the beam, since it minimises the time
spent filling. The disadvantage of the technique is that large beam losses occur at
the septum, with the transfer efficiency typically 85%. The transfer can be made
with a bunched beam, leaving space for the kicker rise time, but this means that the
receiving machine will need to capture a beam with strong intensity modulation.
Another feature of this extraction is that the extracted slices all have different
emittances, as the slices in phase space are all different.

6.3.8 Resonant Continuous Transfer Extraction

To reduce the beam losses from continuous transfer, a hybrid technique has
been developed and deployed called Multi-Turn Extraction [31] where non-linear
resonances are excited which define stable areas in phase space. These are populated
by the controlled crossing of a resonance, and the islands are then separated by
varying the multipole strength to provide a physical separation at the septum, to
reduce or avoid transverse losses. The beam needs to be bunched with a gap to avoid
losses during the kicker rise time. In addition to the lower losses, another advantage
of this technique is that the extracted islands all have the same emittance.

6.3.9 Other Injection and Extraction Techniques

More exotic injection and extraction techniques also exist as working systems or
concepts. These include radio-frequency stacking [32], pion-decay injection into
muon storage rings [33] and combined cooling and stacking [34]. Charge exchange
extraction [35] is used in cyclotrons, with a stripping foil, to convert for example
H− to p+, or H+

2 to H 2+
2 so that the beam is then deflected out of the accelerator.

Finally, very high energy particle extraction can be envisaged with a bent crystal
replacing the septum [36].



230 B. J. Holzer et al.

6.4 Concept of Luminosity

Werner Herr · Bernhard Holzer · Bruno Muratori

6.4.1 Introduction

In particle physics experiments the energy available for the production of new
effects is the most important parameter. Besides the energy the number of useful
interactions (events), is important. The quantity that measures the ability of a
particle accelerator to produce the required number of interactions is called the
luminosity (see Chap. 2) and is the proportionality factor between the number of
events per second dR/dt and the cross section σ p:

dR

dt
= L · σp (6.22)

The unit of the luminosity is therefore cm−2 s−1.
Here we will derive a general expression for the luminosity and give formulae for

basic cases. Additional complications such as crossing angle and offset collisions
are added to the calculation. Other effects such as the hourglass effect are estimated
from the generalized expression.

In the final section we will discuss the measurement and calibration of the
luminosity for both e+e− as well as hadron colliders.

6.4.2 Computation of Luminosity

In the case of two colliding bunches, both serve as “target” as well as “incoming”
beam at the same time. A schematic picture is shown in Fig. 6.18. The overlap
integral which is proportional to the luminosity L can be written as [37]:

L ∝ KN1N2 ·
∫ ∫ ∫ ∫ +∞

−∞
ρ1 (x, y, s,−s0) ρ2 (x, y, s, s0) dxdydsds0 (6.23)

Here ρ1(x, y, s, s0) and ρ2(x, y, s, s0) are the time dependent beam density distri-
bution functions and N1 and N2 the number of particles per bunch. We assume, that
the two bunches meet at s0 = 0 and s0 = c · t is used as the “time” variable. Because
the beams are moving against each other, we have to introduce the kinematic factor
[38]:

K =
√(−→ν 1 − −→ν 2

)2 − (−→ν 1 × −→ν 2
)2

/c2 (6.24)

http://dx.doi.org/10.1007/978-3-030-34245-6_2
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Fig. 6.18 Schematic view of a colliding beam interaction

This factor is needed to make the luminosity and therefore the cross section
relativistically invariant.

For the calculation we assume Gaussian profiles in all dimensions of the form:

ρiz(z) = 1

σz

√
2π

exp

(

− z2

2σ 2
z

)

where i = 1, 2, z = x, y (6.25)

in the transverse planes and

ρs (s ± s0) = 1

σs

√
2π

exp

(

− (s ± s0)
2

2σ 2
s

)

(6.26)

in the longitudinal plane.
We further assume that the distributions are independent in the three coordinates

and can be factorized. The integral (6.23) can then be evaluated. For the general
case of: σ 1x �= σ 2x, σ 1y �= σ 2y, but assuming approximately equal bunch lengths
σ 1s ≈ σ 2s we get the formula:

L = N1N2fc

2π

√
σ 2

1x + σ 2
2x

√
σ 2

2y + σ 2
2y

(6.27)

Where N1 and N2 are the bunch intensities and fc the repetition rate. In the case
of a circular collider with Nb bunches and a revolution frequency of frev, we have
fc = frev · Nb.

6.4.3 Luminosity with Correction Factors

The Eq. (6.26) requires correction factors when the beam do not fully overlap
(crossing angle and offset), the beam size varies in the longitudinal plane (hour
glass effect) or in the case of non-Gaussian beams.
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6.4.3.1 Effect of Crossing Angle and Transverse Offset

Here we give the correction to the luminosity calculation in the case where two
bunches do not collide exactly head-on, but with a crossing angle and/or transverse
offset. In that case the luminosity is reduced and we must apply a correction factor
to compute the correct value. For simplicity we assume crossing angle and offset
in the horizontal (x) plane, but this is not a restriction. The integration (6.23) can
be carried out by rotating the coordinate systems of the two beams each by half the
crossing angle [37] and can be simplified introducing the factors:

A = sin2 φ
2

σ 2
x

+ cos2 φ
2

σ 2
s

, B = (d2−d1) sin(φ/2)

2σ 2
x

, W = e
− 1

4σ2
x

(d2−d1)
2

(6.28)

S = 1
√

1 +
(

σs

σx
tan φ

2

)2
≈ 1

√

1 +
(

σs

σx

φ
2

)2
(6.29)

where �/2 is half the crossing angle and d1 and d2 are the transverse offsets of the
two beams (Fig. 6.19).

We can re-write the luminosity with three correction factors:

L = N1N2f Nb

4πσxσy

N1N2fNb

4πσxσy

· W · e
B2
A · S (6.30)

This factorization enlightens the different contributions and allows straightfor-
ward calculations. The last factor S is the luminosity reduction factor for a crossing
angle. One factor W reduces the luminosity in the presence of beam offsets and the

factor e
B2
A is only present when we have a crossing angle and offsets simultaneously

in the same plane. The formulae for the luminosity under very general conditions
can be found in [39]. A popular interpretation of this result is to consider it a
correction to the beam size and to introduce an “effective beam size” like:

σeff = σ/

√

1 +
(

σs

σ

φ

2

)2

(6.31)
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Fig. 6.19 Schematic view of a colliding beam interaction at a crossing angle
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Fig. 6.20 Scheme of crab crossing with transversely deflecting cavities

This equation is valid when σ z � σ . The effective beam size can then be used
in the standard formula for the beam size in the crossing plane. This concept of an
effective beam size is interesting because it also applies to the calculation of beam-
beam effects of bunched beams with a crossing angle [40, 41].

In the case of flat beams, (i.e. σ z  σ z) a more general expression has to be used,
(see e.g. [39]).

To avoid the loss of luminosity, the use of crab cavities is an option, where the
bunches are deflected transversely before and after the collision Fig. 6.20.

6.4.3.2 Hour Glass Effect

In a low-β region the β-function varies with the distance s to the minimum like:

β(s) = β∗
(

1 +
(

s

β∗

)2
)

(6.32)

For very small β∗ comparable to the bunch length, the β-function is not a constant
along the longitudinal dimension of the bunch. It cannot be considered a constant in
Eq. (6.23). It follows a parabola and rises very fast and can become very large for
small β∗ .

In our formulae we have to replace σ by σ (s) and get a more general expression
for the luminosity (assuming equal parameters in both beams, the most general
expression can be found in [39]):

L (σs)

L(0)
=

∫ +∞

−∞
1√
π

e−u2

√[

1 +
(

u
ux

)2
]

·
[

1 +
(

u
uy

)2
]du (6.33)
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Using the expressions: ux = β∗
x /σs and uy = β∗

y /σs

For the case of round beams it can be simplified and the integral becomes:

L (σs)

L(0)
=

∫ +∞

−∞
1√
π

e−u2

[

1 +
(

u
ux

)2
]du = √

π · ux · eu2
x · erfc (ux) (6.34)

Here erfc(u) is the complex error function. The hourglass effect depends strongly
on the relative value of β∗ and the bunch length σ s. For small β∗ the effect becomes
relevant since the beam size varies rapidly along the longitudinal bunch direction,
i.e. when s becomes comparable to the bunch length in Eq. (6.32). A loss of
luminosity according to Eq. (6.34) is the consequence.

6.4.3.3 Crabbed Waist Scheme

In the case of a large crossing angle, the collision point of particles is displaced.
Schematically this is shown in Figs. 6.21 and 6.22.

IP

CP

x

Fig. 6.21 Collision with large crossing angle and longitudinally displaced collison point

IP

x x
x

β
y

Fig. 6.22 Collision with large crossing angle and longitudinally displaced collison point. Shown
for three particles with different amplitudes
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Fig. 6.23 Collisions with different vertical β-functions
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x

Fig. 6.24 All collisions at a minimum of the vertical β-functions using a crabbed waist scheme

One possible consequence can be the coupling between the transverse and and
longitudinal plane. Such a coupling is particularly bad for flat beams since the
vertical beam size will increase significantly.

In Fig. 6.23 the vertical β-function is indicated and the result of this effect is that
the particles collide at positions with different vertical β-functions.

This can be mitigated [42] by making the vertical waist (βmin
y ) amplitude

dependent in the horizontal plane Fig. 6.24. All particle collide now at the minimum
of the vertical β-function.

It should be emphasized that the main purpose of such a scheme is not to reduce
a geometrical loss but to reduce the coupling. Therefore it is of interest only for flat
beams.

This scheme is established using two sextupoles.

6.4.4 Integrated Luminosity and Event Pile Up

The maximum luminosity, and therefore the instantaneous number of interactions
per second, is very important, but the final figure of merit is the so-called integrated
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luminosity:

Lint =
∫ T

0
L (

t ′
)
dt ′ (6.35)

because it directly relates to the number of observed events:

Lint · σp = number of events of interest (6.36)

The integral is taken over the sensitive time, i.e. excluding possible dead time.
The unit of the integrated luminosity is cm−2 and often expressed in inverse barn
(1 barn−1 = 1024 cm−2).

Another important parameter for a beam with high luminosity and bunched
beams are the number of collisions per bunch crossing, the so-called pile up. In
particular for collisions with a large cross section this can become a problem. In
the case of the LHC, bunch crossings occur every 25 ns and the expected pile up is
more than 20 for proton-proton collisions. The challenge is to maximise the useful
luminosity while keeping the pile up to a level that can be handled by the particle
detectors.

6.4.5 Measurement and Calibration of Luminosity

To obtain the exact integrated luminosity, it has to be recorded continuously. It is
rather straightforward to obtain a counting rate directly proportional to the total
interaction rate dR/dt. This relative signal has to be calibrated to deliver the absolute
luminosity. We have already seen some effects that affect the absolute luminosity
and therefore to a large extent the luminosity measurement. In particular the
crossing angle and the luminous region are of importance since they have immediate
implications for the geometrical acceptance of the instruments.

In principle one can determine the absolute luminosity when all relevant beam
parameters are known, i.e. the bunch intensities, beam sizes (r.m.s. in case of
unknown beam profiles) and the exact geometry. However the precise measurement
of beam sizes is a challenge, in particular for hadron colliders when a non-
destructive measurement is required. When the energy spread in the beams is large
(e.g. some e+e− colliders), a residual dispersion at the interaction point increases
significantly the beam size and must be included.

There exist other methods which relate the counting rate to well known processes
which can be used for calibration. We shall discuss several methods for both, lepton
and hadron colliders.
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Fig. 6.25 Principle of luminosity measurement using Bhabha scattering for e+e− colliders

6.4.6 Absolute Luminosity: Lepton Colliders

Once the relative luminosity is known, a very precise method is to compare the
counting rate to well known and calculable processes. In case of e+e− colliders
these are electromagnetic processes such as elastic scattering (Bhabha scattering).
The principle is shown in Fig. 6.25. Particle detectors are used to measure the
trajectories at very small angles and with a coincidence of particles on both sides of
the interaction point. For a precise measurement one has to go to very small angles
since the elastic cross section σ el has a strong dependence on the scattering angle
(σ el ∝ �−3).

Furthermore, the cross section diminishes rapidly with increasing energy (σel ∝
1

E2 ) and the result may be small counting rates. At LEP energies with L = 1030

cm−2 s−1 one can expect only about 25 Hz for the counting rate. Background from
other processes can become problematic when the signal is small.

6.4.7 Absolute Luminosity: Hadron Colliders

For hadron colliders two types of calibration have become part of regular operation,
the measurement of the beam size by scanning the beam and the calibration with the
cross section for small angle scattering. The determination of the bunch intensities
is usually easier, although non-trivial in the case of a collider with several thousand
bunches.

6.4.7.1 Measurement by Profile Monitors and Beam Displacement

Typical profile measurement devices are wire scanners where a thin wire is moved
through the beam and the interaction of the beam with the wire gives the signal. For
high intensity hadron beams this has however limitations. Non-destructive devices
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Fig. 6.26 Principle of luminosity measurement using transverse beam displacement

such as synchrotron light monitors are available but the emitted light from hadrons
is often not sufficient for a precise measurement.

An alternative is to measure the beam size by displacing the two beams against
each other. The relative luminosity reduction due to this offset can be measured and
is described by the formula (6.28) developped earlier:

L(d)/L0 W = e
− d2

4σ2 (6.37)

where d is the separation between the beams and the measurement of the luminosity
ratio is a direct measurement of W. This method was already used in the CERN
Intersection Storage Rings (ISR) and known as “van der Meer scan”.

The expected counting rate of such a scan is shown in Fig. 6.26. A fit to the
above formula gives the beam size. A drawback of this method is the distortion of
the beam optics in case of very strong beam-beam interactions [40]. This effect has
to be evaluated carefully.

6.4.7.2 Absolute Measurement with Optical Theorem

This method is similar to the measurement of Bhabha scattering for e+e− colliders
but requires dedicated experiments and often special machine conditions.

The total elastic and inelastic counting rate is related to the luminosity and the
total cross section (elastic and inelastic) by the expression:

σtot · L = Ninel + Nel (Total counting rate) (6.38)
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The key to this method is that the total cross section is related to the elastic cross
section for small values of the momentum transfer t by the so-called optical theorem
[43]:

lim
t→0

dσel

dt
=

(
1 + ρ2

) σ 2
tot

16π
= 1

L
dNel

dt

∣
∣
∣
∣
t=0

(6.39)

Therefore the luminosity can in principle be calculated directly from experimen-
tal rates through:

L =
(
1 + ρ2

)

16π

(Ninel + Nel)
2

(dNel/dt)t=0
(6.40)

All counting rates, the total number of events Ninel + Nel and the differential
elastic counting rate dNel/dt at small t have to be measured with high precision. This
requires a very good detector coverage of the whole space (4π) for the inelastic rate
and the possibility to measure to very small values of t.

A slightly modified version of the above uses the Coulomb scattering amplitude
which can be precisely calculated. The elastic scattering amplitude is a superposition
of the strong (fs) and Coulomb (fc) amplitudes, the latter dominates at small t. We
can re-write the differential elastic cross section dσel

dt
:

lim
t→0

dσel
dt

= 1
L

dNel
dt

∣
∣
∣
∣
t=0

= π |fc + fs |2 � π | 2αem−t + σtot
4π

(ρ + i) eB t
2

∣
∣
∣
∣
2 � 4πα2

em

t2

∣
∣
∣
∣|t |→0
(6.41)

If the differential cross section is measured over a large enough range, the
unknown parameters σ tot, ρ, B and L can be determined by a fit. A measurement
[44–46] together with some crude fits is shown in Fig. 6.27 to demonstrate the
principle. The advantage of this method is that it can be performed measuring only
elastic scattering without the need of a full coverage to measure Ninel. It is therefore
a good way to measure the luminosity (and total cross section σ tot and interference
parameter ρ!) although the previous method is of more practical importance for
regular use.

The measurement of the Coulomb amplitude usually requires dedicated exper-
iments with detectors very close to the beam (e.g. with so-called Roman Pots)
and therefore special parameters such as reduced intensity and zero crossing angle.
Furthermore, in order to measure very small angle scattering, one has to reduce
the divergence in the beam itself (σ ′ = √

ε/β). For that purpose special running
conditions with a high β∗ at the collision point are often needed (β∗> 1000 m) [45].
The precision of such a measurement is however as good as a few percent.
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Fig. 6.27 Principle of
luminosity measurement
using optical theorem in
proton proton (antiproton)
collisions
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6.4.8 Luminosity in Linear Colliders

In linear colliders the beams collide only once and to get a high luminosity a very
small beam size and therefore small β at the collision point are required.

This implies additional effects such a beam disruption and an enhanced luminos-
ity due to the so-called pinch effect.

Due to very strong field of the quadrupoles of the final focusing, significant
synchrotron radiation is produced.

6.4.8.1 Disruption and Luminosity Enhancement Factor

The basic formula for the luminosity of a linear collider is shown in Eq. (6.42).

L = N2 frep nb

4πσx σy

→ L = HD · N2 frep nb

4πσx σy

(6.42)

The revolution frequency has to be reaplced by the repetition rate frep of the
colliding bunches.
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The luminosity is increased by the enhancement factor HD which takes into
account the reduction of the nominal beam size by the disruptive field (pinch
effects).

This enhancement foctor is related to the beam disruption parameter

Dx,y = 2reNσz

γ σx,y

(
σx + σy

) (6.43)

For weak disruption (D 1) and round beams the enhancement factor can be
written as:

HD = 1 + 2

3
√

π
D + O

(
D2

)
(6.44)

When the disruption is strong or for flat beams, computer simulations are
necessary.

6.4.8.2 Beamstrahlung

The strong synchrotron radiation (beamstrahlung) has two main effects:

– Spread of the centre of mass energy.
– Pair creation and background in the detectors.

It is parametrized by the parameter Y which can be written as the mean field
strength in the rest frame, normalized to the critical field Bc:

Y = < E + B >

Bc

≈ 5

6

r2
e γN

ασz

(
σx + σy

) (6.45)

Bc = m2c3

e�
≈ 4.4 × 1013G (6.46)

6.5 Synchrotron Radiation and Damping

L. Rivkin

6.5.1 Basic Properties of Synchrotron Radiation

Charged particles radiate when they are deflected in the magnetic field [47]
(transverse acceleration) [see also Sect. 11.1 for a more detailed treatment]. In the

http://dx.doi.org/10.1007/978-3-030-34245-6_11
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ultra-relativistic case, when the particle speed is very close to the speed of light,
β ≈ c, most of the radiation is emitted in the forward direction [48] into a cone
centred on the tangent to the trajectory and with an opening angle of 1/γ , where γ

is the Lorentz factor (since for a few GeV electron or a few TeV proton, γ ≈ 1000,
the photon emission angles are within a milliradian of the tangent to the trajectory).

The power emitted by a particle is proportional to the square of its energy E and
to the square of the deflecting magnetic field B:

PSR ∝ E2B2, (6.47)

and in terms of Lorentz factor γ and the local bending radius ρ can be written as
follows:

PSR = 2

3
α �c2 γ 4

ρ2 , (6.48)

where α is the fine-structure constant and the Plank’s constant is given in a
convenient conversion constant:

α = 1

137
and �c = 197 MeV fm. (6.49)

The emitted power is a very steep function of both the particle energy and particle
mass, being proportional to the fourth power of γ .

Integrating the above expression around the machine we obtain the amount of
energy lost per turn:

U0 = 4π

3
α �c

γ 4

ρ
. (6.50)

The emitted radiation spectrum consists of harmonics of the revolution frequency
and peaks near the so-called critical frequency or critical photon energy. It is defined
such that exactly half of the radiated power is emitted below it:

εc = 2

3
�c

γ 3

ρ
. (6.51)

On the average a particle then emits nc ≈ 2παγ photons per turn.

6.5.2 Radiation Damping

In a storage ring the steady loss of energy to synchrotron radiation is compensated in
the RF cavities, where the particle receives each turn the average amount of energy



6 Design and Principles of Synchrotrons and Circular Colliders 243

lost. The energy lost per turn is normally a small fraction of the total particle energy,
typically of the order of one part per thousand.

Transverse Oscillations
Since the radiation is emitted along the tangent to the trajectory, only the amplitude
of the momentum changes. As the RF cavities increase the longitudinal component
of the momentum only, the transverse component is damped exponentially with the
damping rate of the order of U0 per revolution time. A typical transverse damping
time corresponds simply to the number of turns it would take to lose the amount of
energy equal to the particle energy. The damping times are very fast, in case of a
few GeV electron ring being on the order of a few milliseconds.

A⊥ = A0e
− t

τ , where
1

τ
= U0

2ET0
. (6.52)

In a given storage ring the damping time is inversely proportional to the cube of
the particle energy.

Longitudinal or Synchrotron Oscillations
Synchrotron oscillations are damped because the energy loss per turn is a quadratic
function of the particle’s energy. The damping rate is typically twice the rate for
transverse oscillations.

Damping Partition Numbers and Robinson Theorem
For particles that emit synchrotron radiation the dynamics is characterized by
the damping of particle oscillations in all three degrees of freedom. In fact, the
total amount of damping (Robinson theorem [49]), i.e. the sum of the damping
decrements depends only on the particle energy and the emitted synchrotron
radiation power:

1

τx

+ 1

τy

+ 1

τε

= 2U0

ET0
= U0

2ET0

(
Jx + Jy + Jε

)
(6.53)

where we have introduced the usual notation of damping partition numbers that
show how the total amount of damping in the system is distributed among the three
degrees of freedom. A typical set of the damping partition numbers is (1,1,2) and
their sum is, according to the Robinson theorem, a constant.

Jx + Jy + Jε = 4. (6.54)

Adjustment of Damping Rates
The partition numbers can differ from the above values, while their sum remains
a constant. In fact, under certain circumstances, the motion can become “anti-
damped”, i.e. the damping time can become negative, leading to an exponential
growth of the oscillations amplitudes. From a more detailed analysis of damping
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rates [50] the damping time can be written as

1
τε

= U0
2ET0

(2 + D) , and 1
τx

= U0
2ET0

(1 − D) , where D ≡
∮

D
ρ

(
2k+ 1

ρ2

)
ds

∮
ds

ρ2
.

(6.55)

The constant introduced above is an integral of the dispersion function D and the
magnetic guide field functions, i.e. bending radius and gradient around the ring and
is independent of the particle energy. It deviates substantially from zero only when
a particle encounters combined function elements, i.e. where the product of the field
gradient and the curvature is non-zero. The damping partition numbers then are:

Jx = 1 − D, Jε = 2 + D, Jx + Jε = 3. (6.56)

The vertical damping partition number is usually unchanged as the vertical
dispersion is zero in storage rings that are built in one (horizontal) plane.

The amount of damping can be repartitioned between the horizontal and energy-
time oscillations by altering the value of the D constant [50]. This can be
achieved by either using combined function magnetic elements in the lattice, or
by introducing a special combined function wiggler magnet (so-called Robinson
wiggler). Values of horizontal partition number as high as 2.5 have been obtained
that way. Values of D > 1 lead to anti-damping of horizontal betatron oscillations,
while for D < −2 the synchrotron oscillations become unstable.

6.6 Computer Codes for Beam Dynamics

Werner Herr

6.6.1 Introduction

The design and operation of an accelerator today is unthinkable without the help
of computer codes, the reason being large, complex structures (like in the case of
big accelerators and colliders, e.g. LHC) or complications in the beam dynamics of
small or special purpose machines (e.g. FFAG). Their complexity does not allow
the computation with pencil and paper. Here we address only the codes for beam
dynamics, i.e. special codes for the design of accelerators components such as
magnets or RF equipment will not be treated but can be found in the literature.
The main fields where beam dynamics codes are essential are:

• Determination of parameters and the design of beam lines and accelerators
• Evaluation of performance
• Control, machine protection and operation
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Different classes of codes are used in these fields which also resemble the life
cycle of an accelerator.

Given the scope of this handbook and the rapid evolution of computer codes and
software techniques, we do not attempt to provide a list of existing codes, but rather
will describe the main features, techniques and applications of the different types of
codes. Details and access to existing codes can be found in computer code libraries
on the internet. A supported library is provided by the Los Alamos Accelerator Code
Group (LAACG) [51], another one supported by Astec (UK) [52]. It contains links
to popular and frequently used codes from many laboratories and institutions.

6.6.2 Classes of Beam Dynamics Codes

The different classes of codes can be divided according to their application:

• General purpose optics codes
• Beam dynamics of single particles
• Beam dynamics of multi particles

Optics codes are used mainly in the initial design phase of an accelerator, rings
as well as beam lines and linear accelerators. The evaluation of the performance
(stability etc.) is done using codes to simulate the beam dynamics of single particles
as well as ensembles of particles and their interaction with the environment or other
particles in the beam(s).

6.6.3 Optics Codes

A large group of computer codes for beam dynamics are used to design the lattice
of an accelerator or beam line and to compute and optimize the optical parameters.
The range of available codes extends from small codes for pedagogical purpose to
large general purpose programs. Such codes can have easily 100,000 lines of codes
or more. The accelerator physics is described in the existing literature [53] and in
this handbook. The main applications of general purpose optics codes are:

• Determination of main parameters and the computation of linear and non-linear
optics. This implies to find periodic solutions for the optical parameters and the
closed orbit.

• Parameter matching (optical/geometrical) and lattice optimization, i.e. the prop-
erties of elements are varied until the optical functions assume their desired
values.

• Simulation of imperfections and algorithms for their corrections.
• Simulation of synchrotron radiation and evaluation of radiation integrals to derive

estimates for parameters (e.g. equilibrium emittances) in lepton machines.
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The result should be a consistent set of parameters fulfilling the design require-
ments. They are the basis for the design of machine elements.

Depending on the complexity of the problem, different techniques are in use
for optics codes. The majority of these codes rely on the description of machine
elements using maps, which can be of higher order for non-linear elements. In
the simplest case for the description of linear machines the maps become matrices
and are therefore often referred to as “matrix codes” [54]). The concatenation of
the matrices provide a matrix for the entire ring and its analysis gives the optical
parameters, closed orbit etc.

Another technique is to follow the particles through the accelerator, i.e. integrat-
ing the equation of motion in the electromagnetic fields of the machine elements.
The analysis of the results of these “tracking programs” provides the required
parameters and information about the stability of the machine (for some details see
[54]).

Dealing with complex machines, other considerations may become important
such as e.g.:

• Definition of an input language which can be used by other programs. This input
language defines the sequence of elements, i.e. the ring or a beam line, as well
as the properties of the elements such as e.g. their types (dipole, quadrupole,..),
lengths and strengths.

• For large machines with a large number of elements the interface to a data base
may be required. Large machines such as the LHC or future colliders have several
thousand elements.

• An interface to the control system for on-line modelling is desirable

6.6.4 Single Particle Tracking Codes

To evaluate the performance of accelerators, in particular multi pass, i.e. circular
machines, one has to deal with complex iterative processes. The standard pertur-
bation theories can fail to correctly describe the behaviour beyond leading orders.
Single particle tracking codes are successfully used when analytical methods fail
to describe the effect of non-linear forces on the stability of the particles. Many
tracking codes have been developed together with the necessary tools to analyse
the results and from the simulation point of view the treatment of non-linear effects
is well established. Conceptually, in a tracking code the equation of motion of a
particle in an accelerator element is solved and the phase space coordinates of the
particle are followed through all elements of the accelerator or beam line. To obtain
the desired information, it may be necessary to repeat this process for up to 107 turns
which require appropriate algorithms and techniques to avoid numerical problems.
Similar problems exist and some of these techniques have been developped for
celestial mechanics. In order to draw conclusions from the tracking data it is
necessary to provide tools to allow a qualitative and quantitative understanding of
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the results [55]. The outcome of the analysis allows to answer the most important
questions for the design of a machine such as:

• Stability of particle motion
• Dynamic aperture
• Specifications for the properties of machine elements
• Optimization or the particle stability

In general the results of these studies are used in an iterative procedure to improve
and optimize the design of the machine.

6.6.4.1 Techniques

A requirement for all techniques employed for particle tracking is that the associated
maps must be symplectic. To solve the equation of motion, most programs use
explicit canonical integration techniques, e.g.:

• Thin lens tracking (most common since they are automatically symplectic and
fast)

• Ray tracing (accuracy by slicing into large number of steps, but time consuming)
• Symplectic integration (see [54] and references therein)

6.6.4.2 Analysis of Tracking Data

Some of the analysis techniques are discussed in the chapter on non-linear dynamics
in this handbook in more detail and some are mentioned here for completeness:

• Taylor maps using Truncated Power Series Algebra (TPSA, [54])
• Lie algebraic maps [54, 56]
• Normal form analysis

The results of the analysis include non-linear resonances and distortion, non-
linear tuneshift with amplitude and an evaluation of the long term stability. In all
cases the interpretation of the results requires a careful analysis of the range where
the data is meaningful to avoid wrong conclusions. Typical problems are numerical
effects which can lead to unphysical features.

6.6.5 Multi Particle Tracking Codes

Multi particle tracking codes are used when we are concerned with the behaviour of
an ensemble of particle. The calculations largely rely on techniques developped for
single particle dynamics. Typical applications are the simulation of:

• Space charge effects, mutual interaction of particles within the same beam.
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• Collective instabilities and interaction with environment (impedance)
• Beam-beam effects in case of particle colliders, i.e. the interactions with the fields

produced by the counter-rotating beam.
• Electron cloud effects, i.e. secondary electron production by synchrotron radia-

tion

A key issue for multi particle simulation codes is the evaluation of the electro-
magnetic fields produced by the beams or the environment. New techniques and the
availability of parallel computing facilities have allowed vast progress in this field
in the last 20 years.

6.6.6 Machine Protection

For large energy and high intensity machines the protection of the machine elements
becomes an important part of the design. Simulation codes have to include the
interaction of particles with matter.

6.7 Electron-Positron Circular Colliders

M. E. Biagini · J. M. Jowett

Electron-positron (e+e−) collider rings have been a mainstay of both discovery
and precision physics for half a century: discovery, since the simple initial state
can create any particle coupled to the electromagnetic field; precision, from the
combination of high luminosity and large cross-sections at a rich spectrum of
resonances up to

√
s � 200GeV. While the fundamentals of these machines have

remained in essence the same, the technology has matured to the point where
luminosities of the latest “factories” exceed what was thought possible in the 1970s
and early 1980s by 2–3 orders of magnitude.

These colliders are based on the principle of the synchrotron (Sect. 1.2.6)
although the name is barely appropriate for those which enjoy the advantage of
full-energy injection. Beams are necessarily bunched by an RF system, which must
provide sufficient voltage to compensate the energy lost by synchrotron radiation.

6.7.1 Physics of Electron-Positron Rings

Consider an ideal storage ring constructed with bending and focussing magnets
such that a particle of charge e and constant momentum p0 could circulate on a
stable closed orbit, Oxy, in transverse phase space (x, px, y, py), with local radius of

http://dx.doi.org/10.1007/978-3-030-34245-6_1
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curvature ρ(s). The orbits and optical functions (βx, y(s), dispersion Dx, y(s), etc.,
Chap. 2) of such hypothetical, non-radiating particles are a construct useful in the
description of e± dynamics. Real, radiating, e+ of energy E = √

p2c2 + m2c4 �
pc � p0c can circulate in a phase-space neighbourhood of Oxy provided RF cavities
of a proper frequency and sufficient voltage are added to compensate the average
radiative energy loss and provide longitudinal phase stability (e− can circulate in
the opposite direction). In a semi-classical picture [49, 53, 57, 58], e± emit photons
at random times according to the classical synchrotron radiation spectrum [47,
48] and make stochastic transitions between betatron trajectories corresponding to
their instantaneous momenta. This picture can be understood [59] by recognising
that a storage ring differs from an atom in that changes, 	n = n u/E, in orbital
quantum number, n, corresponding to typical photon emissions of energy u, satisfy
n � 	n � 1.

There is no deterministic closed orbit but the full 6D central orbit, Oxyz of a bunch
of many electrons normally coincides with the attractive stable orbit calculated by
averaging over photon emissions to include only the classical deterministic part
of the synchrotron radiation (this includes the stable phase with respect to the RF
system). If the domain of attraction of this orbit is large enough, the beam can have
a good lifetime (Eq. 6.60 below). Because of the energy variation round the ring
(localised RF cavities giving “energy-sawtooth”), the transverse projection of Oxyz

does not coincide with Oxy. Figure 6.28 shows an example.
Neglecting intensity-dependent phenomena, the equilibrium dimensions of the

beam are macroscopic quantum effects determined by the balance between radiation
damping (the dependence of the classical radiation lost in magnetic fields on the
energy, [49, 57, 58] and Sect. 6.5), and the quantum fluctuations (discrete photon
nature) of the synchrotron radiation [57, 58]. Generally, the effects are linear enough
that the core of the distribution is gaussian in each normal mode coordinate.

The mean-square fractional energy spread in the beam is

σ 2
E

E2 = 55

32
√

3

�

mc

(
E0

mc2

)2 ∮ ∣
∣G3

∣
∣ ds

Jz

∮
G2ds

� 1

2
γ 2 λe

ρ0
, (6.57)

where G = eB/p0c = ρ−1 is the inverse of the local bending radius of Oxy,
∮ · · · ds

denotes an integral around Oxy, Jz is the longitudinal damping partition number
(Sect. 6.5), λe = �/mc is the reduced Compton wavelength of the electron and
the last equality holds to the extent that G(s) is zero or has a constant value 1/ρ0
(isomagnetic ring).

Economic arguments, balancing construction cost against power consumption,
are sometimes invoked to derive a scaling of radius with energy squared but this
only applies for the highest energy rings with a few bunches (see [60] for the scaling
of design parameters). More generally, the chromaticity correction and dynamic
aperture constraints (Sect. 3.4) in collider rings require 6σE/E � 1%, so imposing
a minimum radius ρ/m ≈ 0.26(E0/GeV)2. The spread in centre-of-mass energies of
collisions σ√

s = √
2σE (if Dx = 0 at the collision point) should also be kept small.

http://dx.doi.org/10.1007/978-3-030-34245-6_2
http://dx.doi.org/10.1007/978-3-030-34245-6_3
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Fig. 6.28 The cumulative RF voltage (black dashed line) around the ring and four components
of the ideal six-dimensional closed orbit of the e+ beam in CERN’s LEP collider, at a central
beam energy of 94 GeV in an optics used in 1998. The fractional deviation of the beam energy
on the closed orbit ptc (red) exhibits the “energy sawtooth” due to the energy lost by synchrotron
radiation in the eight arcs and its replenishment by RF systems located around the experimental
interaction points. The conjugate time-lag coordinate tc (green) reflects the corresponding path-
length changes. The horizontal closed orbit xc = Dxptc + xcB (blue) is a combination of the local
dispersion orbit and a forced betatron oscillation and its conjugate pxc. Without radiation, these
four orbit components would be zero. LEP was a single ring collider with e+ and e− beams of
similar intensity circulating in the same beam pipe. In normal operation, the average xc for the two
beams, which were approximately equal and opposite, x+

c � −x−
c , was measured and corrected to

the central trajectory. At higher energies, these orbits could be separated by a few cm near the RF
systems

The equilibrium horizontal emittance for flat rings without betatron coupling is

εx = 55

32
√

3

�

mc

(
E0

mc2

)2 ∮ ∣
∣HG3

∣
∣ ds

Jx

∮
G2ds

, (6.58)

where H = βxDx
2 + 2αxDxD′

x + γxD
′2
x is a quadratic form constructed from the

dispersion and betatron matrix (Sect. 2.1). Together, Eqs. (6.57) and (6.58) give the
mean-square equilibrium beam size at any point in the ring

σ 2
x =

〈(
xβ + Dx (E − E0) /E0

)2
〉
= βxεx + D2

x(σE/E)2. (6.59)

The vertical emittance is usually smaller and due to some coupling of horizontal
betatron motion into the vertical and vertical dispersion from orbit errors or other
vertical bends. More general formalisms [53, 61] describe the radiation-generated
emittances for the eigenmodes of linear oscillations about general six-dimensional
central orbits.

A true equilibrium (strictly, stationary) state does not exist because the quantum
fluctuations lead to loss from the tails of the beam with lifetimes for the three modes

http://dx.doi.org/10.1007/978-3-030-34245-6_2
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given by

τq,u = 1

2
τu

eξu

ξu

, where ξu = A2
u

2σ 2
u

, for u = x, y, z, ξu � 20, (6.60)

where the τ u are the radiation damping times and Au are appropriate acceptances
[53, 57, 58]. For the synchrotron mode, Az is the RF bucket half-height

(
Az

E0

)2

= 2U0

π |η|hRFE0

[√
(eV RF/U0)

2 − 1 − arccos (U0/eV RF)

]

. (6.61)

For adequate lifetime at small intensity, the mechanical and dynamic apertures
and RF voltage must be large enough.

The bunch length is given by σ z = c|η|σE/(ωsE0) where ωs is the angular
synchrotron frequency and η � αc the frequency slip factor ([53], Sects. 2.5.2 and
2.5.3).

6.7.2 Design of Colliders

Colliders are designed from the interaction point outwards. The classical design is
based on head-on collisions of flat beams. However a number of other configurations
have been explored and the most promising among them is described in the
following section. In the classical scheme, luminosity (Sect. 6.4) is maximised
by achieving very flat beams, κ = εy/εx  1; we consider only beams of equal
energy, size and single bunch population, Nb, colliding head-on, with σ ∗

y  β∗
y ;

for generalisations see [53]. The beam-beam effect (Sect. 4.6.1) generally imposes
maximum attainable values on the horizontal and vertical beam-beam parameters

ξx,y = reNbβ
∗
x,y

2π
(
E0/mc2

)
σ ∗

x,y

(
σ ∗

x + σ ∗
y

) , (6.62)

where re is the electron classical radius, β∗
x,y and σ ∗

x,y,z are the optical functions and
beam sizes at the collision point. Typically, one finds maxξ y = 0.03 − 0.1 with the
highest values attained when the machine is very well corrected (favourable tunes,
central orbits close to design, minimised vertical dispersion) and when radiation
damping is strong. Then the luminosity (Sect. 6.4) can be expressed as

L = fcNb

2re

(
E0

mc2

)
(1 + κ) ξy

β∗
y

, (6.63)

where fc is the frequency at which identical bunches collide; in the simplest case
fc = kbf0 where kb is the number of bunches per beam.

http://dx.doi.org/10.1007/978-3-030-34245-6_2
http://dx.doi.org/10.1007/978-3-030-34245-6_2
http://dx.doi.org/10.1007/978-3-030-34245-6_4
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The number of bunches in a single-ring collider is limited by the possibilities
for separating the opposing beams at unwanted encounters, e.g., by local or long-
range (“pretzel scheme”) electrostatic orbit bumps [53]. Collective effects limiting
the single-bunch intensity (bunch-lengthening, transverse mode-coupling, see Chap.
4) are a major concern. In recent double-ring colliders, many more bunches can be
stored. A crossing angle at the collision point separates the beams at encounters
in the adjacent common section of the beam pipe. In recent years, the highest
luminosity collider designs have adopted a new scheme described in the following
section.

Multi-bunch collective effects and other limits related to total beam current (e.g.,
component heating by wakefields or synchrotron radiation, beam-loading, electron-
cloud, ion-trapping [53]) tend to dominate. The impedance and surface properties
of the vacuum chamber are critical.

Integrated luminosity can be further maximised in moderate energy rings for
which a full-energy injector is available by topping up the intensity of the stored
beam rather than dumping and refilling. The static magnetic configuration (no ramp
and squeeze cycle) simplifies operation dramatically.

The arcs of collider rings are usually composed of FODO cells whose length and
phase advance determine the emittance through Eq. (6.58). To minimise radiation
power, the bending magnets are made as long as possible. In the highest energy
rings, the quadrupoles must also be lengthened.

Low-β insertions (Sect. 6.2.1) provide small values of β∗
y at the interaction

point(s) of the experiment(s) in long straight sections. These can also accommodate
the accelerating cavities of the RF system, beam instrumentation and wiggler
magnets and are connected to the arcs via dispersion suppressors.

Wiggler magnets modify the radiation damping, bunch length and/or emittance
by contributing additional terms [53] with large |G| to the integrals in Eqs. (6.57) and
(6.58), so providing additional flexibility to maximise performance (e.g., at lower
energy).

Sextupoles incorporated in the arcs must correct the large chromatic aberrations
generated in the low-β quadrupoles while preserving adequate dynamic aperture
(Sect. 3.4.4).

Many variations on this classical e+e− collider design are possible with new
interaction region concepts showing promise (Sect. 6.4) in overcoming the need for
ever-increasing beam current and ever-shorter bunches.

At higher intensities, phenomena such as the Touschek effect and intra-beam
scattering [53], sometimes in combination with non-linear single particle dynamics
or beam-beam effects, can reduce the lifetime below the values implied by Eq.
(6.60); see Chap. 3 and Sect. 4.6.

http://dx.doi.org/10.1007/978-3-030-34245-6_4
http://dx.doi.org/10.1007/978-3-030-34245-6_6
http://dx.doi.org/10.1007/978-3-030-34245-6_3
http://dx.doi.org/10.1007/978-3-030-34245-6_3
http://dx.doi.org/10.1007/978-3-030-34245-6_4
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6.7.3 Large Piwinski Angle and Crab Waist Collision Scheme

The need for precision measurements of rare decay modes with small cross sections
at e+e− factories has driven requirements on peak luminosity to unprecedented
levels. Conventional collision schemes, see Eq. (6.63), are based on pushing up
the beam currents, lowering the β∗

y , and increasing the beam emittance so as not to
exceed the beam-beam tune-shift limits. Passing from single to double ring colliders
allowed the number of bunches to be increased considerably. However in order
to avoid luminosity reduction due to parasitic (or long-range) bunch encounters
near the collision point, beams had to be collided with a small horizontal crossing
angle rather than head-on. However, this approach has come to a dead end since
high currents result in high power losses, beam instabilities and increased power
consumption.

Because of the parabolic variation of βy(s) = β∗
y + s2/β∗

y in the vicinity
of the interaction point (IP), the longitudinal region in which individual particle
collisions occur will include places where the effective βy(s) >>β∗

y at the IP, and
will therefore contribute less to the luminosity. This so-called hour-glass effect
imposes a condition on the bunch-length: σ z � ßy(s). Unfortunately, shortening the
bunch length is costly since it requires high voltage in the RF cavities, can excite
collective instabilities, induce higher-order mode (HOM) heating in the beam pipe,
and lead to coherent synchrotron radiation emission, which in turn deteriorates the
bunch shape. On the other hand, increasing the bunch current leads to coupled bunch
instabilities, HOM heating of the beam pipe, and higher wall-plug power.

A solution to these problems came with the idea of a new collision scheme, called
“Large Piwinski Angle and Crab Waist Sextupoles” (LPA&CW), by P. Raimondi in
2006 [62]. This scheme has two main ingredients:

1. A large horizontal crossing angle at the IP, combined with very small horizontal
beam size, resulting in a large Piwinski angle;

2. a pair of sextupoles, each placed on one side of the IP at a specific betatron phase
from it.

The Piwinski angle is defined as:

� = σz tan (θ)

σx

≈ θ
σz

σx

. (6.64)

Consider two bunches with RMS beam size σ x and bunch length σ x, colliding
at a horizontal crossing angle 2θ . For flat beams colliding at a small crossing angle
θ  1 and large Piwinski angle � � 1, the luminosity L and the tune-shifts scale
as [63]:

L ∝ Nξy

β∗
y

(6.65)
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ξy ∝ N

2θσ z

√
β∗

y /εy (6.66)

ξx ∝ N

(2θσz)
2

(6.67)

In the LPA scheme the Piwinski angle is increased by decreasing σ x and
increasing θ . The most relevant consequence is that the overlap area of the two
colliding beams is now reduced, since it is proportional to σ x/θ . As a plus, as can be
seen from Eq. (6.67), the horizontal tune shift in this case drops like (2θσ z)2, so the
beam-beam interaction can be considered as one-dimensional and only the vertical
plane is relevant.

Now, the vertical β∗
y function at the IP can be decreased, as much as the focussing

magnet technology allows, to be comparable to the overlap area size that, in this
case, is smaller than the bunch length. In this case that is much smaller the bunch
length, so relaxing the problems of HOM heating, coherent synchrotron radiation
and excessive power consumption:

β∗
y ≈ σx

2θ
 σz (6.68)

This scheme has several advantages:

• a smaller spot size at the IP, leading to higher luminosity,
• a reduction of the vertical tune-shift parameter,
• the mitigation of synchro-betatron resonances.

Long range beam-beam interactions no longer limit the maximum achievable
luminosity when the distance between bunches is short. These parasitic crossings
become negligible because of the larger crossing angle and the smaller horizontal
beam size. The separation at each encounter is larger in terms of σ x.

However the large Piwinski angle itself may introduce new beam-beam reso-
nances which can limit the maximum achievable tune shifts. The second ingredient
of the LPA&CW scheme, the pair of Crab Waist sextupoles, is designed to solve
this problem. The CW transformation causes the horizontal oscillations to modulate
the vertical motion modulation and thereby suppresses the betatron and synchro-
betatron resonances. The CW scheme is realised by installing a couple of sextupole
magnets on the two sides of the IP, preferably in a high β and zero dispersion region.
To provide the exact compensation the sextupoles be at π horizontal and a π /2
vertical betatron phase advance from the IP.

The CW transformation can be described by the Hamiltonian:

H = H0 + 1

2θ
xp2

y (6.69)

where H0 is the Hamiltonian of the particle’s motion without the CW, x is the
horizontal particle coordinate and py the vertical momentum. The effect of the CW
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Fig. 6.29 Crab Waist collision scheme

transformation is a vertical betatron function twist according to:

βy = β∗
y + (s − x/2θ)2

β∗
y

(6.70)

In this case, the βy waist of one beam is twisted to be oriented along the central
trajectory of the other beam. As a consequence, all particles, independently of
their x position, collide at the minimum βy spot of both beams, with an increase
of few percent in the geometric luminosity due to the βy redistribution along the
overlapping beams area. A sketch of this shown in Fig. 6.29.

However the main CW effect is to suppress the betatron and synchro-betatron
resonances which would arise due to the vertical motion modulation induced by
the horizontal oscillations. This increases the space for the working betatron tunes
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of the collider. Moreover beam-beam simulations showed that beam tails are very
much reduced and the beam-beam blow-up is also suppressed.

The CW sextupoles strength should satisfy the following condition:

K = 1

2θ

1

β∗
yβy

√
β∗

x

βy

(6.71)

where starred β values are those at the IP and the others are at the sextupole
location. The CW sextupoles can reduce the dynamic aperture if there are other
non-linearities between them. For this reason they should ideally be installed before
the chromaticity correction sextupoles.

The (LPA&CW) collision scheme was first tested at the DA�NE �-Factory in
Frascati (Italy) in 2008 [64], by modifying the interaction region to increase the
crossing angle, decrease both the β∗ and allocate space for the sextupoles. The result
was a boost in luminosity of about a factor of 4 and measurement of the beam
profile showed that the bunches kept their Gaussian shape. This scheme has since
then been adopted by all new collider designs worldwide (SuperKEKB, FCC-ee,
various τ -charm Factory proposals). The collider SuperKEKB in Japan, however,
has adopted the LPA scheme (which they called “nano-beams”) without the CW
sextupoles because of the lack of space in the IR.

6.8 Hadron Colliders and Electron-Proton Colliders

K. Hanke · B. J. Holzer

6.8.1 Principles of Hadron Colliders

Hadron colliders are discovery machines which provide high centre-of-mass energy
and cover a wide energy range. Contrary to electron-positron colliders, where the
energy and quantum state of the initial particles is precisely known, the input
conditions are less well defined in the case of proton-proton or proton-antiproton
collisions. In fact, such collisions are, unlike e+e− annihilation, collisions of quarks
and antiquarks the momenta of which are distributed according to the structure
function of the hadron and are hence not precisely defined. As far as the analysis
of the events is concerned, hadronic collisions result in a much larger number
of tracks in the detector than in the case of e+e− annihilation, providing an
additional challenge. From a machine physics point of view hadron machines have
the enormous advantage that the particle beam energy is not limited by synchrotron
radiation. This is because the proton mass is 2000 times higher than the one of the
electron, and the energy loss due to synchrotron radiation scales with m−4. What
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is limiting the achievable beam energy in a hadron collider is the magnetic field to
be provided by the dipole magnets in order to bend the particle beam on a circular
trajectory. The radius of curvature of a particle in a dipole field is given by

1

ρ

[
m−1

]
= eB

p
p = 0.2998

B [T ]

p [GeV/c]

where ρ is the radius of curvature, B is the magnetic field, e is the elementary
charge and p is the particle momentum. The quantity Bρ is called the rigidity
[65, 66]. The beam rigidity determines the B-field required to bend the beam on
a circular trajectory with given bending radius. The maximum achievable B-field
being limited to about 2 Tesla for normal conducting magnets, today’s high-energy
hadron colliders use superconducting bending magnets.

The quasi absence of synchrotron radiation leads to another feature of hadron
colliders, which is the fact that there is no synchrotron radiation damping and the
transverse emittance is hence determined and preserved throughout the injector
chain. Emittance blow up, e.g. via injection mismatch, is therefore critical.

6.8.2 Proton-Antiproton Colliders

A machine with one single vacuum chamber, e.g. the Super Proton Synchrotron SPS
(“SppbarS in this operation mode) in the 1980s or the Tevatron can accomplish the
acceleration of protons and antiprotons.

During the years 1981–1987, the CERN SPS was operated as a proton-antiproton
collider, providing high energy collisions for two major experiments located in
adjacent sextants of the accelerator. This operation was first with three dense
bunches of protons in collision with three rather weak bunches of antiprotons,
with no separation of the beams at the unused crossing points. After increasing
the antiproton production rate, six bunches per beam were used. The SPS has
normal conducting bending magnets and a circumference of 6.9 km. The beam
energy provided by the SPS as proton-antiproton collider was 315 GeV [67, 68].
The SppS was the first hadron collider operating with bunched beams. Before the
commissioning of the machine it was debated if it was possible to collide proton
and antiproton bunches, or if the beams would become unstable due to the presence
of the beam-beam interaction without damping as in e+e− colliders. Its success
demonstrated the feasibility of high energy hadron colliders [69].

Higher energy was achieved by the Tevatron, using superconducting magnets
with a maximum B field of 4.5 T. The circumference of the machine is 6.28 km;
comparable to that of the SPS. In the final stage of operations (“run II”), beams are
injected at 150 GeV and accelerated to 980 GeV. The bunches (36+36) circulate
in the same aperture, the protons clockwise and the antiprotons anticlockwise. The
machine has a lattice with four dipoles followed by a quadrupole, with a total of
772+2 dipoles and 90+90 quadrupoles, plus a number of corrector magnets.
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6.8.3 Proton-Proton Colliders

Proton-proton colliders require a dedicated magnet design with two separate vac-
uum chambers for the two equally charged beams. The first proton-proton collider
was the ISR (Intersecting Storage Rings) at CERN. It consisted of two rings of
943 m length which were intersecting at eight points. Out of these eight intersection
points six were used for experiments. The ISR was operated between 1970 and
1984. The top energy achieved for protons was 31.4 GeV/c. The ISR allowed not
only proton-proton collisions, but stored and collided later also deuterons, alpha
particles and antiprotons. The ISR pioneered a number of techniques which were
beneficial which paved the path for future high energy colliders like the SPS.

The proton-proton collider with the highest energy ever built is the Large Hadron
Collider (LHC) at CERN [70]. It uses superconducting magnets with two separate
vacuum chambers for the two equally charged beams. The design field is 8.36 T,
and the machine circumference 26.659 km which yields a design beam energy of
7 TeV. Higher field levels are being studied in the frame of possible further energy
upgrades.

A machine with an even higher beam energy of up to 50 TeV is presently being
studied by an international collaboration. The Future Circular Collider (FCC) has
a hadron-hadron option (FCC-hh) with a beam energy of 50 TeV [71]. The latest
design features a machine circumference of 97.75 km with a maximum dipole field
of 15.7 T. The size of the machine is a compromise of civil engineering constraints
and dipole feasibility.

6.8.4 Electron-Proton Colliders

Collisions between electrons and protons are used to study the inner structure
of the proton e.g. the quark gluon distribution underneath the valence quarks.
The electrons are used as a point like probe to determine the inner structures in
the target. This deep inelastic scattering studies were performed in the beginning
using an accelerated electron beam colliding on a fixed target. Due to kinematic
considerations however a much higher resolution is obtained if two accelerated
beams are brought into collision.

Due to the different nature and beam dynamics of the two particles an electron-
proton collider cannot be built as a single ring machine: It consists of two storage
rings of equal circumference, one being optimised for the acceleration and storage
of electrons, the other for a high energy proton beam. The design of these two rings
looks quite different and completely different effects determine the performance
limitations of the rings. Figure 6.30 shows the two storage rings of the HERA
collider:

HERA was built as a 6.3 km long double ring collider with beam energy
of 27.5 GeV for the electron beam, and 920 GeV for the proton beam [72].
The fundamental layout was based on four arcs and four straight sections where
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Fig. 6.30 View of the two independent storage rings for electron and proton acceleration in
HERA. The super conducting proton lattice is placed on top of the conventional electron ring

the high-energy detectors were located. The proton machine was designed as a
superconducting magnet lattice in the arcs to achieve the highest possible beam
rigidity (or particle energy). The electron storage ring was built in conventional
magnet technology: here the limiting factor was the synchrotron radiation emitted by
the electrons which was too strong to justify super conducting magnet technology.
Basic limits for the achievable beam energy therefore were in the case of the protons
the magnetic field of the bending magnets (B = 5.1 T) and for the electron ring the
available RF power that was needed to compensate the synchrotron radiation losses.
Both rings had been built on top of each other to guarantee an equal revolution time
of the circulating particle bunches.

The interaction region of such a two ring collider deserves special attention:
While the two beams are brought into collision in a common vacuum system and
magnet lattice, they have to be separated after the IP and guided into their respective
magnet lattices. Especially in the case of the electron beams the separation has to
be performed fast enough, as the strong focusing fields of proton mini beta magnets
can only be applied after a full separation of the beams.

Two mini beta insertions therefore have to be installed and combined with an
effective beam separation scheme. In the case of HERA the separation has been
achieved by using the different momenta of the beams: The mini beta quadrupoles
of the electron beam have been placed offset with respect to their magnetic axis
and acted as combined function magnets. Consequently the electron beam was bent
due to its smaller beam rigidity to the inner side of the ring and at a distance
s∗ = 20 m the first proton magnet could be installed. A schematic view of this
nested interaction region is shown in Fig. 6.31.

The advantage of this scheme is its compactness as beam separation and focusing
are obtained at the same time. Special care however is needed as the electron
quadrupoles of the mini beat section will have an effect on the proton beam that
depends on the corresponding energy of the electron beam. This dynamic influence
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Fig. 6.31 Layout of the HERA interaction region: The inner triplet of the electron lattice is
combined with the beam separation scheme and embedded inside the doublet quadrupoles of the
proton mini beta insertion

on the optics and orbit of the protons therefore has to be compensated during the
acceleration of the electrons as well as during the beta squeeze.

The luminosity formula for such a double ring collider is given by

L = 1

2πe2f0
∗

∑

i

(
Ipi ∗ Iei

)

√
σ 2

xp + σ 2
xe ∗

√
σ 2

yp + σ 2
ye

It depends on the product of the single bunch currents Ipi and Iei and the sum of
this contribution over the overall number i of colliding bunches in the rings. As the
beams are guided in different magnet lattices the beam sizes σ are independent of
each other. Nevertheless the beams have to be matched, i.e. the beam sizes of the
two beams at the IP have to be equal in both planes: σxp = σxe and σyp = σye. This
condition deserves special attention as the beam emittances of protons and electrons
are quite different and independent beam optics have to be established to achieve
matched beam sizes.

Another special feature of an electron proton collider is the synchrotron radiation
that is emitted by the electron beam. Usually this effect is present in the arc structure
where the dipole fields bend the beam on the design orbit. Due to the separation
fields needed in the interaction region the synchrotron radiation is also emitted close
to the IP and special care is needed to shield the high energy detector from the
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Fig. 6.32 Synchrotron radiation emitted during beam separation in the HERA interaction region.
The plot shows schematically the interaction region lattice, the beam dimension and the direction
and density of the synchrotron light

emitted photons. For the HERA collider this problem has been studied in detail (see
Fig. 6.32) and a combination of absorbers and movable collimation masks have been
used to avoid hits from direct or back scattered photons into the detector parts.

The performance limitations of such an e-p-collider are given by the singe bunch
intensity of the protons (limited by the particle source), the overall current of the
electrons (limited by RF power or beam instabilities), the number of bunches that
can be stored in the machine (limited by technical reasons of the injection elements)
and the usual limits of the mini beta insertions that have been mentioned above.

The main parameters of HERA are summarised in Table 6.1:

Table 6.1 Summary of the
main parameters of HERA

Electrons Protons

Energy 27.5 GeV 920 GeV
Beam current 58 mA 140 mA
Particles per bunch 4 × 1010 1 × 1011

Number of bunches 189 180
Beta function at IP x/y 0.63 m/0.26 m 2.45 m/0.18 m
Hor. emittance 20 nm 5.1 nm
Emittance ratio εy/εx 0.18 1.0
Beam size (IP) σx/σy 112/30 μm 112/30 μm
Luminosity 7 × 1031 cm−2 s−1
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6.9 Ion Colliders1

W. Fischer · J. M. Jowett

Ion colliders are research tools for high-energy nuclear physics. The collisions of
fully stripped high-energy ions, that is, atomic nuclei, create matter of a temperature
and density that existed in the first microseconds after the Big Bang. The matter
created in these high-energy ion collisions is known as the Quark Gluon Plasma
(QGP), and interactions between the quarks and gluons is the subject of the
theory of quantum chromodynamics (QCD). The basic interactions are studied in
simpler collisions such as e+e− or pp but heavy-ion collisions allow the study of
more complex collective phenomena in QCD. The collisions in ion colliders can
create hadronic matter at much higher densities and temperatures than fixed target
experiments although at a much lower luminosity.

The collisions of heavy ions in RHIC and the LHC have yielded a number of
new results and revealed phenomena that were unexpected on the basis of previous
theoretical understanding. The QGP generated in the heavy ion collisions in RHIC
was expected to be weakly interacting, but found to be strongly interacting like an
almost perfect liquid [73, 74]. Hadronic jets created in the collisions have a rather
short mean free path in the QGP leading to a phenomenon termed “jet quenching”
[74], and the largest ever measured vorticity was seen in heavy ion collisions [75].
The collisions also created the heaviest artificially made antimatter nuclei, anti-
helium-4 [76, 77]. The higher energies in the LHC create many more hard probes
and heavy bound states such as charmonium (J/ψ) or bottomonium (ϒ) and, in
the highest-energy p-Pb collisions, toponium. Z and W bosons, particles that do not
interact with the QGP via the strong interaction, were never before seen in heavy ion
collisions. The ALICE experiment also reported the highest temperatures directly
measured in the laboratory [78].

The colliding nuclei also have high electric charges (Z ~ 80). Together with the
powerful Lorentz-compression at high energies, these generate enormous electro-
magnetic fields outside the nuclear radius. As first shown by Fermi, Weizsäcker
and Williams, these fields can be represented as a beam of high energy quasi-
real photons, leading to so-called ultraperipheral photonuclear and photon-photon
collisions. Besides their intrinsic interest, the high cross-sections for these processes
have consequences for the operation of the collider. The ATLAS experiment at the
LHC has published the first evidence for light-on-light elastic scattering, a long-
predicted fundamental process of nonlinear quantum electrodynamics, transcending
Maxwell’s equations.

1This section has been authored by Brookhaven Science Associates, LLC under Contract No. DE-
SC0012704 with the U.S. Department of Energy. The United States Government retains and the
publisher, by accepting the article for publication, acknowledges that the United States Government
retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the
published form of this manuscript, or allow others to do so, for United States Government purposes.
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The first ion collider was the CERN Intersecting Storage Rings (ISR), which
briefly collided light ions [79, 80] in the late 1970s. The BNL Relativistic Heavy
Ion Collider (RHIC) has been in operation since 2000 and collided a number of
species at numerous energies. The CERN Large Hadron Collider (LHC) started its
Run 1 heavy ion program in 2010 and has provided mainly p-p, p-Pb and Pb-Pb at
increasing luminosity with a substantial increase in energy in Run 2 (2015–2018).
Both RHIC and the LHC have an expected operating time exceeding 20 years.
Further upgrades to the LHC, its injector complex and its experiments, foreseen
in the shutdown after Run 2, should allow the integrated luminosity in Runs 3
and 4 (up to 2029) to exceed Runs 1 and 2 by an order of magnitude. Table 6.2
shows all species combinations and energy ranges demonstrated to date for the ISR,
RHIC and LHC. All three machines also collide protons. In RHIC the protons are
spin-polarized, making the machine the only collider of spin-polarized protons ever
built. The LHC is the highest energy proton-proton and heavy-ion collider ever built.
Critically, proton-proton collisions at the same energy per nucleon provide reference
data for heavy ion collisions. In the following, we will limit our comments to the
ion operation in RHIC and the LHC.

Ion colliders differ from proton or antiproton colliders in a number of ways:
the preparation of the ions in the source and the pre-injector chain is limited
by other effects than for protons; frequent changes in the collision energy and
particle species, including asymmetric species, are typical; and the interaction of

Table 6.2 Ion species and
energies achieved in ISR,
RHIC and LHC as of 2017

Machine Species Energies [GeV/nucleon]

ISR α–α

p–α

d–d

13.3–15.7
26.6–31.4 (p), 13.3–15.7 (α)
13.3–15.7

p–d 26.6–31.4 (p), 13.3–15.7 (d)
p–p 13.5–31.2

RHIC U–U
Au–Au

96.4
3.85–100

Cu–Au
Cu–Cu
h–Au
d–Au

100
11.2–100
103.5 (h)–100 (Au)
9.9–100

p↑–Au 103.9 (p)–98.6 (Au)
p↑–Al
p↑–p↑

103.9 (p)–98.7 (Al)
31.2–255

LHC Pb–Pb
Xe–Xe

1380–2511 (2563 briefly)
2721

p–Pb
p–p

4000–6500 (p), 1577–2563 (Pb)
3500–6500

p, d, h and α denote the nuclei of the hydrogen, deuterium,
helium-3 and helium-4 atoms respectively. All three machines
also collide proton beams, which are spin-polarized in RHIC.
The quoted energy is the sum of rest and kinetic energy per
nucleon
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Fig. 6.33 Achieved nucleon-pair luminosity LNN , averaged over a store, for all species combina-
tion and energies in RHIC

ions with each other and accelerator components is different from protons. This has
implications for collision products, collimation, the beam dump, and intercepting
instrumentation devices such as profile monitors. Thus, the performance limitations
of heavy-ion colliders are also different from proton-proton colliders.

Figure 6.33 shows the achieved nucleon-pair luminosities LNN , averaged over a
store, for all species combinations and energies in RHIC. The plot demonstrates the
flexibility of RHIC in colliding different species combinations (all of them at or near
the center of mass energy

√
sNN = 100 GeV), energy scans for a number of species

combinations (Au+Au, Cu+Cu, d+Au p↑+p↑), and a luminosity that is strongly
decreasing with the collision energy.

In the preparation for the collider use, the charge state Z of the ions is
successively increased. A high charge state Z increases the bending and acceleration
efficiency, but also increases the effects of space charge and intrabeam scattering
(IBS). The direct space charge tune shift ΔQ, typically limited to values of less than
0.5, is given by [81]

	Q = − λR

2εnβγ 2

r0Z
2

A
,

where λ is the particle line density, R the machine circumference, εn the normalized
emittance, β and γ the relativistic factors, r0 the classical proton radius, and A the
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Table 6.3 Preparation of the heavy ions for RHIC and LHC

RHIC (Au) LHC (Pb)

Charge state Z
Ion energy
[eV/nucleon] Charge state Z

Ion energy
[eV/nucleon]

LIONa 1+ 150 ECR 27+ 2.5 k
EBISb 32+ 0.9 M LINAC3 54+ 4.2 M
Booster 77+ 101 M LEIR 54+ 72.2 M
AGS 79+ 8.8 G PS 82+ 5.9 G
RHIC 79+ 99 G SPS 82+ 177 G

LHC 82+ 2.51 T

For each accelerator, the kinetic energy of the ions is given at extraction, and the charge state in
the following transfer line
aLaser Ion Source; bElectron Beam Ion Source

mass number. IBS growth rates 1/Tx,y,s scale like [81]

1

Tx,y,s

∝ Z4

A2

Nb

γ εxεyεs

where Nb is the bunch intensity, and εx,y,s are the normalized emittances. High
charge states also reduce the electron stripping probability, and electron stripping
at higher energies is generally more efficient.

Table 6.3 shows the charge states and energies in the RHIC and LHC injector
chains for the Au and Pb respectively, the heavy ion species most often used in these
machines. For RHIC singly charge ions are generated in a hollow cathode or laser
ion source (LION) [82], and transferred into an Electron Beam Ion Source (EBIS)
[83]. With EBIS, beams of almost any element can be prepared for RHIC including
uranium and spin-polarized 3He. After increasing the charge state to Z = +32 the
ions are accelerated through an RFQ and short linac, and injected into the Booster.
After acceleration in the Booster, all but two electrons are stripped before injection
into the AGS, and the ions are further accelerated. To increase the intensity of the ion
bunches, bunches are merged in both the Booster and AGS. The last two electrons
are stripped in the transfer line from the AGS to RHIC. In RHIC all ions except
protons have to cross the transition energy, when bunches become short and peak
currents high. In addition, the longitudinal motion is frozen for a short period, and
the short bunches can trigger the creation of an electron cloud [84]. This situation
makes the beams vulnerable to instabilities [85], which limited the bunch intensity
for a number of years [84].

At CERN an ECR ion source is used, followed by an RFQ and the heavy ion
LINAC3 [86, 87]. After passing a carbon foil that strips electrons, the ions are then
accumulated in Low Energy Ion Ring (LEIR) [88]. During the 71-turn injection and
before acceleration the ions are cooled with an electron beam, with a transverse
cooling time of 0.2 s. To minimize dynamic vacuum effects from charge-change
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processes the LEIR vacuum system is designed for a dynamic pressure of less than
10−12 mbar. From LEIR the ions are injected into the PS where the bunches are
split to obtain the bunch spacing needed for the LHC. After acceleration in the PS
the last remaining electrons are stripped before injection into the SPS. In the SPS
at injection space charge and intrabeam scattering were a concern, and an emittance
growth of about 20% is observed at injection. Acceleration in the SPS requires a
special fixed frequency acceleration scheme since the main 200 MHz RF system
does not have the frequency range required to accelerate heavy ions with a constant
harmonic number. The SPS acceleration scheme takes advantage of the fact than the
ion bunch train only fills a fraction of the circumference allowing for an adjustment
of the RF phase during the time without beam [89].

The luminosity is given by

L = (βγ )
frev

4π
kc

Nb1Nb2

εnβ∗ H

where frev is the revolution frequency, kc the number of bunch-bunch collisions
per turn, Nb1 and Nb2 the bunch intensities in the two beams respectively, and β∗

the lattice envelope function at the interaction point. The factor H accounts for
the hourglass effect and crossing angles, and is smaller than and of order 1. The
luminosity is limited by different effects in RHIC and the LHC.

In RHIC bunches of fully stripped heavy ions like Au79+ with the same number
of charges as proton bunches have IBS growth rates an order of magnitude larger.
In RHIC at injection IBS leads to bunch lengthening, and at store to particle loss
out of the RF buckets and an increase in the transverse emittance. Longitudinal
and transverse bunched beam stochastic cooling at store has been implemented [90]
to counteract IBS. This and an increase in the bunch intensity have significantly
increased the average store luminosity (Fig. 6.34). Table 6.4 shows the latest RHIC
parameters for Au–Au operation.

Fig. 6.34 RHIC
instantaneous Au+Au
luminosity in 2007 with
longitudinal stochastic
cooling in the Yellow ring
only, and in 2014 with 3D
cooing in both rings. The
increase in the initial
luminosity is due to an
increase in the bunch
intensity
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Table 6.4 Main operating parameters achieved for the most commonly heavy ions in RHIC and
LHC as of 2017

Parameter Unit RHIC LHC

Circumference C km 3.8 26.7
Ion species 197Au79+ 208Pb82+
Maximum energy GeV/nucleon 100 2511
Bunch intensity 109 2.0 0.20
Number of colliding bunches 111 492
Peak luminosity 1026 cm−2s−1 155 36
Average store luminosity 1026 cm−2s−1 87 17

Other effects that have limited the heavy ion performance in the past include:
the availability of high intensity bunches from the injector chain, instabilities at
transition [91] driven by the machine impedance and electron clouds (RHIC is
the only superconducting accelerator that crosses the transition energy), dynamic
pressure increases including pressure instabilities caused by electron clouds [84],
beam loading in the storage RF system (bunches are accelerated with h = 360 and
transferred into a h = 7×360 system at store), and chromatic lattice aberrations at
β∗ < 70 cm.

The LHC heavy ion operation started in 2010 and the luminosity is principally
limited by two effects [92, 93]. Firstly, secondary beams generated in collision and
having a Z/A ratio different from the primary beam will be lost in the dispersion
suppressor, a location with superconducting magnets with a limited ability to absorb
heat [94]. Secondly, the collimation efficiency for ions is lower than for protons
leading again to losses in uncontrolled regions [95]. Expected LHC ion parameters
are shown in Table 6.4. The two most important processes for the generation of
secondary beams in collisions are Bound-Free Pair Production (BFPP),

208Pb82+ + 208Pb82+ γ→ 208Pb82+ + 208Pb81+ + e+, (6.72)

with a cross section of 281 barn; and Electromagnetic Dissociation (EMD) with a
total cross section of 226 barn, about half of which is from the 1-neutron reaction

208Pb82+ + 208Pb82+ γ→ 208Pb82+ + 207Pb81+ + n. (6.73)

Beam losses due to BFPP were observed in RHIC with 63Cu29+ ions [96] and
effective mitigation measures have now been implemented at the LHC [97, 98].
These have allowed Pb-Pb luminosities far beyond the design value from 2015
onwards. Collimation of heavy ions is fundamentally different from protons. Protons
are scattered at a primary collimator and collected at a secondary collimator. Heavy
ions undergo nuclear fragmentation and electromagnetic dissociation in the primary
collimator. The fragments created have a wide range of Z/A ratios that are not
collected by the secondary collimators. Measurements of collimation efficiency
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were done in the CERN SPS and compared with detailed simulations to obtain
reliable estimates of the heavy ion collimation efficiency in the LHC [95].

The LHC also collided Xe nuclei in 2017 [98] and may collide other species in
future, generally with a view to increasing the nucleon-nucleon luminosity.

In the collision of asymmetric species the 2-in-1 magnet design of the LHC
requires that the magnetic fields in two rings are the same (the two RHIC rings are
independent and can have different fields). For p–Pb operation it is then necessary to
have different revolution frequencies at injection and during the energy ramp [99].
Lead beams in the LHC at design energy have noticeable synchrotron radiation
damping times (6 h and 13 h longitudinally and transversally) that are of the
same order as the IBS emittance growth times (8 h and 13 h longitudinally and
transversally) [92].

6.10 Beam Cooling

F. Caspers · D. Möhl

6.10.1 Introduction

Beam cooling aims at reducing the size and the energy spread of a particle beam
circulating in a storage ring or in an ion trap. This reduction of size should not
be accompanied by beam loss; the goal is to increase the particle density [100].
Since the beam size varies with the focusing properties of the storage ring, it is
useful to introduce normalized measures of size and density. Such quantities are
the (horizontal, vertical and longitudinal) emittances and the phase-space density.
For our present purpose they may be regarded as the (squares of the) horizontal
and vertical beam diameters, the energy spread, and the density, normalized by the
focusing strength and the size of the ring to make them independent of the storage
ring properties. Phase-space density is then a general figure of merit of a particle
beam, and cooling improves this figure of merit. The terms beam temperature
and beam cooling have been taken over from the kinetic theory of gases. For
visualization one may imagine a beam of particles going around in a storage ring.
Particles will oscillate around the beam centre in much the same way that particles
of a hot gas bounce back and forth between the walls of a container. The larger
the mean square of the velocity of these oscillations in a beam, the larger the beam
size. The mean square velocity spread is used to define the beam temperature in
analogy to the temperature of the gas which is determined by the kinetic energy of
the molecules.
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There are several basic motivations for the application and development of
different beam cooling techniques:

• Collection and accumulation of rare particles, e.g. antiprotons or short lived
particles such as muons.

• Improvement of interaction rate and resolution, e.g. collision experiments with
antiprotons or with ions; increase in luminosity. For fixed target experiments:
sharply collimated and/or highly mono-energetic beams for precision experi-
ments.

• Preservation of beam quality, mitigation and suppression of beam blow-up.
• Preparation of crystalline beams.

Several cooling techniques are operational or have been discussed:

• Radiation cooling (often referred to as radiation damping); linked to energy
loss of particles via synchrotron radiation (used in virtually all modern electron
synchrotrons).

• Stochastic cooling (works well for “hot” beams to get them “tempered).
• Electron cooling (most suitable for “tempered” beams to get them “cold”).
• Laser cooling (essentially for ions where two level transitions of electrons can be

excited).
• Ionization- and friction-cooling (mainly discussed in the context of muon

cooling).
• Resistive cooling; used to cool charged particles in a trap where the kinetic energy

of the particle is dissipated in the resistive losses of a resonant circuit.
• Coherent electron cooling, a kind of blend from stochastic cooling at very high

frequencies and electron cooling (under development at BNL theses days)

The use of the terms cooling and damping is not always well distinguished
and unambiguous in the literature. Even in the context of stochastic cooling the
authors were using the term damping in the early days. A similar observation can be
made for radiation damping and cooling. One may consider defining any action on
individual particles as “cooling” and any action on groups of particles as damping.
Examples are the feedback systems in circular machines which are commonly
referred to as dampers and which prevent emittance blow up, while a very similar
feedback system just having a much higher electronic gain can work as (stochastic)
cooler and reduce the emittance. However typically such damper systems have a
much smaller bandwidth and lower operation frequency as compared to stochastic
cooling hardware.

6.10.2 Beam Cooling Techniques

6.10.2.1 Radiation Cooling

Back in 1956, A.A. Kolomenski and A.N. Lebedev [101] pointed out that the
‘synchrotron light’ emitted by an electron moving on a curved orbit can have a
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Fig. 6.35 The principle of
transverse cooling by
synchrotron radiation
(transverse velocities
exaggerated)
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damping effect on the motion of the particle. This is because the radiation is sharply
peaked in the forward direction. The continuous emission of synchrotron radiation
leads to a friction force opposite to the direction of the motion. For a particle
moving on the design orbit, the energy loss is restored and the friction force is
on average compensated by the RF-system. For a real particle the residual friction
force tends to damp the deviation from the design orbit (Fig. 6.35). This cooling
force is counteracted by the ‘radiation excitation’: synchrotron light is really emitted
in discrete quanta and these many small kicks tend to heat the particle. The final
emittances result from the equilibrium of radiation damping and excitation. We will
see that a similar interplay between a specific cooling and heating mechanism is
characteristic also for the other cooling methods.

The theory of cooling by synchrotron radiation is in a mature state. Following up
on Sands’ classical treatment on “the physics of electron storage rings”, radiation
cooling has found its place in text books. The immense success of modern
electron–positron machines, both ‘synchrotron light facilities’ (e.g. ESRF, ALS,
APS, BESSY, SPRING8) and colliders (e.g. LEP, PEP II, KEKB) would not have
been possible without the full understanding of radiation effects. Virtually all these
machines depend critically on radiation cooling to attain the minute emittances
necessary in their application. Linear e+e−-collider schemes (like CLIC, TESLA,
NLC, JLC) too, have to rely on ‘damping rings’ in their injector chain to produce the
ultra-high phase-space density required. For historical reasons the reduction of beam
emittance due to the emission of synchrotron radiation (typically from leptons) is
usually referred to as radiation damping, although the term “cooling “might be more
consistent.

The cooling rates as well as the final beam size and momentum spread depend on
the lattice functions in regions where the orbit is curved. The art is then to ‘arrange’
these functions such that the desired beam property results. The strategy for ‘low
emittance lattices’ is well developed and ‘third-generation machines’ providing



6 Design and Principles of Synchrotrons and Circular Colliders 271

beams of extremely high brightness have come into operation. To enhance the
cooling, wiggler magnets are used, producing a succession of left and right bends.
This increases the radiation and thereby the damping rates. The heating can be kept
small by placing the wiggler at locations where the focusing functions of the ring
are appropriate to make the particle motion insensitive to kicks. More details for
cooling by synchrotron radiation are given in Sect. 6.5.

Radiation cooling and lattice properties of the storage ring are thus intimately
linked and by smart design, orders of magnitude in the equilibrium emittances have
been gained. This may serve as example for other cooling techniques for which the
art of ‘low emittance lattices’ is only now emerging.

6.10.2.2 Microwave Stochastic Cooling

For (anti-)protons and heavier ions, radiation damping is almost negligible at
the energies currently accessible in accelerators except for the LHC. One of the
‘artificial’ cooling methods devised for these heavy particles is stochastic cooling
by a broadband feedback system (Fig. 6.36). The name “stochastic damping” was
coined by Simon van der Meer who invented this method in 1968 (first published
in 1972) [102] to underline the statistical basis of the method. First successful
tests and observations were done at the CERN ISR (Intersecting Storage Rings)
[102] followed by a dedicated “Initial Cooling Experiment” ICE [103]. In 1984
Simon van der Meer shared the Nobel Prize [104] in physics with Carlo Rubbia
for his contribution to the observation of the intermediate vector boson. Microwave
stochastic cooling was considered a key ingredient for reaching sufficient phase
space density of the precious and rare antiprotons to produce a small number
of W- and Z-Bosons in the CERN Super Proton-Antiproton Synchrotron (SppS)
experiment in 1982. At the core of stochastic cooling is the observation, that the
phase-space density can be increased by a system that acts to reduce the deviation
of small sections, called samples, of the beam. By measuring and correcting the
statistical fluctuations (‘Schottky noise’) of the sample averages, the spreads in the
corresponding beam properties are gradually reduced. Stochastic cooling may thus
be viewed as a ‘sampling procedure’ where samples are continuously taken from the
beam and the average of each sample is corrected. The basic principle of (transverse)
stochastic cooling is sketched in Fig. 6.36.

A somewhat different picture is based on the behavior of a test particle. At each
passage it receives its own ’coherent’ kick plus the ‘incoherent’ random kicks due
to all other sample members. The sample length Ts (response-time) is given by the
bandwidth W of the system through Ts ≈ 1/2W and the number Ns of particles per
sample is proportional to Ts. Hence a large bandwidth is important to work with
small samples. Present day cooling rings have a revolution time between a fraction
of a μs (e.g. CERN AD) up to about 20 μs (Relativistic Heavy Ion Collider (RHIC),
Fermilab bunched beam cooling systems). The sample length Ts amounts usually to
less than 1 ns which corresponds to a cooling system bandwidth of 500 MHz in
this case assuming the generalized Nyquist criterion for band-limited signals under



272 B. J. Holzer et al.

Fig. 6.36 The basic set up for (horizontal) stochastic cooling

ideal assumptions. Thus each sample contains only a small fraction of the total beam
population circulating in the machine. Another important ingredient is ‘mixing’, i.e.
the renewal of the sample population due to the spread of the particle revolution
frequencies.

Based on the ‘sampling’ and/or the ‘test particle picture’ one derives in a few
steps [105] a simplified relation for the cooling rate 1/τ of the transverse emittance
ε with (1/τ = (1/ε)dε/dt) or for longitudinal phase space the momentum deviation
(1/τ = (1/	p)d	p/dt):

1

τ
= W

N

[
2g

(
1 − M̃−2

)

<coherent effect>

− g2
(
M + U/Z2

)]

<incoherent effect>

. (6.74)

The parameters appearing in Eq. (6.74) have the following significance:

N number of particles in the coasting beam
W cooling system bandwidth
g gain parameter (fraction of sample error corrected per turn) (g < 1)
M desired mixing factor (mixing on the way kicker–pick-up = good mixing) (M > 1)
M̃ undesired mixing factor (slippage on the way pick-up–kicker = bad mixing) (M̃ > 1)
U noise to signal power ratio (for single charged particles) (U > 0)
Z charge number of beam particles (≤ atomic number of the ion!) (Z ≥ 1)
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There is an optimum value of g for which Eq. (6.74) has a maximum. As to the
other parameters, N and Z are properties of the beam, W is a property of the cooling
system and M, M̃ and U depend on the interplay of cooling system-, beam- and
storage ring characteristics. The term in the bracket can at best be 1 but is more like
1/10 to 1/100 in real systems, depending on how well the mixing and noise problems
are solved. The ideal cooling rate W/N can be interpreted as the maximum rate at
which information on single particles can be acquired. Note that the gain parameter
g (fractional sample error correction) should not be confounded with the electronic
gain of cooling system which is typically 120 db or 12 orders of magnitude in power.

Lattice parameters are especially important for the achievement of ‘good’ values
of M, M̃ and U, maximising the bracket in Eq. (6.74). In addition to the struggle for
large bandwidth, the advance in stochastic cooling is intimately linked to progress in
dealing with the noise and mixing factors. In summary it can be said that present-day
systems are working with a bandwidth of around 1 GHz for an individual cooling
system with the possibility of extensions up to nearly 10 GHz by using several
cooling bands in the same ring. Limitations on W are discussed in [106].

Turning to the mixing dilemma discussed at length in [107], we note that
stochastic cooling only works if after each correction the samples (at least partly) re-
randomise (desired mixing), and at the same time a particle on its way from pick-up
to kicker does not slip too much with respect to its own signal (undesired mixing).
The mixing rates 1/M and 1/M̃ are related to the fraction of the sample length
by which a particle with the typical momentum deviation slips with respect to the
nominal particle. Here M refers to the way from kicker to pick-up (‘K to P’), and M̃

to the way pick-up to kicker (‘P to K’). Both depend on the flight-time dispersion
which in turn is given by the local ‘off-momentum factors’,

ηkp =
(

dT

T
/
dp

p

)

kp
, (6.75)

and the similar quantity ηpk respectively. For a regular lattice the beam paths ‘K to
P’ and ‘P to K’ consist of a number of identical cells and one has

ηkp ≈ ηpk ≈ η =
∣
∣
∣γ −2

tr − γ −2
∣
∣
∣ , (6.76)

i.e. the local η-factors are close to the off-momentum factor for the whole ring. In
this situation the ratio M̃/M is simply given by the corresponding path lengths (Tpk
and Tkp). Then, e.g. in the case of the CERN AD (antiproton decelerator) where the
cooling loop cuts diagonally across the ring, one has M̃ ≈ M instead of the desired
M̃ � 1, M = 1. The usual compromise is to accept imperfect mixing, letting both
M̃ and M be in the range of 3–5, say. The price to pay is a slower cooling rate, for



274 B. J. Holzer et al.

example 1/τ ≤ 0.28W/N in the case of M̃ = M instead of 1/τ ≤ W/N for perfect
mixing.

‘Optimum mixing lattices’ (also referred to as ‘split ring designs’) have been
proposed for the 10 GeV ‘SuperLEAR’ ring [108] (which was, however, never
built). The idea is to make the path P to K isochronous (ηpk = 0) and the path
K to P strongly flight-time dispersive (ηkp � 0). These lattice properties have
to be reconciled with the many other requirements of the storage ring. The next
generation of stochastic cooling rings will use such split rings lattices. They were
discussed for RIKEN in Japan [109] and are under construction for GSI and FAIR
in Germany [110, 111]. It should be mentioned that the condition ηpk = 0, ηkp � 0
can increase the cooling rate for transverse and for longitudinal ‘Palmer-Hereward’
cooling where the transverse displacement concurrent with the betatron amplitude
and the momentum error of the particles is used. For momentum cooling by the
filter (‘Thorndahl’) method, the split ring design brings less improvement since
here the time of flight over a full revolution is used as a measure of momentum. A
storage ring with ηpk = 0 and η ≈ 1–2% is under construction for GSI and FAIR in
Germany, meeting best conditions for both transverse cooling and filter momentum
cooling of antiprotons [112].

Regarding the situation at GSI it should be mentioned that a first successful
experiment was performed at the ESR to measure the nuclear radius of the
radioactive nucleus 56Ni. To this purpose stochastic precooling and subsequent
electron cooling were used in order to accumulate enough intensity for a sufficient
S/N in a scattering experiment with an internal hydrogen target [113].

This is not the end of the mixing dilemma: during momentum cooling, as 	p/p
decreases, the M-factors increase (c.f. Eq. 6.75) and the mixing situation tends to
degrade. One can in principle stay close to the optimum by changing η (‘dynamic
transition tuning’) as cooling proceeds. Similar considerations hold for machines
with variable working energy where, through a change of η, good mixing can be
maintained. Again these improvements might be incorporated in the next generation
of cooling rings (e.g. at FAIR [112]).

As for the noise, from Eq. (6.74) it is clear that a balanced design aims at
U/Z2  M. The noise to signal (power-)ratio depends on the technology of the pre-
amplifier and other ‘low level components’ on the one hand and on the sensitivity
of the pick-up device on the other hand. There has been great progress in the
design of the pick-up and kicker structures and the other components of the cooling
loop. These components developed in different labs (e.g. BNL [114], CERN [107],
Fermilab [115], Forschungszentrum Jülich (FZJ) [116], GSI [112, 117]) are in fact
formidable ‘high-fidelity (HiFi) systems’ with an unprecedented combination of
high sensitivity, low noise, great bandwidth, large amplification, very linear phase
response, and excellent compatibility with the ultra-high vacuum of the storage ring.

A more detailed discussion of stochastic cooling hardware progress over the last
30 years can be found in [118]. Regarding pick-up and kicker structures we have
seen printed versions arriving in the late 1980s of the classical λ/4 strip-line couplers
which are referred to as printed loop or printed slotline couplers which are normally
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used as “phased arrays” [119, 120]. As for travelling wave structures starting from
the TEM type slotted line version of Faltin [121] McGinnis developed a related
device [122] not based on a TEM line, but essentially a waveguide directional
coupler with slots masks for the coupling. Those waveguide type slot array couplers
have the advantage (in contrast to the Faltin version) that they can operate efficiently
also for highly relativistic beams and they exhibit a very high longitudinal and
transverse sensitivity over a bandwidth of several 100 MHz in the GHz region. As
a particular development the kicker structure for the BNL RHIC bunched beam
stochastic cooling system [123–125] is worth mentioning. It consists of an array
of cavities which are cut in length and can be opened by a mechanical plunging
mechanism in order to let the injected beam pass without aperture limitations.

Another travelling wave structure is the perforated structure which was originally
proposed in 2011 [126] and later developed for HIRFL-CSRe stochastic cooling. A
large number of small slots in the electrode provides distributed inductive loading,
slowing down the phase velocity of the travelling wave structure for the low beta
beams. This device is very broadband and operates from low frequencies onwards
as a forward coupler. Even for 2.76 m long electrodes used in HIFRL-CSRe, it can
be used from a few MHz to 1.2 GHz [127].

Another very promising recent development for pick-ups and kickers are “slot
ring” structures [128]. These structures were originally developed for the High
Energy Storage Ring (HESR) of the FAIR project at GSI, Germany and successfully
tested at the Nuclotron (JINR, Russia) for longitudinal cooling and at COSY (FZJ)
for longitudinal and transverse cooling. Slot ring couplers have a fixed aperture and
can be used for all three cooling planes simultaneously [128].

In CERN’s anti-proton decelerator AD stochastic cooling is employed at
3.57 GeV/c and 2 GeV/c in both transverse planes and for the longitudinal plane
(filter cooling) [129]. The current system uses a set of two kickers and pick-ups,
each combining one transverse plane and the longitudinal cooling, with a total of
4.8 kW installed power. It is undergoing a consolidation and upgrade [130] which
is including a notch filter with optical delay lines. Cooling times of 15–20 s reduce
transverse emittances to 3–4 π mm rad and Dp/p to ±0.3 × 10−3 at 3.57 GeV/c
and to ±0.08 × 10−3 at 2 GeV/c at intensities of 5 × 107 antiprotons. The system
uses a bandwidth of one octave between 850 MHz and 1.7 GHz. This is the actual
status in early 2019.

In parallel, CLASS A solid state amplifiers [131] (kicker driver) gradually took
over from TWT (travelling wave tube) units, although TWTs are still in operation for
stochastic cooling e.g. at Fermilab where they work reliably. Notch filters, required
for Thorndahl type longitudinal cooling (filter cooling) are implemented since about
1990 with good success in optical fibre technology [125, 132].

Optical signal transmission across the ring (Fermilab de-buncher) has been
realized with a laser beam in an evacuated metal pipe (no signal fluctuation from
temperature effects of air and humidity on the laser beam). The driving force to
select this method of signal transmission was the very tight requirement in terms of
transmission delay and delay stability. Anything slower than speed of light would
not have permitted timely arrival of the correction signal at the kicker. In 2017 very



276 B. J. Holzer et al.

fast (around 99% speed of light) hollow optical fibres were applied successfully
for analog and wideband signal transmission across the ring at COSY (FZ-Jülich,
Germany) [133].

Front end amplifiers showed slow but steady progress and these days we can
easily get an uncooled 1–2 GHz or 2–4 GHz device with a noise temperature of
30 K.

Examples of remarkable recent progress in the field of microwave stochastic
cooling are

• bunched beam stochastic cooling at RHIC and Fermilab [134–137],
• the impressive improvements of the performance and the interplay of all stochas-

tic cooling and stacking systems at Fermilab together with elaborate beam
handling methods such as “slip stacking” [135, 136].

It should be noted that there have been unsuccessful attempts to get bunched
beam stochastic cooling operational in large machines despite the fact that one of
the first evidence on stochastic cooling at all, in ICE [137] already worked with a
bunched beam. However the bunch length was very large. Attempts which failed
were in the frame of the SPS p-pbar program at CERN [124] and later (around
1990) also in the Tevatron [138, 139]. Bunched beam cooling is of course hampered
by the higher particle density in the bunch. In fact in Eq. (6.74) the number N for
the coasting beam has to be replaced by Nb/Bf = Nb·1.4·2πR/lb (with R radius and
lb length of bunch) for a rough estimate [137, 140]. In addition to those expected
effects the direct (coherent) bunch signal (proportional to N at low frequencies)
tends to mask the very weak Schottky signals required for cooling [137, 140]. This
is one of the reasons to place the cooling bands towards high frequencies. In addition
a subtle but important difficulty is related to the presence of unexpected and rather
strong coherent signals in the bunched beam spectrum which lead to saturation of
the front end amplifiers via intermodulation [139, 140]. A theoretical treatment of
these persisting “turbulence islands” in the bunch was given by Blaskiewiecz [141].
Just in the recent years this problem became mastered at BNL (gold ions) [135]
and also in the Fermilab recycler [140]. However, bunched beam stochastic cooling
has always been working reasonably well in small machine like the CERN AC
[107], LEAR [142], Fermilab de-buncher and accumulator [143] and others since
the relative intensity of those coherent signals was less violent compared to large
machines. However for the small machines there was little interest in bunched beam
stochastic cooling.

New applications of stochastic cooling may include:

• fast cooling and stacking of low intensity radioactive ion beams with cooling
times of 100 ms or less as discussed for RIKEN [109] and under construction at
GSI [110],

• fast optical stochastic cooling [144–146] (e.g. of intense muon beams but also
for bunched beam cooling in large rings) for which a bandwidth of 1012–1013 Hz
and a new pick-up, kicker and amplifier technology, and new lattice designs have
been contemplated.
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Fig. 6.37 Sketch of cooling
time vs. intensity (for the
‘mixing limit’ τ = 10 N/W is
taken in the figure)

Let us have a quick look at these developments. The challenge of fast low-
intensity cooling can be discussed with reference to Fig. 6.37 [108], which illustrates
the optimum cooling time vs. intensity N. For large N the cooling time increases

linearly with N with the slope 1/W

[

M/
(

1 − M̃−2
)2

]

. This is the mixing and

bandwidth limit. For small N, cooling time levels off to a constant ‘noise limited’
value reached for U/Z2 � M (note that U ∝ 1/N).

The art is to shift the levelling off to small N by improving the signal to noise
ratio. Theoretically, short cooling times are then possible (e.g. 10 ms for N = 105

Sn50+ ions and a few 100 MHz bandwidth as discussed for RIKEN). However, other
difficulties like the broadband power needed for such a rapid emittance decrease,
and the residual RF-structure after debunching may pose new problems for fast
cooling and stacking.

Optical stochastic cooling (OSC) proposed by Mikhailchenko, Zholents and
Zolotorev [144, 145] in 1993 is an extension of certain basic concepts of microwave
stochastic cooling into the optical frequency range using different pickup and kicker
mechanism and structures. It is a potentially very promising technique but has not
been tested in practice so far. Challenges may be amongst other items the stability
and linearity of the optical signal transmission chain as well as of the circulating
hadron beam. Maybe we shall soon see important steps towards this technology at
BNL in a forthcoming “coherent electron cooling experiment”.

At BNL stochastic cooling has been implemented at top energy in the RHIC
[147]. The bunch cores have full length 5 ns and are spaced by 100 ns. The root
mean square Schottky voltage is typically 10% of the coherent voltage generated
by the average bunch shape and multi-kilovolt kicker voltages are required for
optimal longitudinal cooling. Several novel technologies were required to meet the
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challenges. The kicker voltage was obtained by periodically extending the pickup
signal, passing it through narrow band filters spaced by 200 MHz (1/5 ns) and driv-
ing individual cavities. Taming coherent lines while meeting timing requirements
was a serious challenge [148]. When all was said and done the cooling system
increased the integrated luminosity of uranium-uranium collisions by a factor of
five and typically doubled the gold-gold luminosity.

At Fermilab, OSC is being pursued at the IOTA facility [149]. In OSC a particle
emits electromagnetic radiation in the first (pickup) wiggler. Then, the radiation
amplified in an optical amplifier (OA) makes a longitudinal kick to the same particle
in the second (kicker). A magnetic chicane is used to make space for the OA and
to delay a particle so that to compensate for a delay of its radiation in the OA
resulting in simultaneous arrival of the particle and its amplified radiation to the
kicker wiggler. The chosen optical wavelength is 800 nm, resulting in bandwidths
approaching 1014 Hz. In the proposed test, the use of 100-MeV (γ = 200) electrons
instead of protons greatly reduces the cost of the experiment but does not limit its
generality and applicability to hadron colliders. Conceptual design of the system is
complete, with engineering design of the wiggler and optical hardware underway.

Already in late 1970s the need for “stochastic stacking” has been realized [150].
In the “old” CERN AA (antiproton accumulator) [151] early stacking methods were
tested and applied in routine operation. In the CERN AAC (antiproton accumulator
complex) [152] the antiprotons (pbar or p) coming from the AC (collector ring)
were transferred to the inner ring (AA = accumulator). There dedicated stack tail
and stack core systems took over the antiprotons after they have passed a pre-
cooling system in the AA and were transferred to another orbit by means of RF
manipulations. At Fermilab [138] stacking is done in the accumulator ring and later
also in the recycler. For the future stacking with stochastic cooling is planned in the
frame of the FAIR project [110]. Stochastic stacking of rare radioactive ions has
been considered during the planning phase of RIKEN [110] upgrades between 1900
and about 2000 and for FAIR [110].

At Fermilab huge progress has been made since the year 2000 [153], this
includes stacking with stochastic cooling was done in three separate machines.
The debuncher [154], which accepted ~1.5 × 108 antiprotons every 2.1 s, used the
McGinnis waveguide directional couplers in eight bands over the frequency range
4–8 GHz for a factor of 10 reduction in longitudinal and transverse size. A key
piece was the implementation of ramping the amplifier gain down during the cycle,
to counter act noise to signal for the momentum bands in the notch filters. A 6 dB
decrease in gain resulted in a 12% decrease in the 95% momentum width after 2 s
of cooling. The Accumulator [154] accepted the same ~1.5 × 108 antiprotons and
used the Palmer method to build a ‘stack’. Peak performance reached 2.6 × 1011

antiprotons in an hour, with regular transfers to the Recycler to mitigate the known
decrease in performance with larger stacks. The Recycler, using a combination of
stochastic and electron cooling [155], reached intensities of greater than 4 × 1012

regularly, with peak intensity of 6.1 × 1012 and delivering over 4 × 1013 per week
to the collider program.
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6.10.2.3 Electron Cooling

The concept of cooling a “hot” beam of ions by mixing it over a short distance in
a circular machine with a cold electron beam had been developed by Budker [156]
in 1966. It was first tested in 1974 with 68 MeV protons at the NAP-M storage
ring at in Novosibirsk. The notions of ‘beam temperature’ and ‘beam cooling’ were
introduced and become lucid in the context of electron cooling, which is readily
viewed as temperature relaxation in the mixture of a hot ion beam with a co-
moving cold electron ‘fluid’. The equilibrium emittances, obtainable when other
‘heating mechanisms’ are negligible, can easily be estimated from this analogy,
assuming equalisation of the temperatures ((M	v2)/ion → (m	v2)/electron). For a
simple estimate of the cooling time, another resemblance, namely the analogy with
slowing down of swift particles in matter, can be helpful. A nice presentation of
this subject is given in Jackson’s book [157]: the energy loss in matter is due to
the interaction with the shell electrons and in first approximation these electrons are
regarded as free rather than bound. Results for this case can be directly applied to the
‘stopping of the heavy particles in the co-moving electron plasma’. The calculations
are performed assuming ‘binary collisions’ involving only one ion and one electron
at a time.

Using this approximation the cooling time can be written as

1

τ
≈ 1

k

q2

A
ηcLCrerp

j

e

1

β4γ 5θ3
, (6.77)

where

k = 0.6: for a Gaussian distribution (not realistic),
k = 0.16: for a flattened distribution,
q: ion charge number,
A: ion mass number,
ηc: length of cooling section/circumference,
LC ≈ 10: Coulomb logarithm (log of max/min impact parameter),
re ≈ 2.8 × 10−13 cm: classical electron radius,
rp ≈ 1.5 × 10−16 cm: classical proton radius,
j (A/cm2): electron beam current density,
e ≈ 1.6 × 10−19 C: elementary charge

θ = (
θ2
e + θ2

i

)1/2 =
(

Te

mec2 + Ti

mic2

)
: r.m.s. angle between electron and ion beams,

β, γ : relativistic factors.

The cooling rate (1/τ ) thus obtained exhibits the dependence on the main
beam and storage ring parameters [158]. Notable is the dependence on both the
electron and the ion (both longitudinal and transverse) velocity spreads: τ ∝ θ3 ∝(∣
∣Δverms

∣
∣3 + ∣

∣Δvirms

∣
∣3

)
. This indicates an ‘ion spread dominated regime’, where

cooling gets faster as the ions cool down until it saturates for
∣
∣Δvirms

∣
∣ <

∣
∣Δverms

∣
∣

(‘electron dominated regime’). Remarkable also is the strong energy dependence
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predicted in this model: τ ∝ β4γ 5, with all other parameters (including the electron
current density j) kept constant [159].

Neglected in the simple theory are the ‘flattened distribution’, the ‘magnetisation’
and the ‘electron space-charge’ effects, all three (also) discovered and explained
at Novosibirsk [159, 160]. In essence the flattened distribution effect takes into
account that (due to the acceleration) the electron velocity spread is not isotropic but
contracted (by [Ecathode/Efinal]1/2) in the longitudinal direction. The magnetisation
effect is due to the spiraling (Larmor-) motion of the electrons in the magnetic
field of the solenoid that is used to guide the electron beam. Then for electron-
ion encounters with long ‘collision times’ (impact parameter � Larmor radius),
the transverse electron velocity spread averages to zero. Finally the electron space-
charge induces a potential that leads to a parabolic velocity profile v(r) over the
beam whereas the ions exhibit a linear dependence v(x) and v(y) given by the storage
ring lattice. Hence the difficulty arises to match the ion and electron velocities.
Flattening and magnetisation can have a beneficial outcome, whereas space-charge
has a hampering influence on the cooling process. All three effects complicate the
theory, spoil the hope for simple analytical formulae and obscure the comparison
between measurements at different machines, and even different situations at the
same cooler. As an example the cooling assembly used in the low energy antiproton
ring (LEAR) is sketched in Fig. 6.38.

The electrons are produced in a gun and directed into the cooling region where
they overlap the ion beam over a length 1 m. At the end of the cooling section
the electrons are steered away from the ions into a collector where their energy is
recuperated. On their whole way from the cathode of the gun to the collector the
electrons are usually immersed in a longitudinal magnetic guiding field. This field
is constant over the full length or stronger in the gun region. In the latter case the
transverse electron temperature in the overlap region decreases (due to “magnetic
expansion”) at the expense of the longitudinal temperature. This can reduce the
cooling time in situations where the electron temperature dominates.

Fig. 6.38 An electron cooling assembly (LEAR electron cooler) from [158]
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An important technical problem is electron beam power consumption. To reduce
direct losses of the beam power the recuperation (recovering) method is used. It
assumes biasing of the collector to negative potential slightly above the cathode
potential. Then the power consumption is defined mainly by product of the beam
current by the difference of the collector and gun potentials.

In the two toroidal sections, adjacent to the overlap region, the solenoid to create
the longitudinal field is curved to guided the electron beam parallel to the ions at the
entrance and away from them at the exit. Also in the toroidal regions the solenoid
has a larger diameter to permit the penetration of the ion beam.

Many papers deal with the ‘exact and general theory’ [161] and computer
programs like BETACOOL [162] try to include all the subtle effects. Numerous
also are the experimental results from 11 (or so) present and past cooling rings. It
is not easy to compare the data from different experiments because the cooling in
each plane depends in a complicated way on the emittances in all three directions
both of the ion and the electron beam. Moreover different quantities are used to
measure/define ‘cooling strength’ (examples: cooling of a large injected beam,
response of a cold beam to a ‘kick’ or to a transverse or an energy displacement,
equilibrium with heating by noise).

In the context of the accumulation of lead ions for the future Large Hadron
Collider (LHC) [163], a program of experiments [164] was performed at the
LEAR ring to determine optimum lattice functions [165]. Results indicate rather
small optimum betatron functions (3–5 m instead of the expected 10 m) and
large dispersion (D = 2–3 m instead of the expected 0–1 m). The dependence on
dispersion is not fully reproduced by simple analytical formulae. There are other
old questions: e.g. the (dis)advantage of magnetic expansion, the dependence of
the cooling time on the charge of the ion, the (dis)advantage of neutralising the
electron beam, the enigma of the stability of the cooled beam [166], the puzzle of
the anomalously fast recombination of certain ions with cooling electrons [167], the
(dis)advantage of a hollow electron beam [168].

Considerations so far concern electron cooling at ‘low energies’ (Te = 2–
300 keV) where cooling rings have flourished since the 1980s. More recently
medium energy cooling (Te = 1–10 MeV) has re-gained a lot of interest [167–
169]. Clearly the higher energy requires new technology and extrapolation to a
new range of parameters. At Fermilab high energy e-cooling (with up to 5 MeV
electrons using electrostatic acceleration for cooling of 8 GeV bunched antiprotons
in the recycler) has been successfully developed and implemented. The generation
and recirculation of the 4.3 MeV and 0.5 Ampere electron beam and its adaptation
to the antiproton beam over a cooling length of 20 m are remarkable achievements.
Finally the idea of ‘very high energy electron cooling’ (Te ≥ 50 MeV) has been
revived as this might improve the luminosity of RHIC [168, 170]. At this energy the
electron beam could circulate in a small ‘low-emittance storage ring’ with strong
radiation damping. An attractive alternative is a scheme [170], in which the low-
emittance beam after acceleration is re-decelerated after the passage through the
cooling section to recuperate its energy.
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In summary: 45 years after its invention, the field of electron cooling continues
to expand with exciting old and new questions to be answered. Bunched beam
cooling is no longer a magic barrier and even a merger between electron cooling and
stochastic cooling i.e. the “coherent electron cooling” [171] appears at the horizon.
In the concept of coherent electron information of the particle distribution of the
hadron beam to be cooled is sampled by the electron beam, amplified and further
downstream fed back onto the hadron beam.

6.10.2.4 Laser Cooling

Due to the pioneering work of the Heidelberg (TSR) [172] and Aarhus (ASTRID)
[173] groups in the 1990s, laser cooling in storage rings has evolved into a very
powerful technique. Longitudinal cooling times as short as a few milliseconds
and momentum spreads as small as 10−6 are reported. These bright perspectives
are somewhat mitigated by two specific attributes [174]: laser cooling takes place
(mainly) in the longitudinal plane and it works (only) for special ions that have
a closed transition between a stable (or meta-stable) lower state and a short-lived
higher state. The transition is excited by laser light, and the return to the lower
state occurs through spontaneous re-emission (Fig. 6.39). ‘Unclosed’ transitions,
where the de-excitation to more than one level is possible, are not suited because
ions decaying to the ‘wrong’ states are lost for further cooling cycles. This limits
the number of ion candidates (although extended schemes with additional lasers
to ‘pump back’ from the unwanted states could enlarge the number of ion species
susceptible to cooling). Up to now, a few singly charged ions (like Li1+, Be1+ or
Mg1+) have been used with ‘normal’ transitions accessible to laser frequencies.
Transitions between fine structure, or even hyperfine levels of highly-charged heavy
ions have also been considered, but in that case the cooling force is less pronounced
and not so much superior to the electron cooling force which increases with charge
(like Q1.5 or even Q2).

The laser irradiates the circulating ions co-linearly over the length of a straight
section of the storage ring [174]. The absorption is very sharply resonant at the
transition frequency. Then the Doppler shift (ω = (1 ± v/c)γωlaser) seen by

Fig. 6.39 Sketch of Laser–ion interaction
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Fig. 6.40 Force F(v) due to a single laser and different schemes for cooling to a fixed velocity

the ion makes the interaction strongly dependent on its velocity. This leads to
a sharp resonance of the absorption as a function of the velocity (Fig. 6.40).
The corresponding recoil (friction) force accelerates/decelerates the ions with a
maximum rate at the resonant momentum. To obtain cooling to a fixed momentum, a
second force f(v) is necessary. It can be provided by a second (counter-propagating)
laser or by a betatron core or by an RF-cavity, which decelerate the ions ‘towards the
resonance of the first laser’ (Fig. 6.40). The interaction with the laser photons (and
hence the cooling) takes place in the direction of the laser beam (longitudinal plane
of the ions). De-excitation proceeds by re-emission of photons in all directions and
this leads to heating of the ions in all three planes.

Through transverse-to-longitudinal coupling, part of the cooling can be trans-
ferred to the horizontal and vertical planes. Intra-beam scattering [175], dispersion
[176] and special coupling cavities [177] have been considered for this purpose.
Transfer by scattering and by dispersion has been demonstrated at the cooling rings,
although the transverse cooling thus obtained was weak, a fact explainable by the
weakness of the coupling.

The main motivation for laser cooling has been the goal of achieving ultra-cold
crystalline beams [178] where the ions are held in place because the Coulomb
repulsion overrides the energy of their thermal motion. A second application,
cooling of low-charge states of heavy ions, was proposed [179] in order to prepare
high-density drive beams for inertial confinement fusion. Several years ago a study
[180] on the use of laser cooling of ions for the LHC was published. All these
applications for the moment meet with difficulties: crystallisation, in full three-
dimensional beauty, is hampered by the lattice properties of (present) storage rings
and by the relative weakness of transverse cooling. Cooling for fusion is not fast
enough [181] to ‘compress’ the high-intensity large-momentum-spread beam during
the few milliseconds lifetime given by intra-beam charge exchange between the
ions. And, finally laser cooling of highly charged ions for colliders meets with
the competition of electron cooling and also with the restrictions on the choice of
suitable ion species and states [180]. The investigations on laser cooling to obtain
crystalline beams continue [182] and a special storage ring (S-LSR) with lattice
properties apt to reach this goal [183, 184] has been built at Kyoto university.
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Fig. 6.41 Basic setup for (transverse) ionisation cooling (adapted from [186])

In conclusion: laser cooling in storage rings has led to very interesting and
important results concerning the physics of cooling and cooling rings and, also
atomic and laser physics. However, ‘accelerator applications’ like for electron or
stochastic cooling are not realistic for the near future. The goal to obtain crystalline
beams in special storage rings is under intense investigation.

6.10.2.5 Ionisation Cooling

Excellent reviews of ionisation cooling are given in papers by Skrinsky [185] and
Neuffer [186]. The basic setup (Fig. 6.41) consists of a block of material (absorber)
in which the particles lose energy, followed by an accelerating gap (RF-cavity)
where the energy loss is restored. Losses in the absorber reduce both the longitudinal
and the transverse momentum of the particle. The RF-cavity (ideally) only restores
the longitudinal component and the net result is transverse cooling (Fig. 6.41). There
is an obvious resemblance to radiation damping (Fig. 6.35), in which energy loss by
synchrotron radiation followed by RF-acceleration results in cooling. Longitudinal
ionisation cooling is also possible, especially in the range where the loss increases
with energy (i.e. above the energy where the minimum of dE/ds occurs). At the
expense of horizontal cooling, the longitudinal effect can be enhanced by using a
wedge-shaped absorber in a region where the orbits exhibit dispersion with energy.

The statistical fluctuations (‘straggling’) of the loss and the angular (multiple)
scattering introduce heating of the longitudinal and transverse emittances. The
ratio of ionisation loss due to angular scattering favours light absorber material.
Equilibrium emittances depend strongly on the lattice functions at the position of the
absorber and the cavity. As in the case of radiation damping, the sum of the cooling
rates (also in the case of a wedge absorber) is invariant with a value Jx + Jy +
JE ≈ 2 + JE ≈ 2 for the ‘damping partition numbers’, instead of Jx + Jy + JE = 4
for radiation damping. The quantity JE depends on the slope of the dE/ds vs. E
curve and is about constant and roughly equal to 0.12 for light materials above the
minimum of dE/ds, but is strongly negative below. In terms of the partition numbers,
the three emittance damping rates can be expressed by the energy loss 	Eμ of the



6 Design and Principles of Synchrotrons and Circular Colliders 285

muons in the absorber and the length 	s of the basic cell (Fig. 6.41) as:

1

εi

dεi

ds
= Ji

1

Eμ

ΔEμ

Δs
. (6.78)

A large number of cells or traversals through a cell is necessary to obtain
appreciable emittance reduction.

Almost by a miracle, the muon mass falls into a narrow ‘window’ where
ionisation cooling within the short life of the particle looks possible (although not
easy). For electrons as well as for protons and heavier particles, the method is not
practical, because the effect of bremsstrahlung (for e’s) and non-elastic processes in
the absorber (for p’s), leads to unacceptable loss.

With the revival of interest for muon colliders and, related to that, neutrino
factories [187], large collaborations (including more than 15 institutes, [188]) is
undertaking a demonstration experiment. The ISIS accelerator at the Rutherford
lab. is chosen for this task. Neutrino factory and muon collider proposals have to
rely critically on muon cooling: typically 50 m to several 100 m long channels with
solenoidal focussing (superconducting solenoids) are foreseen to reduce the phase-
space of the muons emerging from pion decay. Liquid hydrogen absorbers, each
0.5–1 m in length, alternate with high-field accelerating cavities.

The variant selected by MICE is a ‘single particle experiment’ where one muon
at a time is traced. Fast spectrometers, capable of resolving 1 muon per 25 ns,
record/compare the three position coordinates and the three velocity components
of the muon at the entrance and the exit of a short cooling section. Typically such
a test-section should lead to 10% emittance reduction. The emittance pattern is
‘painted’ by a scatterer or a steering magnets changing the entrance conditions of
the particle at random (scatterer) or in a programmed manner. A large number of
muons are necessary to establish the six-dimensional phase-space reduction with
sufficient statistics.

Apart from the spectrometers, other challenges can be identified: long term
mechanical stability, muon decay and birth, contamination with other particles and
non-linarites in focussing which deform the emittance pattern. In the coming years
we will see a large effort on muon cooling scenarios and tests.

6.10.2.6 Cooling of Particles in Traps

In many experiments utilizing ion traps, the ions must first be cooled in order to
perform high precision measurements. Cooling refers here to the reduction of kinetic
energy of confined particles. A detailed review of cooling traps is given in [189] and
the implementation of several cooling methods into a big project is described in
[190].

With adequate modifications, most of methods discussed above for storage rings
stochastic- [191], electron- [192], or laser cooling [193] can also be applied to traps.
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Some (like stochastic cooling) are more difficult others (e.g. laser cooling) are much
more powerful in the traps.

There are however several techniques which are especially adapted to or even
working only in the environment of particles confined in a trap which is frequently
cryogenically cooled. A gross classification is to divide them into lossy and lossless
methods in terms of conservation of number of particles. A lossy technique (which
in the strict definition of [100] would not be classified as “phase density cooling”)
is evaporative cooling. In this case, just as in the evaporation of water, the more
energetic molecules leave the trap and the temperature of the condensate is thereby
strongly reduced. Experiments at the forefront of physics making Bose-Einstein
condensates at a temperature of a tiny fraction of a degree have thus become possible
[194].

An example of a widely used lossless process is resistive cooling: the trap
electrodes are connected to an external circuit to dissipate energy from the ions
through induced currents [189, 195] (Fig. 6.42).

In other words the particle’s kinetic energy is dampened by I2R losses in a
resistive circuit [195, 196]. Idealistically speaking, the resistor or the losses in a
resonant circuit and absorb the particle’s energy to create a thermal equilibrium
when there is no other heating source involved. Since the resistor has a specific
physical temperature, it generates Johnson noise that in turn stochastically drives
the trapped particles. Resistive cooling was first applied by H. Dehmelt and
collaborators in 1975 [195].

To estimate the cooling time, a simple single particle model is used, where-by it
is harmonically bound between two capacitor plates [195]. Due to this model, the
energy is dampened with a time constant τ calculated by:

τ = 4mz0

q2R
. (6.79)

Here 2z0 is the separation of the capacitor plates (the electrodes of the trap) and
R stands for the real part of the impedance from the attached external circuit, q is the
charge and m the mass of the trapped particles. From Eq. (6.79) [189] one can easily
conclude that light, highly charged particles are efficiently cooled. The cooling rate
can be further improved by developing a high resistance in the external circuit.

Fig. 6.42 Principle of resistive cooling of a trapped ion
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In general, the external circuit which is often in vacuum and at cryo-temperature
includes a low-noise amplifier to couple the induced current signal to room
temperature, and thus enable plasma diagnostics. The input noise temperature of
the amplifier is, depending on its coupling to the resonant circuit, closely related to
the minimum achievable temperature of the particles in the trap. Most frequently, the
impedance Z (with the real part R) shown in Fig. 6.42 is implemented as inductance
L so that the circuit becomes resonant at the oscillation frequency of the ions. This
is to tune out (compensate at resonance) the parasitic capacitance of the electrodes.
This inductance may be implemented as discrete solenoid coil made of copper or
superconducting wire. The quality factor Q = R/ωL of the tuned circuit has to be
large to guarantee efficient resistive cooling A high Q in turn means to incorporate a
low loss network. As a caveat it should be mentioned that extremely high Q values
(above say 105) may be problematic if the bandwidth of the resonance becomes
smaller than the width of the particle spectrum. For further reading we refer to [197],
where Shockley presents the basic equations for trapped and charged particles in a
Penning trap.

There exist a large number of other cooling techniques used in traps, such as
collisional cooling, RF- and optical sideband cooling (resolved and unresolved
sideband methods) and sympathetic cooling. The list of examples given here is
certainly not exhaustive and a detailed description can be found in review articles
[189]. As for the term RF cooling (which may be confounded with RF-sideband
cooling) [189] it should be pointed out that this refers to a reduction of temperature
or vibration amplitude of a microscopic cantilevered bar in vacuum using an RF
resonant circuit which is fed externally with a few milli-Watt of RF power [198].
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