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PAWEL BRÜCKMAN DE RENSTROM

University of Oxford, DWB, Keble Road, Oxford OX1 3RH, UK

and

Institute of Nuclear Physics PAN, ul. Rdzikowskiego 152, Kraków 31-342, PL

E-mail: p.bruckman1@physics.ox.ac.uk

STEPHEN HAYWOOD

Rutherford Appleton Laboratory, Chilton Didcot OX11 0QX, UK

E-mail: S.Haywood@ral.ac.uk

A least squares method to solve a generic alignment problem of a high granularity tracking system is presented.
The algorithm is base on an analytical linear expansion and allows for multiple nested fits, e.g. imposing a common
vertex for groups of particle tracks is of particular interest. We present a consistent and complete recipe to impose
constraints on either implicit or explicit parameters. The method has been applied to the full simulation of a subset
of the ATLAS silicon tracking system. The ultimate goal is to determine ≈35,000 degrees of freedom (DoF’s). We
present a limited scale exercise exploring various aspects of the solution.

1 Introduction

The ultimate alignment precision of the modern HEP

tracking systems can be achieved by means of a

global χ2 fit of the alignment parameters to trajec-

tories of real particles reconstructed in the detec-

tor. The advantage of the method is that it uses all

the available information, and potentially can cor-

rect all possible misalignments without the need for

iteration. However, in common with any algorithm

based on reconstructed tracks, there are certain dis-

tortions of the detector which are difficult to correct.

These arise from distortions which displace detector

hits such that they still lie on helices. Among the

most common ones are well known sagitta distor-

tions (global: Rδφ = α + βR + γR2, φ dependent:

δX = a+bR+cR2 and θ dependent: δφ = κRcot(θ)),

so-called “telescope” (δZ = e + fR) and various ra-

dial deformations (e.g. elliptical). These global dis-

tortions of the detector geometry, so called “weak

modes”, can lead to significant biases in the recon-

structed track parameters. In this paper, we present

the generic formalism to solve the least squares align-

ment problem as well as discuss various extensions

leading to better control of the weak modes.

2 The Formalism

The alignment algorithm is based on the minimisa-

tion of the “global χ2” defined as:

χ2 =
∑

tracks

rT V −1r where ri ≡ (~mi − ~ei(π, a)).k̂

(1)

Here ~ei denotes the i’th intersection point of the ex-

trapolated track with a sensor plane and ~mi is the

position of the associated detector hit. k̂ is the unit

vector defining the measurement direction for the

sensor planea. The intersection point depends on

the track parameters (π) as well as on the subset

of alignment parameters related to the intersected

module (a). V is the covariance matrix of hit posi-

tion measurements.

2.1 The Basic Least Squares Linear Expansion

The minimisation condition requires:

dχ2

da
= 0 =⇒

∑

tracks

drT

da
V −1r = 0 (2)

The assumption about the corrections being small

allows us to use a linear expansion throughout. In

particular, all second order derivatives are neglected.

The expansion reads:

∑

tracks

drT

da0

V −1

(

r0 +
dr

da0

δa

)

= 0 (3)

from which the generic solution can be obtained:

δa = −

(
∑

tracks

drT

da0

V −1 dr

da0

)−1
∑

tracks

drT

da0

V −1r0

(4)
where r0 is the initial residual and dr

da0

≡
dr
da
|π=π0, a=a0

. Because r is a function of π and a

aRecall that for a pixel detector, each physical hit corresponds
to two distinct measurements (2D) and therefore gives rise to
two residuals along the two measurement directions.
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the full derivative from Eq. 4 can be written as:
dr

da
=

∂r

∂a
+

∂r

∂π

dπ

da
(5)

where dπ
da

is obtained by differentiating the solution

from a single track fit. In exact analogy to 4, we get:

δπ = −

(
∂rT

∂π0

V −1 ∂r

∂π0

)

︸ ︷︷ ︸

J

−1
∂rT

∂π0

V −1r(π0, a) (6)

Combining 4, 5 and 6 yields the solutions for the

alignment parameters alone:

δa = −

(
∑

tracks

∂rT

∂a0

W
∂r

∂a0

)

︸ ︷︷ ︸

M

−1
∑

tracks

∂rT

∂a0

Wr(π0, a0)

︸ ︷︷ ︸

V

(7)
where

W ≡ V −1 − V −1EJ−1ET V −1, E ≡
∂r

∂π
|π=π0

(8)

M is a symmetric n×n matrix and V a vector of size

n, where n is the number of alignment DoF’s. For-

mula 7 can be shown to be equivalent to the one ob-

tained using purely matrix manipulation methods 1.

2.2 Fitting a Common Event Vertex

In order to include a vertex fit into the formal-

ism, we have to redefine the track parameterisa-

tion. Only three perigee parameters survive (π =

π(φ, cotθ, Q/pT)). Impact parameters are replaced

by the common vertex for the event (b = (xb, yb, zb)).

Definition of the residuals (Eq. 1) takes the new form:

ri ≡ (~mi − ~ei(π, b, a)).k̂ (9)

The generic solution from Eq. 4 still holds, however,

the full derivative takes a more complicated form:
dr

da
=

∂r

∂a
+ E

dπ

da
+ F

db

da
dπ

da
= −J−1ET V −1(

∂r

∂a
+ F

db

da
) (10)

db

da
= −

(
ev∑

tracks

FT WF

)

︸ ︷︷ ︸

Mb

−1( ev∑

tracks

FT W
∂r

∂a

)

where we additionally defined F ≡ ∂r
∂b

. Despite the

above complexity, the final solution can be written

in a compact form:

δa = −

(
∑

tracks

∂rT

∂a0

X
∂r

∂a0

)

︸ ︷︷ ︸

M

−1
∑

tracks

∂rT

∂a0

Xr(π0, b0, a0)

︸ ︷︷ ︸

V

(11)

where we used the relation:

dr

da
= X

∂r

∂a
, X ≡ W − WFM−1

b

(
ev∑

tracks

FT W

)

(12)

2.3 Adding External Constraints

Consider an example of constraints on track param-

eters. In general, they may be non-linear, however

they have to be linearised before they can enter the

formalism. Constraints appear as extra bi-linear

terms in the expression for χ2:

χ2 =
∑

tracks

(
rT V −1r + (π − x)T S−1(π − x)

)
(13)

where vector x and covariance matrix S define the

constraint on π. The solution for the track parame-

ters is given by:

δπ = −J−1
(
ET V −1r(π0, a)+S−1(π0 − x)

)

J ≡ ET V −1E + S−1
(14)

The solution for the alignment parameters can be

derived in the usual way and yields:

δa = −M−1 (15)
∑

tracks

(
∂rT

∂a0

Wr0 −
∂rT

∂a0

V −1EJ−1S−1(π0 − x)

)

where M is as in Eq. 11, but with J as in Eq. 14.

3 Example Tests

The above formalism was implemented in prototype

code in order to test the alignment of the ATLAS

Silicon Tracking System 2. The entire system con-

sists of 1744 pixel modules (2D readout, 14× 115µm

resolution) and 4088 double-layer strip detector mod-

ules with two sides rotated by 40 mrad stereo angle

(16 × 580µm resolution). Given 6 DoF’s of every

module, there are 34,992 parameters to be deter-

mined. Solution for the entire system presents a sub-

stantial numerical challenge and as such is beyond

the scope of this report. Here we present results from

a test setup consisting of a region of 0 < η < 1. The

selected subset of the system contains 1030 silicon

modules (both pixel and strip) and corresponds to

over 1/6 of the entire tracking system (6180 DoF’s).

Only a limited data sample of 450,000 muon tracks

(2 < pT < 20 GeV/c) was used, so the results do not

represent the ultimate precision.

3.1 The Baseline Algorithm

Diagonalisation of the matrix M obtained from Eq. 7

yields in the eigenvalue spectrum shown in Figure 1.
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First four values are zero (up to the numerical accu-

racy) and correspond to unresolved translations and

rotation w.r.t. the Z axis of the entire system.b To

obtain meaningful results reciprocals of these four

eigenvalues are set to zero which is equivalent to

freezing these modes. The “weak modes” corre-
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Figure 1. Eigen-spectrum of the matrix M. Left plot zooms
on the 100 weakest modes.

spond to the lowest (finite) eigenvalues and conse-

quently dominate the overall error on the alignment

parameters.c More importantly, these global shape

deformations lead directly to biases on fitted track

parameters. Figure 2 shows pulls of the alignment

corrections as determined from the perfectly aligned

detector. The distribution is nicely Gaussian, cen-

tred at zero and the scatter plot does not reveal any

suspicious structures. To further test the algorithm
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Figure 2. Pulls of the alignment parameters in the diagonal
space as determined for the perfectly aligned detector.

we collectively shifted all pixel detectors by ∆X =

200µm, ∆Y = 100µm, ∆Z = 400µm in the ATLAS

global frame (Z axis is parallel to the beam line).

Tracks were refitted to the modified geometry and

the alignment algorithm run. We observed no out-

standing deformations to cylinders. In order to make

the discussion more quantitative, we projected align-

ment parameters on rigid cylinders using the Jaco-

bian transformation: dr/dAl = (dr/dak)(∂ak/∂Al),

with Al being the 7×6 DoF’s of the seven rigid cylin-

bThe other two rotations do not result in singular modes due
to the defined and fixed direction of the magnetic field.
cRecall that the error is proportional to square root of the
reciprocal of the eigenvalue.

ders. Note that this simple technique may prove very

useful as a day-0 solution or a genuine method to

reduce number of DoF’s. Results are given in Ta-

ble 1. The solution settled on a minor “telescope”

mode which is one of the weakest and most difficult

to control. Otherwise, corrections in the orthogonal

plane are consistent with the imposed misalignment

within the statistical error.

Table 1. Corrections (µm) to rigid cylinders.

cylinder ∆X ∆Y ∆Z

PIX b-layer −198 ± 5 −105 ± 5 −450 ± 29
PIX layer 1 −199 ± 4 −102 ± 4 −445 ± 27
PIX layer 2 −200 ± 3 −101 ± 3 −440 ± 25
SCT barrel 3 −2 ± 3 0 ± 3 −22 ± 15
SCT barrel 4 −2 ± 2 0 ± 2 −16 ± 10
SCT barrel 5 −1 ± 1 0 ± 1 −2 ± 5
SCT barrel 6 0 ± 0 0 ± 0 0 ± 0

3.2 The Common Vertex Constraint

Applying the common vertex constraint fit of Eq. 11

(there are ≈10 muons per event in our data sample)

yielded qualitatively similar results but the absolute

error on the pixel module positions (close to the in-

teraction point) was reduced by a factor of two. Fig-

ure 4a shows the difference in the eigenvalues of the

weak modes (first 100) after applying the vertex fit.

3.3 Constraints on Track Parameters

Starting from a perfect detector we imposed specific

constraints on all track parameters: cotθ′ =cotθ −

0.001, σ = 0.0001 and Q/p′T = Q/pT − 0.01, σ =

0.001 (GeV/c)−1. These particular constraints were

chosen as they directly correspond to well known

weak modes, namely the “telescope” mode and the

“sagitta” distortion. Alignment solution of Eq. 15

was determined with the above constraints imposed.
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Figure 3. Change to track parameters after the refit to dis-
torted detector geometry. See section 3.3 for more details.

Then, an independent track sample was refitted to

the modified detector geometry. Figure 3 shows the
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resulting shifts to the track parameters. The defor-

mation to the detector geometry led precisely to the

required change of track parameters.

3.4 Constraint on the Mass of a Resonance

The idea of the constraints on track parameters can

be extended to the constraint on the mass of a known

resonance (e.g. Z → µ+µ−, J/Ψ → µ+µ−). All that

is needed is an extra term in the χ2 expression:

χ′2 = χ2 + (mi − M)T 1

σ2
i

(mi − M) (16)

where M is the known mass of the resonance and σi

its assumed width accounting for experimental res-

olution. The solution for the constrained fit is ob-

tained using dm/da = (∂m/∂π)(dπ/da):

J ′ = J +
∂mT

∂π

1

σ2
i

∂m

∂π
, V ′ = V +

dmT
i

da

1

σ2
i

(m0
i − M)

(17)
The idea was tested in a very naive way using the

muon event sample. Tracks with pT > 5 GeV/c

were combined into pseudo-resonances if the result-

ing mass was 5 GeV/c2 or larger. The initial mass

of the pair was used for the M value in each case.

σ was set to 0.1 GeV/c2 for all pairs. The improve-

ment of the sensitivity to weak modes is shown in

Figure 4b. Results are encouraging but the method

clearly deserves proper validation using true Z and

J/Ψ samples.
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Figure 4. Eigen-spectrum for the baseline algorithm (shaded
histogram) with (a) the vertex constraint and (b) mass con-
straint superimposed. Only 100 weakest modes shown.

3.5 External Constraints on the Geometry

External constraints may result from various me-

chanical considerations, actual hardware monitoring

of the deformations of the support structure, etc.

Whatever the source, they rarely determine posi-

tions of the individual modules. Instead, they give

constraints in terms of arbitrary shape functions Fk.

The extra term takes the form:

χ′2 = χ2 + pk

1

σ2
k

pk with pk = Fkia
i − Ak (18)

where Ak is the requested amplitude of the k’th

shape function and σk is the corresponding error.

The constraint results in the following extra contri-

butions to the final big matrix M and vector V :

M′ = M +
1

σ2
k

(F̂kF̂ T
k

︸ ︷︷ ︸

tensor

), V ′ = V −
1

σ2
k

AkF̂k (19)

We tested the idea using directly two known weak

modes, namely an “elliptical” and a “telescope” dis-

tortion. Table 2 shows the imposed constraint and

the resulting amplitude of the corresponding mode

after realignment. It was found that all other modes

were unchanged relative to the unconstrained solu-

tion of section 3.1.

Table 2. Imposed vs reconstructed constraints on the geome-
try (arbitrary units.)

mode “elliptical” “telescope”
constrained A 1.0000 0.00000
constrained σ(A) 0.0100 0.00100
reconstructed A 0.9870 0.00007
reconstructed σ(A) 0.0099 0.00100

4 Summary

The least squares solution to the alignment of large

HEP tracking systems has been presented. It has the

potential to incorporate various extra constraints to

improve its sensitivity to weak modes. Preliminary

tests of the proposed extensions using the ATLAS

silicon tracking system have been presented.
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