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1 Introduction

In Euclidean signature, the operator product expansion (OPE) gives a convergent expansion
for correlation functions around coincident-point singularities. This expansion lets us formu-
late nonperturbative bootstrap conditions and perform myriad computations. Lorentzian
correlators are in principle determined from Euclidean ones by analytic continuation. How-
ever, a given OPE may not commute with this continuation. Furthermore, Lorentzian
signature allows for a much richer set of singularities than Euclidean signature [2]. It
is important to develop nonperturbative tools for understanding these singularities and
efficiently computing Lorentzian observables.
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Figure 1. The celestial sphere Sd−2 in a two-point event shape. The positions of the detectors are
parametrized by n̂1, n̂2 ∈ Sd−2. The light-ray OPE is an expansion in the angle θ between detectors
(solid red arc). Transverse spin j is conjugate to the angle φ of one detector around the other on the
celestial sphere (solid blue arc).

The work [1] introduced an intrinsically Lorentzian OPE for products of null-integrated
operators on the same null plane.1 This OPE can be applied to Lorentzian observables
called “event shapes,” which measure the distribution of energy (and other quantities) in a
collider-like experiment [5–7]:

〈Ψ|E(n̂1) · · · E(n̂k)|Ψ〉. (1.1)

Here |Ψ〉 is a state, for example created by sending particles from past null infinity and
letting them scatter. Each operator E(n̂i) is a stress-tensor integrated along retarded time
at future null infinity, at a fixed position n̂i ∈ Sd−2 on the celestial sphere. The E(n̂i) act
like calorimeters, measuring the energy flux at angle n̂i. We refer to the E(n̂i) as “detectors”.

The OPE developed in [1] gives a nonperturbative expansion for event shapes in the
separation between a pair of detectors 1− n̂1 · n̂2. Specifically, [1] gave a precise description
of the low “transverse spin” terms in this OPE. Here, “transverse spin” j refers to spin
on the celestial sphere: it is conjugate to rotation of the points n̂1, n̂2 around each other,
see figure 1. The spin J , a different quantum number, is related to selection rules for the
light-ray OPE.

The low transverse spin terms in the E × E OPE are given by spin J = 3 light-ray
operators [1], in accordance with an earlier analysis of the light-ray OPE by Hofman and
Maldacena [7]. This is the complete OPE in 3d CFTs, where the transverse direction is
1-dimensional. Furthermore, low transverse spin terms are sufficient for studying two-point
event shapes in rotationally-symmetric states in d > 3 dimensions. This covers many
of the cases studied in the literature, including simple energy two-point correlators in
QCD [6, 8–11] and N = 4 SYM [12–14].

In this work, we derive the remaining terms in the light-ray OPE, including arbitrary
transverse spin. Higher transverse spin terms are important in d > 3 dimensional theories

1See also [3] which derived the leading term in the expansion of a particular two-point event shape in
N = 4 SYM theory, and [4] which derived leading terms in collinear limits of energy-energy correlators in
the setting of perturbative gauge theories.
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Figure 2. Chew-Frautschi plot of light-ray operators in the E × E OPE in a hypothetical CFT.
We show Regge trajectories of even signature operators with transverse spins j = 0 (black curves),
j = 2 (blue curves), and j = 4 (green curves). Light-ray operators that appear in the E ×E OPE are
marked with dots. They include operators with spin J = 3 and transverse spins j = 0, 2, 4. (These
are the “low transverse spin” terms described in [1].) In addition, there are primary descendants of
light-ray operators with transverse spin j = 4 and spin J = 5, 7, 9, . . . .

when the initial state |Ψ〉 is not rotationally invariant or when other detectors are present.
For example, in an energy three-point correlator 〈Ψ|E(n̂1)E(n̂2)E(n̂3)|Ψ〉, transverse spin
in the E(n̂1)× E(n̂2) OPE encodes dependence of the event shape on the direction of the
tangent vector from n̂1 to n̂2 relative to the third direction n̂3.

In seeking the higher transverse spin terms in the E × E OPE, we initially encounter a
puzzle: there are no spin J = 3 primary light-ray operators of the type defined in [15] that
can do the job. The resolution is that higher transverse spin terms are “primary descendants”.
They are given by the action of special conformally-invariant differential operators D2n on
light-ray operators with higher spins J = 3 + 2n.2 These conformally-invariant differential
operators convert spin J into transverse spin j. They are well-defined only when acting on
objects with special quantum numbers — precisely the quantum numbers that arise in the
light-ray OPE. We find that the E × E OPE takes the schematic form

E × E =
∑
i

(
O+
i,J=3,j=0 + O+

i,J=3,j=2 + O+
i,J=3,j=4

)
+
∑
n,i

D2nO+
i,J=3+2n,j=4. (1.2)

Here, O+
i,J,j are light-ray operators on the i-th Regge trajectory with spin J and transverse

spin j. The special differential operators D2n act on O+
i,J=3+2n,j=4 to give higher transverse

spin terms. A Chew-Frautschi plot of the light-ray operators in (1.2) is depicted in figure 2.
The higher transverse spin terms are new ingredients in the light-ray OPE. However,

it is interesting that they do not require us to go outside the space of light-ray operators
defined in [15]. Instead, they are hidden in an interesting way inside the usual space

2In applications to event shapes such as (1.1), where the light-ray operators appearing in the OPE
are inserted at spatial infinity (and extend along the future null infinity), the operators D2n are actually
polynomials in the special conformal generators Kµ. This happens because an inversion which sends a finite
point to infinity maps the translation generators Pµ (which act by derivatives) to Kµ.
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of light-ray operators — at higher values of J . Along the way to understanding higher
transverse spin terms in the light-ray OPE, we will also find a much simpler derivation of
the original light-ray OPE from [1].

We begin in section 2 with an introduction to the kinematics of transverse spin, focusing
on the example of energy correlators in the process e+e− → hadrons. In section 3, we
provide a more detailed introduction to the underlying representation theory and the special
conformally-invariant differential operators that raise transverse spin. In section 4, we
give a new derivation of the light-ray OPE, using null-integrated scalars as an example.
In section 5, we generalize this discussion to the OPE of null integrals of arbitrary local
operators. In section 6, we rederive the scalar light-ray OPE using the light-ray OPE
formula for general operators, and give the light-ray operators that appear in the light-ray
OPE of two charge detectors and the light-ray OPE of two energy detectors. In section 7,
we check our formulas for an event shape in N = 4 SYM with a non-rotationally-symmetric
final state. We conclude in section 8 with discussion and future directions.

2 Event shapes, OPEs, and transverse spin

Event shapes describe patterns of excitations at future null infinity. Perhaps the most
important examples are energy correlators

〈Ψ|E(n̂1) · · · E(n̂n)|Ψ〉, (2.1)

which measure the distribution of energy at future null infinity in the state |Ψ〉. Here, E(n̂i)
are calorimeters inserted at future null infinity in the direction n̂i ∈ Sd−2 on the celestial
sphere. (We define them more precisely below.)

Suppose that |Ψ〉 is created by a linear combination of local operators Oi acting on the
vacuum,

|Ψ〉 =
∫
ddx

∑
i

fi(x)Oi(x)|Ω〉. (2.2)

The energy correlator is

〈Ψ|E(n̂1) · · · E(n̂n)|Ψ〉 =
∫
ddxddx′

∑
i,j

f∗i (x)fj(x′)〈Ω|O†i (x)E(n̂1) · · · E(n̂n)Oj(x′)|Ω〉

=
∫

ddp

(2π)d
∑
i,j

f̃∗j (p)f̃i(p)〈Oi(p)|E(n̂1) · · · E(n̂n)|Oj(p)〉, (2.3)

where

|Oi(p)〉 =
∫
ddxeipxOi(x)|Ω〉, (2.4)

and f̃i(p) is the Fourier transform of fi(x). The matrix element on the last line of (2.3) is
defined by stripping off a momentum-conserving delta function:

〈Oi(q)|E(n̂1) · · · E(n̂n)|Oj(p)〉 = 〈Oi(p)|E(n̂1) · · · E(n̂n)|Oj(p)〉(2π)dδd(p− q). (2.5)
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The delta-function δd(p− q) appears because the detectors E(n̂i) are translation-invariant:
translations do not alter the direction in which the excitations exit the system at future
null infinity. Thus, we are naturally led to study expectation values of energy detectors in
momentum eigenstates,

〈Oi(p)|E(n̂1) · · · E(n̂n)|Oj(p)〉. (2.6)

2.1 Example: e+e− → hadrons

As a concrete example, consider the Standard Model process e+e− → γ∗ → hadrons, treated
to leading order in the fine structure constant, but to all orders in the QCD coupling.3 The
relevant energy correlator is an expectation value in a state created by the electromagnetic
current Jµ,

ε∗ν〈Jν(p)|E(n̂1) · · · E(n̂n)|Jµ(p)〉εµ. (2.7)

Here, εµ is a polarization vector for an off-shell photon that depends on the beam direction
and helicities of the incoming e+e− pair. (We imagine that the collision occurs at high
energies, so the electrons can be treated as massless.) Suppose particle 1 moves along
the ~ez direction and particle 2 moves along the −~ez direction, with total momentum
p1 + p2 = p = (E, 0, 0, 0). We henceforth set E = 1. If the incoming helicities are 1+2−, the
corresponding polarization vector εµ is

εµ = λ2σ
µλ̄1 = (0, 1, i, 0). (2.8)

More generally, for helicities 1±2∓, we have

εµ = εµ± ≡ (0, 1,±i, 0). (2.9)

We can think of the ket and bra together in (2.7) as giving an (unnormalized) density
matrix. For example, for helicities 1+2−, we have the pure state

ρ1+2− = |Jµ(p)〉〈Jν(p)|εµ+εν−, (2.10)

where we used ε∗µ+ = εµ−. More generally, we may wish to study a mixed state, for example
by averaging over incoming helicities

ρav
12 = |Jµ(p)〉〈Jν(p)| · 1

2(εµ+εν− + εµ−ε
ν
+). (2.11)

It is common to additionally average over the beam direction, replacing εµ+εν− → 2
3(ηµν− pµpν

p2 ).
However, this discards valuable information, as we explain below.

3In practice, one considers the processes at high energies where hardonization corrections can be argued to
be relatively small [16, 17], and computes the above event shape using perturbative QCD. Such calculations
are one of the ways used to measure the strong coupling constant αs, see [18] and references therein.
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2.1.1 Symmetries and the density matrix

Let us understand how symmetries constrain energy correlators in the process e+e− →
hadrons. Along the way, we will introduce the notion of light-ray operators with nonzero
transverse spin and understand how they appear in event shapes. Instead of QCD, we will
work in a general 4-dimensional CFT. However, much of our analysis will not depend on
conformal symmetry. We point out when conformal symmetry is used below.

We concentrate on a two-point energy correlator in a density matrix where we average
over helicities (but not the beam direction)

Tr(ρav
12E(n̂1)E(n̂2)) = 〈Jν(p)|E(n̂1)E(n̂2)|Jµ(p)〉 · 1

2(εµ+εν− + εµ−ε
ν
+). (2.12)

Let us separate the tensor 1
2(εµ+εν− + εµ−ε

ν
+) into irreducible components under the rotation

group SO(3) that fixes p. Focusing on spatial components i, j = 1, 2, 3, we have the
traceless-symmetric and trace parts

1
2(εi+ε

j
− + εi−ε

j
+) =

(1
2(εi+ε

j
− + εi−ε

j
+)− 2

3δ
ij
)

+ 2
3δ

ij . (2.13)

The traceless-symmetric part can be written as a sum of products of null vectors ~q ∈ C3:4

1
2(εi+ε

j
− + εi−ε

j
+)− 2

3δ
ij =

∑
~q

qiqj . (2.14)

Plugging this in, we have

Tr(ρav
12E(n̂1)E(n̂2)) =

∑
q

〈Jν(p)|E(n̂1)E(n̂2)|Jµ(p)〉qµqν + trace part, (2.15)

where q = (0, ~q) and “trace part” refers to the contribution of the second term in (2.13).
Note that each q appearing in the sum is null and orthogonal to p:

q2 = q · p = 0. (2.16)

The form (2.15) makes it easy to analyze the constraints of symmetries, since now we have
only a single vector q instead of a tensor.

4This is a general fact about traceless symmetric tensors. An example decomposition in this case is

1
2(εi+εj− + εi−ε

j
+)− 2

3δ
ij =

∑
~q∈Q

qiqj

where Q contains four null vectors,

Q =
{

1√
6

(1, 0,±i), 1√
6

(0, 1,±i)
}
.

– 6 –
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2.1.2 Symmetries and detectors

Next we need a more precise definition of the detector E(n̂). It can be expressed as an
integral of the stress-tensor Tµν over future null infinity. To state this more concretely, we
can make a conformal transformation that maps future null infinity to the plane x− = 0.
We then have

E(n̂)→ 2
∫
dx+T++(x− = 0, x+, ~x), (2.17)

where ~x ∈ Rd−2 is a function of n̂. As explained in detail in [15], such null-integrated stress
tensors can be interpreted in terms of the “light-transform” of T , denoted by

L[T ](x, z), (2.18)

where x is a space-time position marking the starting point of the null integral, and z is a
future-directed null vector. The definition of L is given in (3.3) below. This description
is useful because L[T ](x, z) transforms like a primary operator at x. If we send x to past
null infinity, L[T ](x, z) becomes the null integral in (2.17). If we instead send x to spatial
infinity, then L[T ](x, z) becomes directly related to E(n̂),

E(n̂) = 2L[T ](∞, z) (2.19)

where z = (1, n̂).
In this work, we derive a nonperturbative OPE between light-ray operators that takes

the schematic form

L[T ](x, z1)L[T ](x, z2) =
∑

j=0,2,...

∑
i

C∆i−1,j(z1, z2, ∂z, ∂w)D∆i,j(x, z, w). (2.20)

Here, Cδ,j(z1, z2, ∂z, ∂w) is a differential operator that is fixed by Lorentz symmetry, and
D∆i,j(x, z, w) are light-ray operators that we characterize in more detail shortly. For now,
the only information about D∆i,j(x, z, w) that we need are its Lorentz transformation
properties. It is a homogeneous function of null vectors z ∈ Rd−1,1, w ∈ Cd−1,1 with
homogeneities

D∆i,j(x, αz, βw) = α1−∆iβjD∆i,j(x, z, w). (2.21)

Furthermore, z, w are subject to the constraints

z · z = w · w = w · z = 0, (2.22)

and the gauge redundancy

w ∼ w + λz. (2.23)

We can interpret z1, z2, and z as embedding space coordinates [19] on the celestial
sphere Sd−2, and w as an embedding space polarization vector on the celestial sphere.
The quantum number j labels spin on the celestial sphere, which we call “transverse spin”.

– 7 –
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Further, ∆i − 1 is a dimension on the celestial sphere, and (2.20) takes the form of an OPE
in a fictitious d−2-dimensional Euclidean CFT.

The dependence of E(n̂), D∆,j , and Cδ,j on the coordinates z1, z2, z, w relies only on
Lorentz symmetry — not full conformal symmetry.5 We will use conformal symmetry later
to derive (2.20) — in particular to constrain which D∆i,j can appear. However, it is possible
that a similar OPE exists in non-conformal theories, and our analysis of the contributions
of light-ray operators D∆i,j in this section will also apply in that case.

2.1.3 Symmetries and matrix elements

Using the OPE in (2.15), it suffices to compute matrix elements

〈Jν(p)|D∆i,j(∞, z, w)|Jµ(p)〉qµqν . (2.24)

In fact, let us analyze a more general matrix element where the density matrix has SO(d−1)
spin l:

M(z, w; p, q) = 〈Oµ1···µk(p)|D∆i,j(∞, z, w)|O′µk+1···µl(p)〉q
µ1 · · · qµl . (2.25)

The virtue of having classified the density matrix and light-ray operators into irreducible
components is thatM is fixed by symmetry. The argument is as follows. Because of the
gauge redundancy (2.23), w can only appear in the gauge-invariant combination

[z, w]µν = zµwν − wµzν . (2.26)

Because of (2.22), the only antisymmetric tensor we can contract this with is [p, q]. Since w
must appear with homogeneity j, we have

M(z, w; p, q) = ([z, w] · [p, q])j × something. (2.27)

Finally, homogeneity in q and z fix the rest of the matrix element up to an overall coefficient:

M(z, w; p, q) ∝ ([z, w] · [p, q])j(−z · q)l−j(−p · z)1−∆i−l. (2.28)

2.1.4 A selection rule

The result (2.28) manifests a selection rule: light-ray operators with transverse spin j only
have nonzero expectation values in density matrices with SO(d− 1) spin l at least j. In
other words, forM to be nonvanishing, we must have

j ≤ l. (2.29)

For example, if we average over the beam direction so that only density matrices with l = 0
appear, we discard information about light-ray operators with nonzero transverse spin.

Because of the selection rule (2.29), the low transverse spin terms in the E×E OPE (1.2),
which have j = 0, 2, 4, are sufficient for computing two-point event shapes in density matrices
with SO(d−1) spin 4 or less. This includes the scalar density matrix studied in [9, 10, 13, 14].
Higher transverse spin terms are important for density matrices with higher spin and in
multi-point event shapes.

5Note that our use of ∆ to denote one of the quantum numbers of D∆,j might suggest that we are relying
on conformal symmetry. We are not: here 1−∆ is the Lorentz spin of D∆,j . The reason for this convention
will become clear soon.
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2.1.5 The form of the light-ray OPE

The differential operator Cδ,j appearing in (2.20) has an expansion in the angle θ between
detectors, or equivalently in small −2z1 · z2 ≈ θ2. To leading order in this expansion, Cδ,j
acts as

Cδ,j(z1, z2, ∂z, ∂w)([z, w] · [p, q])jf(z) = (−2z1 · z2)
δ−j−6

2 (−[z1, z2] · [p, q])jf(z2) + . . . ,

(2.30)

where f(z) is any function of z with the correct homogeneity, and “. . . ” indicates higher-order
terms in θ. Applying this to (2.28), we find

〈Oµ1···µk(p)|L[T ](∞, z1)L[T ](∞, z2)|O′µk+1···µl(p)〉q
µ1 · · · qµl

=
∑
j,i

λi,j

(
(−2z1 · z2)

∆i−j−7
2 (−[z1, z2] · [p, q])j(−z2 · q)l−j(−z2 · p)1−∆i−l + . . .

)
, (2.31)

where λi,j are OPE coefficients that are not fixed by Lorentz symmetry. The “. . . ” on
the right-hand side are fixed by symmetry and re-sum into a celestial block [1].6 We have
written only the leading term of the celestial block for simplicity.

Let us specialize further to the kinematics of interest. Note that

[z1, z2] · [p, q] = 2~n12 · ~q, (2.32)

where zi = (1, n̂i), ~n12 = n̂1 − n̂2, and ~q are the spatial components of q. From (2.31), we
can compute the leading terms in the OPE for each possible value of l and j:

|~n12|∆i−9
(

(~ε+ · ~n12)(~ε− · ~n12)− 2
3~n

2
12

)
+ . . . (j = 2, l = 2),

|~n12|∆i−7
(

(~ε+ · n̂2)(~ε− · n̂2)− 2
3

)
+ . . . (j = 0, l = 2),

|~n12|∆i−7 + . . . (j = 0, l = 0), (2.33)

where we used (2.14) to replace the sum over q. In each case, the “. . . ” are fixed by symmetry
and resum into a celestial block. The fact that light-ray operators with j = 0 appear in two
different ways reflects the fact that matrix elements of a given light-ray operator can admit
multiple three-point structures, each of which comes with its own OPE coefficient. Light-ray
operators with j = 1 do not appear in the E × E OPE due to permutation symmetry under
n̂1 ↔ n̂2 (which follows from the fact that energy detectors commute).

To be completely explicit, let us parametrize the vectors as

n̂2 = Rzx(ψ)(0, 0, 1)
n̂1 = Rzx(ψ)(sin θ cosφ, sin θ sinφ, cos θ), (2.34)

where Rzx(ψ) is a rotation by ψ in the zx plane. Here, ψ is the angle between the (nearly
coincident) detectors and the beam, θ is the angle between detectors, and φ represents a

6We give some example calculations of celestial blocks in section 7.2.1.
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ψ

φ

θ

e+

e−

n̂1
n̂2

Figure 3. Kinematics of a two-point energy correlator in the process e+e− → hadrons. The picture
shows the spatial geometry in the center of mass frame; time is suppressed. Particles e+ and e−

propagate in along the ±~ez directions, and we measure energy flux in the directions n̂1, n̂2. (The
correlator is invariant under swapping e+ and e−.) ψ (solid green arc) is the angle between one of
the detectors n̂2 and the beam direction, θ (solid red arc) is the angle between detectors, and φ

(solid blue arc) parametrizes the angle of n̂1 around n̂2 on the celestial sphere.

rotation of the two detectors around each other on the celestial sphere, see figure 3. The
expressions (2.33) become

θ∆i−7
(1

3 − cos2 φ sin2 ψ

)
+ . . . (j = 2, l = 2),

θ∆i−7
(

sin2 ψ − 2
3

)
+ . . . (j = 0, l = 2),

θ∆i−7 + . . . (j = 0, l = 0), (2.35)

where “. . . ” are higher order terms in θ. As a check on the first line of (2.35), note that
if we set ψ = 0 or π, so that the detectors are both approaching the beam direction, the
dependence on φ goes away, reflecting the fact that our density matrix is invariant under
rotations around the beam direction.

Typically both theoretical and experimental analysis of the e+e− → hadrons process
focus on observables averaged over the beam direction. As explained above, this amounts to
throwing away the contribution of light-ray operators with non-zero transverse spin, which
contain extra information and can provide further nontrivial tests of QCD. Event shapes
that are not averaged over the beam direction, so-called oriented event shapes, were studied
experimentally at LEP by the DELPHI [20] and OPAL [21] collaborations. For a recent
discussion of oriented event shapes in QCD, see [22].

2.2 A transverse spin puzzle

So far, we have introduced the kinematics of the light-ray OPE inside a two-point event
shape. The next question is: what are the operators D∆i,j? In particular, what are the
corresponding values of ∆i and OPE coefficients? In [1], we derived the low transverse spin
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terms in the light-ray OPE. For simplicity, consider a product of light-transformed scalars
L[φ1]L[φ2]. The result of [1] is7

L[φ1](x, z1)L[φ2](x, z2) = πi
∑
i

C∆i−1,0(z1, z2, ∂z2)O+
∆i,J=−1(x, z2)

+ higher transverse spin. (2.36)

The operators O+
∆i,J=−1(x, z) are analytic continuations of null-integrated operators L[Oi]

to spin J = −1, where Oi appears in the φ1 × φ2 OPE. The quantum number ∆i becomes
the analytic continuation of scaling dimensions of Oi. The operators O+

∆i,J=−1(x, z) have
transverse spin j = 0 — in particular they depend only on x and z and not on an additional
polarization vector w. The reason is that only traceless symmetric tensors Oi appear in
the OPE of scalar operators. The light-transform L[Oi] of a traceless symmetric tensor has
vanishing transverse spin, and thus so do its analytic continuations.

Note that in d = 3 all (bosonic) operators are traceless-symmetric tensors and cor-
respondingly there is no transverse spin in d − 2 = 1 dimension. The higher transverse
spin terms in (2.36) are absent in this case. However, in d > 3 the transverse spin j

can be non-trivial and we expect infinitely many higher transverse spin terms to appear
in (2.36), since there is no reason to expect the event shapes to be independent of the angle
φ discussed above.8

It is natural to expect that higher transverse-spin terms in (2.36) should also be related
to the φ1 × φ2 OPE. However, this presents a puzzle: all the primary light-ray operators
O∆i,J (x, z) built from φ1 × φ2 using the construction of [15] have vanishing transverse spin.
How can we build light-ray operators with nonzero transverse spin to play the role of D∆i,j

with j > 0? It turns out that the D∆i,j are primary descendants of O∆i,J — i.e. carefully
chosen derivatives of O∆i,J that nonetheless transform like conformal primaries. In the next
section, we explain how such primary descendants arise.

3 Building transverse spin with differential operators

3.1 Local operators, light transforms, and shortening conditions

Consider a local operator Oµ1···µJ (x) with dimension ∆ and spin J . Throughout this
work, we will use index-free notation, where we contract spin indices with an auxiliary null
polarization vector z ∈ Rd−1,1:

O(x, z) = Oµ1···µJ (x)zµ1···µJ , (z2 = 0). (3.1)
7As explained in [23], this product is only well-defined for a theory with a sufficiently low Regge intercept.

Here we assume this is the case for the sake of illustration.
8The more accurate statement is that the first line of (2.36) already contains higher-transverse spin terms:

they are generated by the operators Cδ,0. However, since the operators Cδ,0 are fixed by Lorentz symmetry,
these contributions are determined in terms of j = 0 contributions and therefore the event shapes would still
be over-constrained if there were no additional contributions to (2.36). For example, one would be able to
write a differential equation in z1, z2 that the product L[φ1](x, z1)L[φ2](x, z2) would have to satisfy. It can
be checked that this differential equation is incompatible with the leading term of the L[φ2]× L[φ3] OPE in
〈Ψ|L[φ1]L[φ2]L[φ3]|Ψ〉.
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By construction, O(x, z) is a homogeneous polynomial of degree J in z. Under a conformal
transformation U , we have

UO(x, z)U−1 = Ω(x′)∆O(x′, R(x′)z), (3.2)

where Ω(x′) and R(x′) are the local rescaling and rotation associated to U .
Index-free notation is more than a convenience. It allows us to describe a wider class of

conformal representations than those associated to local operators. As an example, consider
the light-transform

L[O](x, z) =
∫ ∞
−∞

dα(−α)−∆−JO
(
x− z

α
, z

)
, (3.3)

which is an integral of O in the direction of its polarization vector. Using index-free notation,
we can interpret the light-transform as a conformally-invariant transform, changing the
quantum numbers (∆, J) by

L : (∆, J)→ (1− J, 1−∆). (3.4)

In other words, L[O](x, z) satisfies the conformal transformation law (3.2), with ∆ replaced
by 1−J and J replaced by 1−∆. (This is clearest from the definition of the light-transform
in the embedding space [15].) In general, we define the spin of an object as its homogeneity
in the polarization vector z. Because L[O](x, z) has non-integer spin 1−∆, it cannot be
written in terms of an underlying tensor with 1−∆ indices.

Though index-free notation appears to treat the nonlocal operator L[O] in the same
way as the local operator O, there is still something special about the representations
associated to local operators. Specifically, a local operator is a polynomial in its polarization
vector. This can be phrased as a kind of shortening condition. Morally speaking, J + 1
derivatives of O(x, z) with respect to z must vanish:

“∂µ1
z · · · ∂µJ+1

z O(x, z)” = 0. (3.5)

We must take care to write this condition correctly because z is constrained, z2 = 0. Let us
parametrize z by

z = (1, ~y2, ~y), ~y ∈ Rd−2, (3.6)

where we use lightcone coordinates z = (z+, z−, ~z) with metric dz2 = −dz+dz− + d~z · d~z. A
more proper shortening condition is

∂i1~y · · · ∂
iJ+1
~y O(x, z)− traces = 0, (3.7)

where we subtract traces using the metric on Rd−2. The argument for (3.7) is as follows.
O(x, z) is a sum of products of J factors of 1, ~y2 and the components of ~y. If J + 1
~y-derivatives of some term is nonzero, at least two of those derivatives must act on the
same ~y2 factor, resulting in a nonzero trace. By subtracting traces, we remove such terms.

– 12 –



J
H
E
P
0
5
(
2
0
2
2
)
0
5
9

The shortening condition (3.7) is naturally a traceless symmetric tensor with spin J + 1
in the “transverse" space Rd−2. We can write it more economically by introducing a null
vector ~s ∈ Cd−2 such that ~s2 = 0:

(~s · ∂~y)J+1O(x, z) = 0. (3.8)

We can make (3.8) Lorentz-invariant by introducing a polarization vector w = (0, 2~y ·~s,~s) ∈
Cd−1,1. By construction, w is null and transverse to z, i.e. w · z = w2 = 0. We would
like w to encode only the d− 2 degrees of freedom in ~s, so we must additionally impose a
gauge-redundancy w ∼ w + λz. The condition (3.8) finally becomes

(w · ∂z)J+1O(x, z) = 0. (3.9)

One can check that the differential operator (w · ∂z)J+1 preserves the ideal generated
by z2 = w · z = w2 = 0. More nontrivially, it is gauge invariant under w → w+ λz precisely
when acting on functions with homogeneity J in z (we show this in (3.24) below).

The shortening condition (3.9) for O implies a related shortening condition for L[O].
For simplicity, suppose O is a scalar, i.e. J = 0. By integrating by parts inside the
light-transform (3.3), we find

L(w ·∂z) = 1
2−∆

(
(z ·∂x)(w ·∂z)−(z ·∂z)(w ·∂x)

)
L (acting on scalars with dimension ∆).

(3.10)

Consequently, L[O] satisfies its own shortening condition(
(z · ∂x)(w · ∂z)− (z · ∂z)(w · ∂x)

)
L[O](x, z) = 0 (O scalar), (3.11)

inherited from the shortening condition (3.9) for O. Just as w · ∂z is Lorentz-invariant (also
conformally-invariant) only when acting on scalar representations, (z·∂x)(w·∂z)−(z·∂z)(w·∂x)
is conformally-invariant only when acting on representations with the quantum numbers of
L[O], i.e. with dimension 1− 0 = 1.

3.2 Reducibility and primary descendants

The operator (z ·∂x)(w ·∂z)− (z ·∂z)(w ·∂x) can be compared to other conformally-invariant
differential operators that exist for special quantum numbers. A well-known example is the
operator that takes a current to its divergence

J µ → ∂µJ µ = (∂x · ∂z)J (x, z). (3.12)

On the right-hand side, we have written the divergence in index-free notation.
The operator ∂x · ∂z changes quantum numbers (∆, J) by

∂x · ∂z : (d− 1, 1)→ (d, 0). (3.13)

It is conformally-invariant only when acting on operators with the correct dimension and
spin. This has the following representation-theoretic interpretation. Let V∆,J be a long
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multiplet (i.e. a generalized Verma module, see e.g. [24]) of the conformal group with
dimension ∆ and spin J . V∆,1 is irreducible for generic ∆. However it becomes reducible
when ∆ = d− 1:

Vd−1,1 ⊃ Vd,0. (3.14)

The quotient Ṽd−1,1 ≡ Vd−1,1/Vd,0 is the short representation associated to a conserved
current. If |J (z)〉 = zµ|J µ〉 is the highest-weight state of Vd−1,1, then the highest-weight
state of Vd,0 ⊂ Vd−1,1 is

P · ∂z|J (z)〉 (primary descendant). (3.15)

We say that (3.15) is a “primary descendant”. More formally, there exists a homomorphism

Φ : Vd,0 → Vd−1,1, (3.16)

sending the highest-weight state of Vd,0 to (3.15) inside Vd−1,1. By replacing P → ∂x inside
the expression for the primary descendant, we find the conformally-invariant differential
operator (3.13).

In summary, conformally-invariant differential operators are in correspondence with
reducible generalized Verma modules — i.e. generalized Verma modules that contain primary
descendants. The differential operators arising in this way have been studied in the
mathematics literature, and also in the physics literature due to their relation to poles in
conformal blocks [24–27]. We refer the reader to [24] for a lucid discussion and classification.
In order to compare our operator (3.11) to the classification in [24], we must understand
the quantum numbers of the corresponding primary descendant.9

3.3 Index-free notation for general tensor representations

A general finite-dimensional tensor representation ρ of SO(d− 1, 1) has a Young diagram
with rows of length (m1,m2, . . . ,mn), where n = bd2c, see figure 4. We define spin J = m1 as
the length of the first row of the Young diagram of ρ. The remaining rows λ = (m2, . . . ,mn)
define a representation of SO(d− 2). We define transverse spin j = m2 as the length of the
first row of the Young diagram of λ.

An operator in the representation ρ has indices Oµ1···µJ ;ν1···νm2 ;··· ;ρ1···ρmn (x). Each
index group delimited by semicolons is symmetric. Furthermore, O is traceless in all its

9Strictly speaking, we need to be more careful because the notion of generalized (aka parabolic) Verma
module depends on a choice of a parabolic subalgebra of conformal algebra. This choice determines, in
particular, which quantum numbers can be non-integer. In [24] the parabolic subalgebra is the maximal
one for Euclidean conformal algebra, and it allows for non-integer ∆. Here, we are interested in both ∆
and J being non-integer, which requires us to consider the maximal parabolic subalgebra of Lorentzian
conformal algebra. Therefore, the classification of [24] is not, strictly speaking, applicable here. It would be
interesting to have a full classification for Lorentzian conformal group. We take a more simplistic approach:
our conformally-invariant differential operators can be identified with analytic continuations in J of the
differential operators classified in [24], and this will be enough for our purposes.
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m1 = J

m2 = j

m3
...

mn−1

mn

ρ
λ

γ

Figure 4. A Young diagram for an irreducible representation ρ of SO(d − 1, 1). The rows have
length m1,m2, . . . ,mn. We often write m1 = J (spin) and m2 = j (transverse spin). If we remove
the first row of the Young diagram for ρ, the remaining rows (m2, . . . ,mn) make a Young diagram
for an irreducible representation λ of SO(d − 2). If we remove another row, the remaining rows
(m4, . . . ,mn) make a Young diagram for an irreducible representation γ of SO(d− 4).

indices, and satisfies some additional symmetry conditions that we describe below.10 To
use index-free notation, we introduce null polarization vectors z, w1, . . . , wn−1 for each row:

O(x, z,w) = O(x, z, w1, . . . , wn−1)
= Oµ1···µJ ;ν1···νm2 ;··· ;ρ1···ρmn (x)zµ1 · · · zµJw1,ν1 · · ·w1,νm2

· · ·wn−1,ρ1 · · ·wn−1,ρmn .

(3.17)

Here we used the notation w to denote the collection of vectors wi, i = 1 · · ·n − 1. The
polarization vectors satisfy the relations

0 = z2

0 = w2
1 = w1 · z

0 = w2
2 = w2 · w1 = w2 · z

...
0 = w2

n−1 = wn−1 · wn−2 = · · · = wn−1 · z. (3.18)

The additional symmetry properties of O are equivalent to the statement that O(x, z,w) is
invariant under the gauge redundancies

w1 ∼ w1 + #z
w2 ∼ w2 + #w1 + #z

...
wn−1 ∼ wn−1 + #wn−2 + · · ·+ #z. (3.19)

The object O(x,z,w) is a homogeneous polynomial of the polarization vectors z,w1, . . . ,wn−1
with degrees (J,m2, . . . ,mn). We often abbreviate w1 =w.

10For simplicity, we only consider the bosonic representations, i.e. the representations of SO(d− 1, 1) and
not of Spin(d− 1, 1). Furthermore, we ignore the possible self-duality conditions in even d.
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The index-free formalism we have just developed is essentially the embedding space
formalism for the Lorentz group.11 In the embedding formalism, a traceless symmetric
tensor operator in d-dimensions becomes a homogeneous function O(X,Z) of variables
X,Z ∈ Rd+1,1 satisfying X2 = X · Z = Z2 = 0 and a gauge redundancy Z ∼ Z + λX [19].
The Lorentz group SO(d − 1, 1) is of course the conformal group in d − 2 dimensions.
Thus the embedding formalism applies, with the d+ 2 dimensional X and Z replaced by
the d-dimensional z and w. In particular, z can be interpreted as an embedding-space
coordinate in d− 2 dimensions.

3.4 Raising transverse spin

We can now recognize w · ∂z (with w1 = w) as a differential operator that raises transverse
spin j, since it increases the degree in w by 1. Specifically, it changes the quantum numbers
(∆, J, j) by

w · ∂z : (∆, 0, 0)→ (∆,−1, 1). (3.20)

The operator (z · ∂x)(w · ∂z)− (z · ∂z)(w · ∂x), obtained by commuting w · ∂z through the
light-transform, changes (light-transformed) quantum numbers (1− J, 1−∆, j) by

(z · ∂x)(w · ∂z)− (z · ∂z)(w · ∂x) : (1, 1−∆, 0)→ (2, 1−∆, 1). (3.21)

More generally, let us define the operator

D′n = 1
n! (w · ∂z)

n, (3.22)

D′n : (∆, n+ j − 1, j)→ (∆, j − 1, j + n). (3.23)

The operator D′n provides the shortening condition for the Lorentz representation of local
operators with spin J = n+ j − 1 and transverse spin j. Note that D′n preserves the ideal
generated by z2 = w ·z = w2 = 0. More nontrivially, it is gauge-invariant under w → w+λz.
To see this, we act with the generator of a gauge transformation z · ∂w on D′nf(z, w), where
f(z, w) is gauge-invariant:

z · ∂w(w · ∂z)nf(z, w) =
n−1∑
j=0

(w · ∂z)j(z · ∂z − w · ∂w)(w · ∂z)n−j−1f(z, w)

=
n−1∑
j=0

(2j − n+ 1)(w · ∂z)n−1f(z, w)

= 0. (3.24)

In the first line, we commute z · ∂w past other operators until it acts on f(z, w), which it
kills. In the second line, we use that f(z, w) has homogeneity n + j − 1 in z and j in w.
This computation shows that D′n is Lorentz-invariant. Because local operators transform in
irreducible representations of the Lorentz group, Schur’s lemma implies that they must be
killed by D′n.

11More generally, it comes from the Borel-Weil theorem, see [1] for details.
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By commuting D′n through the light transform,

LD′n = DnL, (3.25)

we find a new operator Dn given by

Dn = (−1)nΓ(∆ + j − 2)
Γ(∆ + j − 2 + n)Γ(n+ 1)(∂x · D0+

z,w)n,

D0+
z,w;µ = wµ(w · ∂w − z · ∂z) + zµw · ∂z. (3.26)

Here, (D0+
z,w)µ is a weight-shifting operator for the Lorentz group SO(d− 1, 1) in the vector

representation [28]. It can be obtained from the vector weight-shifting operators for the
conformal group in [28] by using the analogy of (z, w) with the embedding-space coordinates
(X,Z). The operator Dn is conformally-invariant precisely when acting on the quantum
numbers obtained by light-transforming (3.23):

Dn : (2− n− j, 1−∆, j)→ (2− j, 1−∆, j + n). (3.27)

The operator Dn falls into the classification of reducible Verma modules described in [24].
In the notation of [24], it has type I2,n.12,9

To summarize, by commuting D′n through the light transform, we obtain a special
conformally-invariant differential operator Dn that raises transverse spin. By construction,
Dn vanishes when acting on the light transform of a local operator with the appropriate
quantum numbers, since

DnL[O] = L[D′nO] = 0. (3.28)

Shortly, we will encounter light-ray operators O±i,J,j(x, z) that are conformal primaries with
quantum numbers (1− J, 1−∆i, j), but that are not light-transforms of local operators.
When J = n+ j − 1 with n ∈ Z≥0, we can act on such operators with Dn to obtain new
primary descendants with higher transverse spin

DnO±i,J=n+j−1,j(x, z) : (2− j, 1−∆i, j + n). (3.29)

Primary descendants of this type will provide the higher transverse spin terms in the
light-ray OPE.

4 The complete OPE of scalar detectors

In this section we will explicitly derive the OPE of the form (2.20) for two scalar detectors
L[φ1]L[φ2]. As discussed in [23], products of scalar detectors are not in general well-
defined non-perturbatively. Nevertheless, they make sense kinematically, and give us a nice
playground to demonstrate the key concepts, which we will then generalize to arbitrary
detectors in section 5. Furthermore, in section 7 we will see an example where L[φ1]L[φ2] is
well-defined and the formulas from this section can be verified.

12Similarly, we can think of D′ as an invariant differential operator with respect to SO(d−1, 1) (the Lorentz
group), thought of as the conformal group in d− 2 dimensions. In the notation of [24], it has type I1,n.
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4.1 Kinematics of the OPE

Let us understand the general form that the OPE should take. First note that the product

W(x, z1, z2) ≡ L[φ1](x, z1)L[φ2](x, z2), (4.1)

is a conformal primary, if it is well-defined. This is because

[Kµ,W(0,z1,z2)] = [Kµ,L[φ1](0,z1)L[φ2](0,z2)]
= [Kµ,L[φ1](0,z1)]L[φ2](0,z2)+L[φ1](0,z1)[Kµ,L[φ2](0,z2)] = 0. (4.2)

Similarly, the scaling dimension of W(x, z1, z2) is the sum of scaling dimensions of L[φi],

∆W = (1− J1) + (1− J2) = 2. (4.3)

However, the operator W(x, z1, z2) does not transform irreducibly under the Lorentz group —
it depends on two polarization vectors, but they do not satisfy any of the relations described
in section 3 among themselves. The OPE (2.20) decomposes W(x, z1, z2) into irreducible
components, since the detectors D(x, z, w) are irreducible under the Lorentz group.

In fact, the problem of decomposing W(x, z1, z2) into irreducible representations of
the Lorentz group is a familiar one. The Lorentz group SO(d − 1, 1) is isomorphic to
the Euclidean conformal group in d− 2 dimensions. Under this isomorphism, zi become
embedding-space coordinates [19, 29] for a fictitious CFTd−2. By the definition of spin we
have L[φi](x, λzi) = λ1−∆iL[φi](x, zi), where ∆i is the scaling dimension of φi.13 At the same
time, primary operators Pδ in the embedding formalism for the fictitious CFTd−2 should
satisfy Pδ(λz1) = λ−δPδ(z1), where δ is the (d− 2)-dimensional scaling dimension. Thus, if
we interpret the Lorentz group as a (d−2)-dimensional conformal group, the transformation
properties of W(x, z1, z2) under Lorentz transformations can be described as14

W(0, z1, z2) ∼ Pδ1(z1)Pδ2(z2), (4.4)

where δi = ∆i − 1. In particular, if we parameterize zi as in (3.6),

z+
i = 1, z−i = ~y2, zµi = yµ (µ = 2, · · · , d− 1), (4.5)

for ~y ∈ Rd−2, then

W(0, ~y1, ~y2) ∼ Pδ1(~y1)Pδ2(~y2) (4.6)

transforms exactly like a pair of scalar primaries with dimensions δ1, δ2 at coordinates ~y1, ~y2
in the fictitious CFTd−2.

We are familiar with taking the usual OPE between two scalar primaries,

Pδ1(~y1)Pδ2(~y2) =
∑
δ,j

Cδ,j;µ1···µj (~y1, ~y2, ∂~y2)Pµ1···µj
δ,j (~y2), (4.7)

13Recall that spin of L[φi] is 1−∆i.
14Provided that by Lorentz group we mean the group that fixes x. We take x = 0 and use the standard

Lorentz group for concreteness.
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where j is the (d − 2)-dimensional traceless-symmetric spin.15 The differential operator
Cδ,j;µ1···µj (~y1, ~y2, ∂~y2) is fixed by (d− 2)-dimensional conformal symmetry and is the usual
operator in Euclidean CFTd−2. It implicitly depends on δ1, δ2. For example, the leading
term of this operator in the ~y1 → ~y2 limit is given by

Cµ1···µj
δ,j (~y1, ~y2, ∂~y2) = |~y12|δ−δ1−δ2−j(yµ1

12 · · · y
µj
12 − traces) + · · · . (4.8)

It will be convenient to work with (4.7) written in embedding space coordinates. For this,
note that traceless-symmetric primary operators Pµ1···µj

δ,j (~y) are described in the embedding
formalism as functions of z, w satisfying z2 = w2 = z · w = 0 subject to

Pδ,j(z, w) = Pδ,j(z, w + αz), (4.9)
Pδ,j(z, λw) = λjPδ,j(z, w). (4.10)

In the notation of [19] we have Pthere = zhere, Zthere = where. So we can rewrite (4.7) as

Pδ1(z1)Pδ2(z2) =
∑
δ,j

Cδ,j(z1, z2, ∂z2 , ∂w2)Pδ,j(z2, w2), (4.11)

where Cδ,j(z1, z2, ∂z2 , ∂w2) is Cδ,j;µ1···µj (~y1, ~y2, ∂~y2), “lifted” to the embedding space. The
embedding space expression for Cδ,j has been studied in a number of papers (e.g. [30–33] to
name a few), but we will not need its explicit form. All we need is that it is SO(d− 1, 1)-
invariant and upon restriction to the Poincaré section it becomes (4.7).

Translating this back to W(x, z1, z2), we see that the Lorentz symmetry requires the
detector OPE to take the form

W(x, ~y1, ~y2) =
∑
i

Cδi,ji;µ1···µji (~y1, ~y2, ∂~y2)Wµ1···µji
i (x, ~y2) (4.12)

or

L[φ1](x, z1)L[φ2](x, z2) = W(x, z1, z2) =
∑
i

Cδi,ji(z1, z2, ∂z2 , ∂w2)Wi(x, z2, w2), (4.13)

for some primary operators Wi(x, z, w) with (d− 2)-dimensional quantum numbers δi, ji.16

Note that w satisfies the same properties as the second-row polarization vector w in section 3,
and so the operators Wi(x, z, w) transform in irreps of SO(d− 1, 1) with two-row Young
diagrams, with the first row of length −δi and the second row of length ji.

4.2 Harmonic analysis on the celestial sphere

So far, (4.13) is an ansatz based on kinematics. In this section we will show under which
conditions (4.13) holds, and provide a formula for Wi(x, z, w).

We will focus on a generic matrix element of W(x, z1, z2). Specifically, we will consider
an expectation value of the form

W (z1, z2) ≡ 〈O4(p)|W(∞, z1, z2)|O3(p)〉, (4.14)
15Normally, we would have OPE coefficients in the right-hand side. Since here we are just discussing

kinematics, we omit them. One can imagine that they have been absorbed into the definition of Pδ,j .
16Above, we had set x = 0 but by translation invariance this is valid for any x.
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for some local operators O3,O4. We allow O3 and O4 to carry arbitrary spin and do not
require them to be primary.

In the language of the fictitious CFTd−2, W (z1, z2) is a function of two points that
at each point transforms as a scalar primary of dimension δi. The main idea is then to
decompose W (z1, z2) into (d − 2)-dimensional conformal partial waves [34, 35]. This is
equivalent to constructing the SO(d− 1, 1) Casimir operators from the Lorentz generators
Mµν defined by

Mµν = Mµν
1 +Mµν

2 , (4.15)
Mµν
i = zνi

∂
∂zµ,i

− zµi ∂
∂zν,i

, (4.16)

and finding a basis of their common eigenfunctions.17 In fact, note that the standard
conformally-invariant three-point functions

〈Pδ1(z1)Pδ2(z2)Pδ,j(z, w)〉 = (−4)j(w · z2z1 · z − w · z1z2 · z)j

(−2z1 · z2)
δ1+δ2−δ+j

2 (−2z1 · z)
δ1+δ−δ2+j

2 (−2z2 · z)
δ2+δ−δ1+j

2

(4.17)

are eigenfunctions of all the Casimirs for any z, w and δ, j.18 This is because by conformal
invariance, the action of the Casimirs on z1, z2 on (4.17) is equivalent to the action on z, w,
and Pδ,j is irreducible. Modulo technical details that we omit for simplicity (see [1, 35]),
these eigenfunctions form a complete basis and we have

W (z1, z2) =
∞∑
j=0

∫ d
2 +i∞

d
2−i∞

dδ

2πi

∫
Dd−2z 〈Pδ1(z1)Pδ2(z2)Pδ,j(z,Dw)〉W ′

δ̃,j
(z, w) (4.18)

for some W ′
δ̃,j

(z, w), δ̃ = d− 2− δ. Here the integration measure in z is the standard [38]19

Dd−2z = 2d
dzδ(z2)θ(z0)
vol SO(1, 1) , (4.19)

and Dw is roughly equivalent to ∂w [19] and serves to contract the indices encoded by w
between W ′ and Pδ,j . This can be written in a form more similar to (4.13) by using the fact

〈Pδ1(z1)Pδ2(z2)Pδ,j(z, w)〉 = Cδ,j(z1, z2, ∂z2 , ∂w2)〈Pδ,j(z2, w2)Pδ,j(z, w)〉, (4.20)

for the normalization of Cδ,j as in (4.8) and for the standard two-point function given by18

〈Pδ,j(z1, w1)Pδ,j(z2, w2)〉 = (−2(w1 · w2) + 2(w1 · z2)(w2 · z1)/(z1 · z2))j

(−2z1 · z2)δ . (4.21)

17These Casimir operators are only self-adjoint if δi ∈ d−2
2 + iR. The forthcoming discussion is also only

strictly rigorous under this condition and for square-integrable W (z1, z2). In practice, however, usually one
can analytically continue to general δi and work with non-square-integrable W (z1, z2), provided certain care
is taken in the process. See the discussions in [15, 36, 37] for details.

18Our conventions for tensor structures are summarized in appendix B.
19Upon restriction to the Poincaré section (4.5), this measure becomes simply dd−2~y.
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Using (4.20), we find20

W (z1, z2) =
∞∑
j=0

∫ d−2
2 +i∞

d−2
2 −i∞

dδ

2πi Cδ,j(z1, z2, ∂z2 , ∂w2)Wδ,j(z2, w2), (4.22)

where

Wδ,j(z2, w2) =
∫
Dd−2z〈Pδ,j(z2, w2)Pδ,j(z,Dw)〉W ′

δ̃,j
(z, w). (4.23)

Using orthogonality of eigenfunctions, we can now find the inverse to (4.18) to compute
W ′ and thus W . It is given by taking the inner product with the eigenfunctions,

Wδ,j(z, w) ≡ αδ,j
∫
Dd−2z1D

d−2z2〈P̃δ1(z1)P̃δ2(z2)Pδ,j(z, w)〉W (z1, z2), (4.24)

where the normalization coefficient has been computed, for example, in [1]

αδ,j =
(−1)jΓ(j+ d−2

2 )Γ(d−2+j−δ)Γ(δ−1)
2πd−2Γ(j+1)Γ(δ− d−2

2 )Γ(δ+j−1)
Γ( δ+j+δ1−δ22 )Γ( δ+j+δ2−δ12 )

Γ(d−δ+j+δ1−δ22 )Γ(d−δ+j+δ2−δ12 )
, (4.25)

and P̃δ ≡ Pδ̃ = Pd−2−δ.21

What is the relationship between the OPE ansatz (4.13) and the integral expres-
sion (4.22)? If Wδ,j(z, w) is meromorphic in the right half-plane of δ, we can deform the
integration contour in (4.22).22 In this way, we would obtain

〈O4(p)|Wi(∞, z, w)|O3(p)〉 = −resδ=δiWδ,ji(z, w). (4.26)

Since p, O3, and O4 were arbitrary, this completely determines Wi(∞, z, w) as an operator.

4.3 Relation to light-ray operators

4.3.1 Review of light-ray operators

We now show that Wδ,j(z, w) is indeed expected to be meromorphic, with residues related
to light-ray operators. Let us first review the definition and some basic properties of these
operators.

Light-ray operators [15] are primary operators

Ô±i,J,λ(x, z,w), (4.27)
20A subtlety is that (4.20) does not converge for all values of the coordinates, for similar reasons that the

usual Euclidean OPE does not converge in all Euclidean configurations. The proper justification of this
step is the same as in the case when one passes from conformal partial waves to conformal blocks in partial
conformal wave expansion of a four-point function [35, 39].

21For δi ∈ d−2
2 + iR we have δ̃i = δ∗i and (4.24) just contains the complex conjugate of the wavefunction,

as usual — recall footnote 17.
22In such deformations of the contour in the partial wave expansions one usually encounters “spurious”

poles. Instead of representing physical contributions, they are purely kinematical and cancel among each
other or against the possible discrete series contributions that we omitted in (4.18). See [36] for an example
of cancellation of these poles in usual four-point functions, and [1] for an example of cancellation in event
shapes (for low transverse spin). To simplify the discussion, in this paper we assume that the spurious poles
always cancel.
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parametrized by a spin J (the length of the first row of the SO(d− 1, 1) Young diagram),
an SO(d− 2) representation λ (the remaining rows of the SO(d− 1, 1) Young diagram), a
Regge trajectory label i, and a signature ±. Their defining property is that they are defined
for generic complex spin J and are related to local operators for certain integer values of J .
Specifically, we have

Ô±i,J,λ(x, z,w) = L[O](x, z,w) (J ∈ Z≥0 and (−1)J = ±1) (4.28)

for some local operator O with SO(d−1, 1) representation (J, λ) whenever J is a non-negative
integer such that (−1)J = ±1 (where ± indicates the signature). That is, the operators
Ô+
i,J,λ are related to even-spin local operators, while Ô−i,J,λ are related to odd-spin local

operators. The light-ray operators Ô±i,J,λ thus organize the local operators into continuous
families or “Regge trajectories”, and we label different trajectories by the index i.23

In practice we construct light-ray operators from a product of two primaries O1 and
O2.24 In this section, we are interested in light-ray operators that appear in the φ1, φ2
OPE, so we use O1 = φ1,O2 = φ2 to construct them. These operators all have λ = 0
since only traceless-symmetric operators appear in the OPE of two scalars, and analytic
continuation in spin does not affect the 2nd and higher rows of the Young diagram. We
define, following [15]

O±∆,J(x, z) ≡ ±
∫ ′
x1≈x+
x2≈x

ddx1d
dx2K

t
∆,J(x1, x2;x, z)φ1(x1)φ2(x2)

+
∫ ′
x1≈x
x2≈x+

ddx1d
dx2K

u
∆,J(x1, x2;x, z)φ2(x2)φ1(x1), (4.29)

where [15]

Kt
∆,J(x1, x2;x, z) = β∆,J〈0|φ̃1(x1)L[O]φ̃2(x2)|0〉,

Ku
∆,J(x1, x2;x, z) = β∆,J〈0|φ̃2(x2)L[O]φ̃1(x1)|0〉, (4.30)

where 〈0| · · · |0〉 denote the standard tensor structures for the Wightman three-point functions
as defined in appendix B.25 The primes on the integrals indicate that we should restrict x1
and x2 to an arbitrary small neighborhood of the null cone of x. The dependence on this
arbitrary choice will go away momentarily. We also used the notation a ≈ b to indicate that
points a and b are spacelike, and x+ denotes the image of x in the next Poincaré patch on
the Lorentzian cylinder. The integrals are understood to be over the Lorentzian cylinder
in order to preserve manifest conformal invariance. The coefficient β∆,J has an expression

23The simple picture of operators organized into isolated Regge trajectories is not rigorously proven. We
give a discussion of its correctness in appendix A. Even if it is not correct, the results of this paper are
mostly unchanged, but become more awkward to phrase. For simplicity of presentation, we take it as an
assumption in the main text, and delegate more nuanced discussion to appendix A.

24We expect that we get the same light-ray operators from any pair of local operators with the appropriate
quantum numbers.

25In particular, the structures appearing in Kt and Ku are not related to each other by a direct analytic
continuation. Instead, they differ simply by the substitution 1↔ 2.

– 22 –



J
H
E
P
0
5
(
2
0
2
2
)
0
5
9

in terms of the Plancherel measure of SO(d + 1, 1), shadow coefficients, and Euclidean
three-point pairings [15]. Here we will only need the explicit expression

β∆,J =
Γ(J + d

2)Γ(d+ J −∆)Γ(∆− 1)
2πdΓ(J + 1)Γ(∆− d

2)Γ(∆ + J − 1)
Γ(∆+J+∆12

2 )Γ(∆+J−∆12
2 )

Γ(d−∆+J+∆12
2 )Γ(d−∆+J−∆12

2 )
, (4.31)

where ∆12 = ∆1 −∆2.
We then finally define

O±i,J(x, z) = res∆=∆i(J)O±∆,J(x, z), (4.32)

where ∆i(J) are the scaling dimensions of the i-th Regge trajectory. To be more precise,
from the Lorentzian inversion formula the matrix elements of O±∆,J(x, z) have poles at
∆ = ∆i(J) for integer J ≥ 0, (−1)J = ±1, and these poles analytically continue to J ∈ C
(modulo subtleties discussed in appendix A). The poles come from the integration region
in (4.29) where x1 and x2 approach the null-cone of x, and thus the residues are independent
of the precise choice of integration region for the primed integrals. The operators thus
defined satisfy

O±i,J(x, z) = f12OL[O](x, z), when J ∈ Z≥0, (−1)J = ±1, (4.33)

for some local operator O, where f12O is the OPE coefficient appearing in 〈φ1φ2O〉. For
general J ∈ C we have

O±i,J(x, z) = f12i(J)Ô±i,J(x, z), (4.34)

where f12i(J) is the analytic continuation of f12O along the i-th Regge trajectory. Note that
O±i,J (x, z) was constructed from a particular pair of local operators φ1, φ2. The above relation
provides the connection between O±i,J (x, z) constructed from different pairs of local operators.

While the normalized operators Ô±i,J(x, z) are more fundamental, for our purposes it
will be more convenient to work with the operators O±i,J(x, z) constructed from φ1, φ2.

4.3.2 The transverse spin puzzle

We now relate Wi(x, z, w) in (4.13) to the light-ray operators O±i,J(x, z). Consider the
quantum numbers of O±i,J(x, z). By construction, they have scaling dimension 1− J and a
one-row Lorentz representation with spin 1−∆i(J). In particular, they have j = 0. This is
the analytic continuation of the fact that only traceless-symmetric operators appear in the
OPE of two scalars.

On the other hand, the operators Wi(x, z, w) have scaling dimension 2 and two-row
Lorentz representations with spin −δi and transverse spin ji. If ji = 0, we can match
quantum numbers with light-ray operators by setting J = −1 and δi = ∆k(J = −1)− 1,
leading us to expect

Wi(x, z) ∼ O+
k,−1(x, z) + O−k,−1(x, z) (for Wi with ji = 0). (4.35)
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Here “∼” means that the left-hand side is a linear combination of objects on the right-hand
side. Note that the expressions such as

Wi(x, z) ∼ ∂2
xO+

k′,1(x, z), (wrong) (4.36)

while allowed by dilatation and Lorentz symmetry, are forbidden by the full conformal
symmetry, since Wi(x, z, w) must transform as primary operators.26

A relation of the form (4.35) was proven in [1], where Wi with ji = 0 were called “low
transverse-spin” terms. Having an expression for the low transverse-spin terms is sufficient
for computing certain even shapes, as explored in [1], but does not provide a complete
OPE expansion.

Finding an expression for Wi(x, z, w) with ji > 0 in terms of O±i,J(x, z) might seem
hopeless due to the mismatch of quantum numbers. Luckily, our discussion in section 3
provides us with a family of conformally-invariant differential operators Dn which have the
property that

(DnO±i,J=n−1)(x, z, w) (4.37)

transforms like a primary with scaling dimension 2, spin 1−∆i and transverse spin n. We
can thus conjecture that for all ji

Wi(x, z, w) ∼ (DjiO+
k,J=ji−1)(x, z, w) + (DjiO−k,J=ji−1)(x, z, w), (4.38)

where δi = ∆k(J = ji − 1) − 1. (We use the convention D0 = 1.) This expression is
similar in spirit to the wrong example (4.36) above, except that instead of ∂2

x we use a
carefully-constructed differential operator Dn that makes the right-hand side transform
as a primary. As discussed in section 3, such operators are rare and it is an intriguing
mathematical conspiracy that the quantum numbers of Wi(x, z, w) are precisely such that
Dn exist. In particular, one can verify that no other conformally-invariant differential
operators exist in the classification of [24]9 that can be used in the ansatz for Wi(x, z, w).

4.3.3 Partial waves and light-ray operators

As we discussed in section 4.2, the matrix elements of the operators Wi(x, z, w) are residues
of Wδ,j(x, z, w) defined by (4.24), which we can write as (restoring x-dependence)

Wδ,j(x, z, w) (4.39)

= αδ,j

∫
Dd−2z1D

d−2z2〈P̃δ1(z1)P̃δ2(z2)Pδ,j(z, w)〉〈O4|L[φ1](x, z1)L[φ2](x, z2)|O3〉.

By expanding the definition of L, this can be understood as a particular integral of

〈O4|φ1(x1)φ2(x2)|O3〉 (4.40)

over x1, x2.
26Note that ∂2

x can be conformally-invariant, i.e. produce a primary, but only if it acts on a scalar operator
of dimension d−2

2 , which is not the case here.
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Similarly, the matrix elements of (DjO±i,J=j−1)(x, z, w) are residues of

〈O4|(DjO±∆,J=j−1)(x, z, w)|O3〉, (4.41)

which itself is a x1, x2-integral of (4.40). Therefore, we can prove the relation between Wi

and DjO±i,J=j−1 by simply showing that these integrals are the same. Concretely, we will
show that

Wδ,j(x, z, w) = A〈O4|(DjO+
δ+1,J=j−1)(x, z, w)− (DjO−δ+1,J=j−1)(x, z, w)|O3〉 (4.42)

for some constant A.
Let us start with rewriting (4.39) in terms of an integral of (4.40):

Wδ,j(x, z, w) =
∫
ddx1d

dx2Lδ,j(x1, x2;x, z, w)〈O4|φ1(x1)φ2(x2)|O3〉. (4.43)

By the definition of the light-transform, the kernel Lδ,j is given by

Lδ,j(x1, x2;x,z,w) = αδ,j

∫
dα1dα2D

d−2z1D
d−2z2〈P̃δ1(z1)P̃δ2(z2)Pδ,j(z,w)〉×

×(−α1)−δ1−1(−α2)−δ2−1δd(x−z1/α1−x1)δd(x−z2/α2−x2).
(4.44)

To evaluate the αi, zi-integrals, let us first consider the more general integral∫
dαDd−2z(−α)−δ−1δd(x+ z/α)f(z). (4.45)

For the z-integration to make sense, we need f(λz) = λ−d+2+δf(z). Otherwise, we keep f
arbitrary. We restrict to x belonging to the first Poincaré patch, in which case α must be
negative in order to satisfy x+ z/α = 0. We find∫

α<0
dαDd−2z(−α)−δ−1δd(x+ z/α)f(z)

= 2
vol SO(1, 1)

∫
α>0

dαddzδ(z2)θ(z > 0)α−δ−1δd(x− z/α)f(z)

= 2
vol SO(1, 1)

∫
α>0

dαδ(α2x2)θ(αx > 0)αd−δ−1f(αx)

= 2
vol SO(1, 1)

∫
α>0

dαδ(x2)θ(x > 0)α−1f(x)

= 2δ(x2)θ(x > 0)f(x), (4.46)

where we used that vol SO(1, 1) =
∫∞

0 dαα−1.27 Using this result in (4.44), we find

Lδ,j(x1, x2;x3, z, w) = 4αδ,j〈P̃δ1(x13)P̃δ2(x23)Pδ,j(z, w)〉δ(x2
13)δ(x2

23)θ(x13 > 0, x23 > 0).
(4.47)

Let us now perform the same exercise for the right-hand side of (4.42). First, it is clear
why we want the difference of O+ and O− operators with equal coefficients: by comparing

27In a more formal derivation, one would fix the SO(1, 1) freedom by Faddeev-Popov procedure.
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to (4.29), we see that this difference only involves the Kt kernel and the ordering φ1φ2,
which is precisely the ordering we need. We find

A〈O4|(DjO+
δ+1,J=j−1)(x, z, w)− (DjO−δ+1,J=j−1)(x, z, w)|O3〉

= 2A
∫ ′

ddx1d
dx2(DjKt

δ+1,j−1θ(x1 ≈ x+, x2 ≈ x))(x1, x2;x, z, w)〈O4|φ1(x1)φ2(x2)|O3〉.

(4.48)

Here we have taken into account the action of Dj on x in the integration limits in (4.29) by
writing these limits as an explicit θ-function.

We would like to relate the kernel in (4.48) to the kernel Lδ,j in (4.47). In doing so, there
is an apparent problem: Kt is non-zero for generic configurations of points x1, x2, x, while
the kernel Lδ,j only contains delta-functions. This problem is resolved by two mechanisms.
Firstly, when j > 0, the differential operator Dj annihilates Kt for generic configurations
of points. Hence, its action in (4.48) only has support on special loci — precisely the loci
where Lδ,j has support. Meanwhile, when j = 0, we have D0 = 1 and this mechanism
doesn’t work. However, in this case the coefficient βδ+1,j−1 in (4.30) contains a 0 coming
from Γ(J + 1) in the denominator of (4.31). The zero is only cancelled on special loci,
giving rise to delta-functions again. In the next section, we describe in more detail how
delta-functions of (4.47) emerge from (4.48).

4.4 Emergence of delta-functions from the light-ray kernel

The light transform entering Kt in (4.30) is given by [15]

〈0|φ̃1(x1)L[O](x3, z)φ̃2(x2)|0〉

= L(φ̃1φ̃2[O]) (2z · x23x
2
13 − 2z · x13x

2
23)1−∆

(x2
12)

∆̃1+∆̃2−(1−J)+(1−∆)
2 (−x2

13)
∆̃12+(1−J)+(1−∆)

2 (x2
23)
−∆̃12+(1−J)+(1−∆)

2

(in the configuration x1 ≈ x2, x1 > x3, x2 ≈ x3), (4.49)

where

L(φ̃1φ̃2[O]) = −2πi Γ(∆ + J − 1)
Γ(∆+∆12+J

2 )Γ(∆−∆12+J
2 )

. (4.50)

Acting with Dj given in (3.26) we find

〈0|φ̃1(x1)(DjL[O])φ̃2(x2)|0〉

= (−1)j22j(−J)jL(φ̃1φ̃2[O])(∆ + j − 2)
(∆− 2)Γ(j + 1) (w · x13z · x23 − w · x23z · x13)j

× (2z · x23x
2
13 − 2z · x13x

2
23)1−∆−j

(x2
12)

∆̃1+∆̃2−(1−J)+(1−∆)
2 (−x2

13)
∆̃12+(1−J)+(1−∆)

2 (x2
23)
−∆̃12+(1−J)+(1−∆)

2

. (4.51)

If we set J = j − 1 then for j > 0 this indeed vanishes due to the (−J)j factor, and thus
Dj with j > 0 annihilates Kt, as promised above. This can also be immediately concluded
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from the fact that for J = j − 1 ≥ 0 we have above a light transform of an integer-spin
three-point structure, and thus it must be annihilated by Dj based on general properties of
Dj discussed in section 3.

However, this calculation of the action of Dj is not complete. This is because we have
only computed the action of Dj on Kt in (4.48), but not on the θ-function. Derivatives
hitting the theta-function will produce delta-function contributions that are needed to
match (4.47). To derive the explicit form of these delta-functions, we will take a slightly
more general approach.

4.4.1 Interlude: distributions and analytic continuation

To illustrate the approach, it is helpful to consider a toy example

∂

∂x
θ(x) = δ(x). (4.52)

While the right-hand side is obvious, let us re-derive it in a way that will be useful later.
We start with a new definition of the left-hand side. We can think of θ(x) as the case

a = 0 of the 1-parameter family of distributions pa(x) = xaθ(x). The derivative p′a(x) is
represented by a locally-integrable function when Re a > 0:

p′a(x) = axa−1θ(x) + xaδ(x) = axa−1θ(x) (Re a > 0). (4.53)

Specifically, when Re a > 0, we can ignore ∂/∂x acting on θ(x). Let us define the left-hand
side of (4.52) as the analytic continuation of p′a(x) = axa−1θ(x) from Re a > 0 to a = 0.

As we explain in detail in appendix G.1, the distribution xa−1θ(x) has a pole at a = 0
with residue δ(x). It follows that lima→0 ax

a−1θ(x) = δ(x). To see this, consider the integral
against a test function f(x) with a regular Taylor series expansion at x = 0,∫ ∞

0
dx axa−1f(x) = a

∫ ∞
0

dxxa−1 (f(0) + (f(x)− f(0)))

= a

(
f(0)
a

+O(1)
)

= f(0) +O(a) (Re a > 0). (4.54)

In the second line, we used the fact that
∫
dxxa−1(f(x) − f(0)) is O(1) as a → 0, since

f(x)−f(0) vanishes at least linearly there. Finally, taking a→ 0, we obtain f(0), as claimed.

4.4.2 Action of Dj on Kt

This strategy of starting in a region where the derivative of a kernel is simple (in particular
where we can ignore derivatives acting on θ-functions), and analytically continuing away
works well in the case at hand. First, let us define the expression

Kt
∆,J(x1, x2;x, z)θ(x1 ≈ x+, x2 ≈ x), (4.55)

as a distribution. This is straightforward if we tune the parameters ∆1,∆2,∆, J to a region
U ∈ C4 in which all the powers in (4.49) are such that (4.55) is locally bounded (in x, xi, z).
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This is the analog of choosing Re a sufficiently large and positive in the toy example of
section 4.4.1. For (∆1,∆2,∆, J) ∈ U we automatically get a distribution in x, xi, z that is
analytic in ∆1,∆2,∆, J . We can then define it for the values that we are interested in by
analytic continuation. In the interior of U we can ignore the theta-function for the purposes
of acting with Dj : the theta function only jumps when some x2

ij in (4.49) vanishes, but
inside U we have a product of all x2

ij appearing with positive powers, and so Kt vanishes
on the jump of the theta-function. This is the analog of the computation (4.53) in our toy
example. Therefore, in order to compute the action of Dj we can act in U just on Kt and
then analytically continue to the desired values of ∆1,∆2,∆, J .

Thus our goal is to analytically continue

(DjKt
∆,J)(x1, x2;x3, z, w)θ(x1 ≈ x+

3 , x2 ≈ x3)

= β∆,J〈0|φ̃1(x1)(DjL[O])φ̃2(x2)|0〉θ(x1 ≈ x+
3 )θ(x2 ≈ x3) (4.56)

with the Wightman function given in (4.51). We introduce the following coordinates,

s = 2z · x23x
2
13, t = −2z · x13x

2
23. (4.57)

Recall that the prime on the integral in (4.48) means that we should only include the configu-
rations where x2 is near the future null cone of x3 and so we can assume z ·x23 < 0.28 We can
then rewrite (4.56), assuming for simplicity that all points are in the same Poincaré patch

β∆,J
(−1)j22j(−J)jL(φ̃1φ̃2[O])(∆ + j − 2)

(∆− 2)Γ(j + 1) (w · x13z · x23 − w · x23z · x13)j

× (−2z · x23)
∆̃12+(1−J)+(1−∆)

2 (−2z · x13)
−∆̃12+(1−J)+(1−∆)

2

(x2
12)

∆̃1+∆̃2−(1−J)+(1−∆)
2

(s+ t)1−∆−jθ(s)θ(t)

s
∆̃12+(1−J)+(1−∆)

2 t
−∆̃12+(1−J)+(1−∆)

2

.

(4.58)

The factors that are not written in terms of s, t will not be important in our analytic
continuation: they are either analytic functions of the coordinates (the w-dependent factor),
or can only become singular when x1 becomes almost proportional to x2, or when xi becomes
proportional to z, while at the moment we are interested in more generic configurations.29

To find the analytic continuation of the s, t-dependent factors, let us define

a= 1−∆−j, b=−∆̃12+(1−J)+(1−∆)
2 , c=−−∆̃12+(1−J)+(1−∆)

2 . (4.59)

Then the s, t-dependent part becomes

(s+ t)asbtcθ(s)θ(t). (4.60)

28This is not true when x23 is close to being proportional to z. However, here we focus on generic
configurations.

29Following the logic similar to below, one can check that no new contributions appear in these limiting
configurations.
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This is well-defined as a distribution analytic in a, b, c for a, b, c > 0. In appendix G.1 we show
that near a+ b+ c+ 2 = 0 its analytic continuation to general a, b, c has a pole of the form

(s+ t)asbtcθ(s)θ(t) ∼ 1
a+ b+ c+ 2

Γ(b+ 1)Γ(c+ 1)
Γ(b+ c+ 2) δ(s)δ(t). (4.61)

With our definitions we have

a+ b+ c+ 2 = J − j + 1, (4.62)

which we want to set to 0. The resulting divergence is canceled in (4.58) by β∆,J for j = 0 or
by the (−J)j factor for j > 0. Thus, plugging (4.61) into (4.58) and setting J = j−1, we find

(DjKt
δ+1,j−1θ(x1 ≈ x+

3 , x2 ≈ x3))(x1, x2;x3, z, w)

= (−1)j21+2j

iπ
αδ,j

(w · x13z · x23 − w · x23z · x13)j

(−2x13 · x23)
δ̃1+δ̃2+j−δ

2 (−2z · x23)
−δ̃12+j+δ

2 (−2z · x13)
δ̃12+j+δ

2

δ(x2
13)δ(x2

23).

(4.63)

Comparing this to (4.47) and to the expression (4.17) for the 3-point structure, which we
reproduce here with the relevant quantum numbers,

〈P̃δ1(z1)P̃δ2(z2)Pδ,j(z, w)〉 = 4j(w · z1z2 · z3 − w · z2z1 · z3)j

(−2z1 · z2)
δ̃1+δ̃2−δ+j

2 (−2z1 · z3)
δ̃1+δ−δ̃2+j

2 (−2z2 · z3)
δ̃2+δ−δ̃1+j

2

(4.64)

we find

(DjKt
δ+1,j−1θ(x1 ≈ x+

3 , x2 ≈ x))(x1, x2;x3, z, w) = (−1)j

2πi Lδ,j(x1, x2;x3, z, w). (4.65)

Thus (4.42) indeed holds with

A = (−1)jiπ. (4.66)

4.5 The final form of the scalar OPE

Combining equations (4.22), (4.42), and (4.66), we find the OPE formula

L[φ1](x, z1)L[φ2](x, z2) = πi
∞∑
j=0

∫ d−2
2 +i∞

d−2
2 −i∞

dδ

2πi Cδ,j(z1, z2, ∂z2 , ∂w2)(−1)j (4.67)

×
(
(DjO+

δ+1,J=j−1)(x, z2, w2)− (DjO−δ+1,J=j−1)(x, z2, w2)
)
.

Deforming the contour to the right and picking up the poles from light-ray operators,22 we
can write

L[φ1](x, z1)L[φ2](x, z2) = −πi
∞∑
j=0

∑
i

C∆i−1,j(z1, z2, ∂z2 , ∂w2)(−1)j (4.68)

×
(
(DjO+

i,J=j−1)(x, z2, w2)− (DjO−i,J=j−1)(x, z2, w2)
)
.
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Here the differential operator Cδ,j is defined by (4.20). For j = 0, taking into account
D0 = 1, the result (4.67) agrees with (3.96) in [1], which has been tested in a number of
examples [1].30 For j > 0 the result is new. We will explore an example in which the j = 1
term is important in section 7.

Note that in the above expressions, the terms involving O+ for odd j and terms involving
O− for even j are related to light-transforms of local operators and are thus annihilated
by Dj for j > 0. Similarly, for j = 0 we have O−∆,J=−1 = 0 due to the superconvergence
sum rule [1, 23], which holds whenever the leading Regge trajectory in φ1 × φ2 OPE has
intercept below J1 + J2 − 1 = −1. We indeed have to assume that this is the case, in order
for the left-hand side of (4.67) to be well-defined [23]. We thus conclude that in fact the
above expressions simplify to

L[φ1](x, z1)L[φ2](x, z2)

= πi
∞∑
j=0

∫ d−2
2 +i∞

d−2
2 −i∞

dδ

2πi Cδ,j(z1, z2, ∂z2 , ∂w2)
(
DjO(−1)j

δ+1,J=j−1

)
(x, z2, w2), (4.69)

and

L[φ1](x, z1)L[φ2](x, z2) = −πi
∞∑
j=0

∑
i

C∆i−1,j(z1, z2, ∂z2 , ∂w2)
(
DjO(−1)j

i,J=j−1

)
(x, z2, w2).

(4.70)

An interesting consequence of this simplification is vanishing of the commutator

[L[φ1](x, z1),L[φ2](x, z2)] = 0. (4.71)

Indeed, according to the discussion in [1], this commutator has signature (−1)J1+J2−1 = −1.
We claim that all the terms in (4.69) have signature [1, 15] +1 and thus there are no
contributions to the commutator. To see why

DjO(−1)j
i,J=j−1 (4.72)

has signature +1, we need to analyze two cases. Note that for j = 0 we have

DjO(−1)j
i,J=j−1 = O+

i,J=−1, (4.73)

which manifestly has signature +1. For j > 0 the operator Dj is non-trivial, and we claim
that it changes signature by (−1)j , in which case we again see that

DjO(−1)j
i,J=j−1 (4.74)

has signature +1. To understand how Dj changes signature, it is convenient to use CRT
symmetry J0 under which the light-ray operators have the property(

J0O±i,J(0, z,w)J −1
0

)†
= ±O±i,J(0, z,w) (4.75)

30The minus in front of O− has to do with a more explicit treatment of the analytic continuation of (−1)J

factors in this paper.
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for all z,w.31 Writing then

(DjO±i,J)(0, z,w) ∝ D0+
z,w;µ1 · · · D

0+
z,w;µj [P

µ1 , · · · [Pµj ,O±i,J(0, z,w)] · · · ], (4.76)

where D0+
z,w;µ is a differential operator in z, w defined in (3.26), and taking into account

J0P
µJ −1

0 = −Pµ and P †µ = −Pµ, we find

(
J0(DjO±i,J)(0, z,w)J −1

0

)†
= ±(−1)j(DjO±i,J)(0, z,w), (4.77)

and therefore Dj indeed changes the signature by (−1)j . Finally, note that the differential
operator Cδ,j does not affect signature because it acts in the transverse space (i.e. on z,w)
which is not affected by J0.

5 The complete OPE of general detectors

In the previous section, we derived the form of the light-ray OPE for a product of light-
transformed scalar operators L[φ1]L[φ2]. We now derive a generalization for light-transforms
of operators in arbitrary Lorentz representations, of which the scalar formula (4.67) is a
special case. The generalized light-ray OPE formula is

L[O1](x, z1,w1)L[O2](x, z2,w2)

= πi(−1)J1+J2
∑
λ∈Λ12

∫ d−2
2 +i∞

d−2
2 −i∞

dδ

2πiC
(a)
δ,λ (z1,w1, z2,w2, ∂z2 , ∂w2)O(−1)J1+J2

δ+1,J1+J2−1,λ,(a)(x, z2,w2)

+ πi(−1)J1+J2
∞∑
n=1

∑
γ∈Γ12

∫ d−2
2 +i∞

d−2
2 −i∞

dδ

2πiC
(a)
δ,λγ(+n)(z1,w1, z2,w2, ∂z2 , ∂w2)

×
(
DnO(−1)J1+J2+n

δ+1,J1+J2−1+n,λγ ,(a)

)
(x, z2,w2) (5.1)

Owing to its generality, this expression is a bit unwieldy, so let us unpack it. (We also give
several concrete examples in section 6.) The left-hand side is a product of light-transforms
of operators O1 and O2, which have the quantum numbers (∆i, Ji, λi).32 The right-hand
side contains two sets of terms. The first set (on line 2) contains what we refer to as the
“low transverse spin” contributions, studied in detail in [1]. The second set (line 3) contains
“higher transverse spin” contributions, which are new and require the use of the differential
operators Dn from section 3.

The operators C(a)
δ,λ are similar to the operators Cδ,j from section 4. They encode the

kinematic structure of the OPE in a fictitious (d − 2)-dimensional CFT on the celestial
sphere. There are two important differences from section 4. Firstly, in the general case
considered here, there can be several OPE coefficients that enter a given OPE, each with its
own C(a)

δ,λ . The structure label (a) labels these different OPE coefficients. A sum over (a) is

31The CRT transformation J0 can be obtained from the CRT transformation JΩ described around (5.26)
below by conjugating with a conformal transformation which brings the point (x+ = −∞, x− = 0, xi = 0)
to x = 0 and the point (x+ = 0, x− = −∞, xi = 0) to spatial infinity.

32For simplicity we focus on bosonic representations only.
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implicit in (5.1). As an example of the role of the structure label (a), recall that deforming
the δ-contour in (5.1) to the right and picking up the poles, we obtain a discrete sum of terms

C(a)
δ,λ (z1,w1, z2,w2, ∂z2 , ∂w2)O±i,J1+J2−1,λ(a)(x, z2,w2). (5.2)

Recall that O±i,J1+J2−1,λ(a) are built with reference to O1,O2 and are related to canonically-
normalized light-ray operators as

O±i,J1+J2−1,λ(a) = f12O†,(a)Ô±i,J1+J2−1,λ, (5.3)

where f12O†,(a) are analytically-continued OPE coefficients in the O1 × O2 OPE. Equa-
tion (5.2) then becomes

f12O†,(a)C
(a)
δ,λ (z1,w1, z2,w2, ∂z2 , ∂w2)Ô±i,J1+J2−1,λ(x, z2,w2). (5.4)

Thus, the index (a) of C(a)
δ,λ is naturally contracted with OPE coefficients. Similar statements

hold for higher transverse spin terms as well.
The second distinction has to do with the normalization of C(a)

δ,λ . The operators Cδ,j
were normalized by equation (4.20), which is formulated in terms of celestial three-point
structures. On the other hand, the OPE coefficients f12O†,(a) are defined in terms of
d-dimensional tensor structures, and thus the normalization condition (4.20) is only correct
due to our specific choice of conventions for both d-dimensional as well as celestial tensor
structures. The main result of this section will be the proof of (5.1) together with the simple,
convention-independent, equations (5.68) and (5.69) that determine the C(a)

δ,λ in terms of
d-dimensional data.33 We refer to these formulas as “celestial map formulas” because they
map the d-dimensional three-point tensor structures (which naturally pair with the OPE
coefficients f12O†,(a)) to celestial sphere differential operators C(a)

δ,λ .34

The remaining notation in (5.1) has to do with quantum numbers of exchanged operators
and the respective selection rules. In the low transverse spin terms we are summing over
transverse spins λ ∈ Λ12 which simply means all the transverse spins that appear in the
usual local OPE O1×O2 and the celestial OPE of operators with (d− 2)-dimensional spins
λ1× λ2. These are the transverse spins for which the operators O±i,J,λ,(a) can be constructed
from O1 and O2 and for which the operators C(a)

δ,λ make sense.
As an example, when O1,O2 are scalars, Λ12 contains only the trivial representation

of SO(d− 2) because only traceless-symmetric operators appear in OPE of d-dimensional
scalars. In this case, the constraint that λ ∈ Λ12 should appear in the OPE of (d − 2)
dimensional scalars is trivially satisfied. On the other hand, in the example of energy-energy
OPE discussed in section 6 both constraints become non-trivial.

33Note that up to an action by an invertible matrix on the index (a), these operators are completely fixed
by the (d − 2)-dimensional conformal symmetry (equivalently, d-dimensional Lorentz symmetry). These
equations thus simply determine a preferred basis of these operators.

34As we explain below, it will sometimes happen that C(a)
δ.λ vanishes for some values of a, i.e. not all of the

OPE coefficients actually appear in (5.2).
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In the higher transverse spin terms, we sum over λγ , γ ∈ Γ12. These are the transverse
spins for which the action of the operators Dn is well-defined. Concretely, these are
transverse spins with the first row of the SO(d − 2) Young diagram (the second row of
the SO(d− 1, 1) Young diagram) of length J1 + J2. We write λγ = (J1 + J2, γ) with γ an
SO(d− 4) irrep. Since the action of Dn raises transverse spin, we use the OPE differential
operator C(a)

δ,λγ(+n), where λγ(+n) = (J1 + J2 + n, γ). The set Γ12 consists of γ for which
transverse spin λγ appears in d-dimensional O1 ×O2 OPE and at the same time λγ(+n)
appears in the (d− 2)-dimensional celestial OPE. (As explained in appendix E, these two
conditions are in fact equivalent.)

Before proceeding with the derivation, let us comment again on the relation of this
section to [1]. In [1], the celestial map formula for lower transverse spin was derived by a
rather non-trivial procedure using the Lorentzian inversion formula. In this section, we
will give a much simpler derivation of the celestial map formula for both lower and higher
transverse spin. The drawback of this simpler derivation is that it is based on the assumption
that the light-ray kernel Kt

∆,J,λ(a)(x1, x2;x, z) satisfying (5.6) localizes on the null cone of
x as we set J to certain values and possibly act with Dn, analogously to the scalar case in
section 4. This assumption is plausible in the sense that it gives a natural generalization
of the pattern observed in concrete examples, and is furthermore purely kinematical. It
therefore appears to be a purely technical problem to prove it. (See sections 5.2.2 and 5.2.3
for the precise statement of our assumptions and the supporting evidence.)

For completeness, in appendix D, we derive (5.1) by generalizing the derivation in [1].
This derivation, although being more technical than the one in sections 5.2.2 and 5.2.3 (which
is why it is relegated to an appendix), does not rely on the assumptions discussed above.

5.1 A formula for the light-ray operator kernel

Our starting point is the following intrinsically-Lorentzian description of light-ray operators.
Recall that the light-ray operators are defined by the integral [15]

O±i,J,λ(a)(x, z) = res∆=∆i
±
∫
x≈2
x≈1−

ddx1d
dx2K

t
∆,J,λ(a)(x1, x2;x, z)O1O2

+
∫
x≈1
x≈2−

ddx1d
dx2K

u
∆,J,λ(a)(x2, x1;x, z)O2O1. (5.5)

We claim that the kernel Kt is determined by the equation∫
2>x′>1−
x≈2,1−

ddx1d
dx2

vol(SO(1, 1))2K
t
∆,J,λ(a)(x1, x2;x, z)〈0|O2L[O†](x′, z′)O1|0〉(b)+

= 1
2πi〈L[O](x, z)L[O†](x′, z′)〉δ(b)

(a), (5.6)

together with the condition that it has the analyticity and conformal transformation
properties of

〈0|Õ†1(x1)OL(x, z)Õ†2(x2)|0〉, (5.7)
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where OL has the quantum numbers of L[O]. The kernel Ku is defined similarly and will
be described below.35 In (5.5) and in what follows we keep the transverse indices (encoded
previously by polarization vectors w) implicit in order to avoid excessive clutter in the
notation. The way these indices are contracted should in all cases be clear from the context.

Above, we use the notation that Oi is at point xi. The kernel Kt carries Lorentz
indices for points x1, x2 that are in the dual representations to O1,O2, and these indices
are contracted with O1,O2 in (5.5) and (5.6). We prove (5.6) in appendix C. An advantage
of (5.6) relative to the definition in [15] is that it makes reference only to Lorentzian
objects. By contrast, the definition in [15] includes the Plancherel measure for the Euclidean
conformal group and Euclidean shadow coefficients, and is thus more awkward to use in a
purely Lorentzian setting.

In order to use (5.6) for non-integer J , it remains to explain the meaning of the objects

〈L[O](x, z)L[O†](x′, z′)〉, (5.8)

〈0|O2L[O†](x′, z′)O1|0〉(b)+ (5.9)

for such J .

5.1.1 Analytic continuation in spin

We define (5.8) and (5.9) by extending the definition of the underlying structures

〈O(x, z)O†(x′, z′)〉, (5.10)

〈0|O2O†(x′, z′)O1|0〉(b)+ (5.11)

to non-integer J and then taking the necessary light-transforms.
Note that fixing the normalization of local operators and setting the conventions for

three-point structures of local operators involves specifying the expressions for

〈O(x, z)O†(x′, z′)〉, (5.12)

〈O1(x1, z1)O2(x2, z2)O†(x, z)〉(b), (5.13)

for integer spin J . We will now impose certain constraints on these choices which will
simplify our general analysis with regard to factors of (−1)J which have ambiguous analytic
continuation in J .

For the two-point function, note that for any fixed n ∈ Z

〈O(x1, z1)O†(x2, z2)〉(−2z1 · I(x12) · z2)n−J (5.14)

35An intuitive picture behind (5.6) is as follows. The Wightman three-point structure in (5.6), together
with the condition 2 > x′ > 1−, can be viewed as one of two parts of the light-transform of a time-ordered
three-point structure [15]. The integration against Kt is then similar to producing L[O] from O1,O2 inside
of this time-ordered three-point function, which should be equal to the two-point function in the right-hand
side of (5.6). It would be interesting if this intuitive reasoning could be made precise: our derivation of (5.6)
is based on the generalized Lorentzian inversion formula of [15], where the latter is derived from Euclidean
harmonic analysis. It would be instructive to bypass the Euclidean argumentation altogether.
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is conformally-invariant with quantum numbers independent of J . Moreover, for sufficiently
large n, the Lorentz weights with which it transforms are dominant36 and we can take this
structure to be equal to a fixed, J-independent, two-point function of local operators

〈O(x1, z1)O†(x2, z2)〉(−2z1 · I(x12) · z2)n−J = f0(x1, z1;x2, z2). (5.15)

So we find that one can always choose

〈O(x1, z1)O†(x2, z2)〉 = f0(x1, z1;x2, z2)(−z1 · I(x12) · z2)J−n. (5.16)

We allow to modify this convention by exponential factors such as 2J but not by (−1)J .
Note that the expression (5.16) can be rewritten as

f0(x1, z1;x2, z2)(−z1 · I(x12) · z2)J−n

= f0(x1, z1;x2, z2)(2(z1 · x12)(z2 · x12)− (z1 · z2)x2
12)J−n(x2

12)n−J . (5.17)

Using the fact that 2(z1 · x12)(z2 · x12) − (z1 · z2)x2
12 > 0 for generic configurations,37 we

see that the usual time-ordered iε prescription unambiguously defines the time-ordered
two-point function (5.16) for generic configurations of xi, zi. This is sufficient to apply the
light-transforms in (5.8).

A similar argument for 〈O1(x1, z1)O2(x2, z2)O†(x, z)〉(b) shows that we can write, for
sufficiently large integer J ,

〈O1(x1,z1)O2(x2,z2)O†(x3,z3)〉(b) = f
(b)
0 (x1,z1;x2,z2;x3,z3)(2z ·x23x

2
13−2z ·x13x

2
23)J−n

xJ−n12 xJ−n23 xJ−n13
,

(5.18)

where n is sufficiently large so that the Lorentz weights of f0 are dominant, and the
basis f (b)

0 (x1, z1;x2, z2;x3, z3) can be chosen to be J-independent. There are two possible
subtleties here. Firstly, the operators O1 and O2 can be identical, in which case permutation
invariance will typically constrain the structures for even and odd J differently. Secondly,
some of O1,O2 can be conserved currents, in which case the conservation constraints will
typically require some non-trivial polynomial dependence of f (b)

0 on J . In both cases, our
solution is to use the generic basis of structures, ignoring these constraints. The OPE
coefficients computed in this basis may satisfy some linear equations, but this will not affect
any of our arguments.

The problem of defining three-point structures for non-integer J is complicated by the
fact that 2z ·x23 x

2
13−2z ·x13 x

2
23 is in general not sign-definite [15]. We will define the analytic

continuation directly for 〈0|O2O†(x3, z3)O1|0〉(b) in the configuration 2 > 3, 1 ≈ 3, 1 ≈ 2,
where we have

2z · x23 x
2
13 − 2z · x13 x

2
23 < 0. (5.19)

36I.e. the first row of Young diagram is at least as long as the second one.
37To see this, note that one can always write x12 = αz1 + βz2 + x⊥ for x⊥ · zi = 0. We have then

2(z1 · x12)(z2 · x12) − (z1 · z2)x2
12 = (−z1 · z2)x2

⊥ > 0, where we used that x⊥ is spacelike due to being
orthogonal to the timelike vector z1 + z2.
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For integer J we have

〈0|O2O†(x3, z3)O1|0〉(b) = (−1)J(−2z · x23 x
2
13 + 2z · x13 x

2
23)J × (· · · ), (5.20)

where the dots represent the standard analytic continuation of all the other factors. For
general J ∈ C we define

〈0|O2O†(x3, z3)O1|0〉(b)± = ±(−2z · x23 x
2
13 + 2z · x13 x

2
23)J × (· · · ). (5.21)

In all other configurations these Wightman functions are determined by the usual analytic
continuation, which is unambiguous for this ordering even for J ∈ C [15]

We will additionally use the “time-ordered” structures, which are defined to be equal to

〈O1(x1, z1)O2(x2, z2)O†(x3, z3)〉(b)+ = f0(x1, z1;x2, z2;x3, z3)(2z · x23 x
2
13 − 2z · x13 x

2
23)−n

xJ−n12 xJ−n23 xJ−n13

× |2z · x23 x
2
13 − 2z · x13 x

2
23|J (5.22)

for spacelike-separated points and are defined in other configurations by usual time-ordered
iε-prescriptions applied to everything except | · · · |J . These structures are useful because

〈O1O2L[O†]〉(b)+ = 〈0|O2L[O†]O1|0〉(b)+ θ(2 > 3 > 1−) + (· · · )θ(1 > 3 > 2−), (5.23)

similarly to the relation between the light-transform of integer-spin time-ordered and
Wightman correlators [15]. Here dots represent a structure that is a bit awkward to describe
but which we won’t need in what follows.

Our choice of conventions for traceless-symmetric operators described in appendix B
satisfies the above constraints.

5.1.2 Definition of Ku

The kernelKu is defined by requiring that it has the analyticity and conformal transformation
properties of

〈0|Õ†2(x2)OL(x, z)Õ†1(x1)|0〉, (5.24)

and the requirement that when we set x = −∞z and z0 = z1 = 1, zi = 0, the following
equality holds∫

x≈1
x≈2−

ddx1d
dx2K

u
∆,J,λ(a)(x2, x1;x, z)O2O1 =

∫
x≈2
x≈1−

ddx1ddx2Kt
∆,J,λ(a)(x1, x2;x, z)O1O2.

(5.25)

Here, we have defined the linear operation

A = (JΩAJ −1
Ω )†. (5.26)

Here JΩ is the anti-unitary operator implementing the CRT symmetry, where the reflection
acts as x1 → −x1. This relation should hold for all J . For integer J it is equivalent to∫

1>x′>2−
x≈1,2−

ddx1d
dx2

vol(SO(1, 1))2K
u
∆,J,λ(a)(x1, x2;x, z)〈0|O1L[O†](x′, z′)O2|0〉(b)

= 1
2πi〈L[O](x, z)L[O†](x′, z′)〉δ(b)

(a). (5.27)
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5.2 Derivation of the OPE formula

5.2.1 Harmonic analysis on celestial sphere

We have given a review of harmonic analysis on celestial sphere in section 4.2. In this
section we need a generalization which we state here without proof, and refer the reader
instead to [1].

Suppose we have a choice of two- and three-point structures on the celestial sphere

〈Pδ,λ(z)P†δ,λ(z′)〉 (5.28)

〈Pδ1,λ1(z1)Pδ2,λ2(z2)P†δ,λ(z)〉(a) (5.29)

We assume that the three-point structures are linearly-independent and span the space
of conformally-invariant tensor structures for the given quantum numbers. Given these
structures, we can find OPE differential operators Ĉ(a)

δ,λ satisfying

Ĉ(a)
δ,λ (z1, z2; ∂z2)〈Pδ,λ(z2)P†δ,λ(z′)〉 = 〈Pδ1,λ1(z1)Pδ2,λ2(z2)P†δ,λ(z)〉(a). (5.30)

Here and below, the Pδ,λ carry SO(d−2) indices for λ, which we suppress for brevity. These
indices are implicitly contracted between Ĉ(a)

δ,λ and Pδ,λ(z2).
Now suppose that conformally-invariant kernels kδ,λ,(a)(z1, z2; z) solve the equation∫
Dd−2z1D

d−2z2
vol(SO(1, 1)) kδ,λ,(a)(z1, z2; z)〈Pδ1,λ1(z1)Pδ2,λ2(z2)P†δ,λ(z′)〉(b) = 〈Pδ,λ(z)P†δ,λ(z′)〉δ(b)

(a).

(5.31)

Here, kδ,λ,(a)(z1, z2; z) carries SO(d− 2) indices dual to Pδ1,λ1 and Pδ2,λ2 and these indices
are implicitly contracted in (5.31). If the above conditions hold for all λ’s that can appear
in the (d− 2)-dimensional OPE Pδ1,λ1 × Pδ2,λ2 , then we have

L[O1](x, z1)L[O2](x, z2) =
∑
λ

∫ d−2
2 +i∞

d−2
2 −i∞

dδ

2πi Ĉ
(a)
δ,λ (z1, z2; ∂z2)Wδ,λ,(a)(x, z2), (5.32)

where

Wδ,λ,(a)(x, z) ≡
∫
Dd−2z1D

d−2z2kδ,λ,(a)(z1, z2; z)L[O1](x, z1)L[O2](x, z2). (5.33)

For the validity of (5.32) the same caveats as in footnote 20 apply. Note that it is not
important which basis of structures one chooses in (5.29) and (5.28) — the above statement
is basis-independent. We utilize this freedom below, making convenient choices when
appropriate.

5.2.2 Lower transverse spin

For lower transverse spin, we will assume that when we set J → J1 + J2 − 1, the light-ray
kernel Kt

∆,J,λ(a) degenerates to

N (a)
(c),δ,λ

∫
x≈2
x≈1−

ddx1d
dx2K

t
δ+1,J,λ,(a)(x1, x2;x, z)O1(x1)O2(x2)

→
∫
Dd−2z1D

d−2z2kδ,λ,(c)(z1, z2; z)L[O1](x, z1)L[O2](x, z2) (5.34)
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where kδ,λ,(c) is a basis of Lorentz-invariant kernels, and N (a)
(c),δ,λ is a rectangular matrix

(implicit summation over (a) is understood). The matrix N is needed because not every
Kt
δ+1,J,λ,(a) degenerates in this way. We assume that all Lorentz-invariant kernels kδ,λ,(c)

can be generated in this way i.e. N is full rank.
The evidence for this assumption comes from several lines of reasoning. First of all, it

agrees with the scalar example in section 4. Moreover, we have additionally studied the
example of L[φ]L[V ] OPE, where V is an operator with spin 1, which has a non-trivial
matrix N and verified this statement. Furthermore, from the counting of structures in
appendix E one can see that the dimensions of the spaces of structures match (specifically,
the rank of N can be predicted from (5.40) below, and it matches the number of kδ,λ,(c)).
Finally, (5.34) yields the same results as in [1] and in appendix D, where they have been
obtained by an different, although more complicated, method. It would be interesting to
find a direct derivation of (5.34).

Plugging (5.34) into (5.6), we obtain

∫
Dd−2z1D

d−2z2kδ,λ(c)(z1, z2; z)
〈0|L+[O2](x, z2)L[O†](x′, z′)L−[O1](x, z1)|0〉(a)

+
vol(SO(1, 1))2

= 1
2πi〈L[O](x, z)L[O†](x′, z′)〉N (a)

(c),δ,λ, (5.35)

where L+[O2] indicates that the light transform contour is restricted to 2 > x′ and L−[O1]
indicates that the light transform contour is restricted to x′ > 1−. On the left-hand side, one
factor of vol(SO(1, 1)) cancels against a zero-mode in the integral over z1, z2, and the other
factor cancels against a zero-mode in the triple light-transform of the three-point structure.

Let us define a matrixM(c)
(a),δ,λ with the property

M(c)
(a),δ,λN

(a)
(c′),δ,λ = δ

(c)
(c′). (5.36)

This is always possible to do since N is full rank. However, M defined in this way is in
general ambiguous because we can replace

M(c)
(a),δ,λ →M

(c)
(a),δ,λ +m

(c)
(a) (5.37)

for any m(c)
(a) such that m(c)

(a)N
(a)
(c′),δ,λ = 0. We make a choice ofM and rewrite (5.35) as

∫
Dd−2z1D

d−2z2kδ,λ(c)(z1, z2; z)
〈0|L+[O2](x, z2)L[O†](x′, z′)L−[O1](x, z1)|0〉(a)

+
vol(SO(1, 1))2 M(c′)

(a),δ,λ

= 1
2πi〈L[O](x, z)L[O†](x′, z′)〉δ(c′)

(c) . (5.38)

In the left-hand side we have a celestial “bubble integral” of kδ,λ(c)(z1, z2; z) against

〈0|L+[O2](x, z2)L[O†](x′, z′)L−[O1](x, z1)|0〉(a)
+

vol(SO(1, 1)) M(c′)
(a),δ,λ. (5.39)
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Since kδ,λ(c)(z1, z2; z) form a basis, it follows that this bubble integral is non-degenerate [35],
i.e. it vanishes for all (c) if and only if the above expression vanishes. Due to (5.37) it then
follows that

〈0|L+[O2](x, z2)L[O†](x′, z′)L−[O1](x, z1)|0〉(a)
+

vol(SO(1, 1)) m
(c′)
(a) = 0 (5.40)

for any m(c)
(a) such that m(c)

(a)N
(a)
(c′),δ,λ = 0.

Equation (5.38) has almost the same structure as (5.31) if we identify, for fixed x, x′,

〈Pδ1,λ1(z1)Pδ2,λ2(z2)P†δ,λ(z)〉(c) ↔
〈0|L+[O2](x, z2)L[O†](x′, z′)L−[O1](x, z1)|0〉(a)

+
vol(SO(1, 1)) M(c)

(a),δ,λ,

(5.41)

〈Pδ,λ(z)P†δ,λ(z′)〉 ↔ 1
2πi〈L[O](x, z)L[O†](x′, z′)〉. (5.42)

However, we cannot quite write equality signs in the relations above, because while z1, z2
and the transverse indices of L+[O2],L−[O1] transform under the Lorentz group at x, the
polarization z′ and transverse indices of L[O†] transform under the Lorentz group at x′.
Fortunately, we can perform two steps to rectify this problem. First, there is a subgroup
Lxx′ ' SO(d− 1, 1) of conformal transformations that fix both x and x′, and act as Lorenz
transformations locally at these points.38 Second, we can “translate” the indices and
polarizations of L[O†] from x′ to x, so that the action of Lxx′ is the same on all indices and
polarizations. Specifically, we can write

〈Pδ1,λ1(z1)Pδ2,λ2(z2)P†δ,λ(z)〉(c) = 〈0|L
+[O2](x,z2)(Ixx′ L[O†])(x′, Ixx′z′)L−[O1](x,z1)|0〉(a)

+

vol(SO(1,1)) M(c)
(a),δ,λ,

(5.43)

〈Pδ,λ(z)P†δ,λ(z′)〉= 1
2πi〈L[O](x,z)(Ixx′L[O†])(x′, Ixx′z′)〉, (5.44)

where

(Ixx′)µν = δµν − 2xµxν/x2, (5.45)

and Ixx′L[O†] indicates the action of I on the transverse spin indices. Importantly, the
presence of Ixx′ means that while z′ and other indices now transform in the same way under
Lxx′ as the indices and polarizations at x, the representation that they form is reflected
relative to that of L[O†]. This reflection is crucial, because it is precisely the difference
between the d-dimensional and (d− 2)-dimensional † operation, and so the representations
match in the above identifications.

Equation (5.38) implies that the set of three-point structures defined by (5.43) is
complete, otherwise we wouldn’t be able to get the Kronecker delta in the right-hand side
of (5.38). We can therefore use the statement of section 5.2.1. Specifically, let us define

38For example, we can set x = 0 and x′ = ∞, in which case the group in question is the standard
Lorentz group.
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operators Ĉ(a)
δ,λ by (5.30), which now takes the form

1
2πi Ĉ

(c)
δ,λ(z1, z2, ∂z2)〈L[O](x, z2)(Ixx′L[O†])(x′, Ixx′z′)〉

=
〈0|L+[O2](x, z2)(Ixx′L[O†])(x′, Ixx′z′)L−[O1](x, z1)|0〉(a)

+
vol(SO(1, 1)) M(c)

(a),δ,λ. (5.46)

In this equation, we can cancel the Ixx′ matrices on both sides
1

2πi Ĉ
(c)
δ,λ(z1, z2, ∂z2)〈L[O](x, z2)L[O†](x′, z′)〉

=
〈0|L+[O2](x, z2)L[O†](x′, z′)L−[O1](x, z1)|0〉(a)

+
vol(SO(1, 1)) M(c)

(a),δ,λ. (5.47)

Then we find

L[O1](x, z1)L[O2](x, z2) =
∑
λ

∫ d−2
2 +i∞

d−2
2 −i∞

dδ

2πi Ĉ
(c)
δ,λ(z1, z2; ∂z2)Wδ,λ,(c)(x, z2), (5.48)

where

Wδ,λ,(c)(x, z) ≡
∫
Dd−2z1D

d−2z2kδ,λ,(c)(z1, z2; z)L[O1](x, z1)L[O2](x, z2). (5.49)

In our case, the kernel kδ,λ,(c) arose from Kt through (5.34). This means that we can
alternatively rewrite Wδ,λ,(c)(x, z) as

Wδ,λ,(c)(x, z) = N (a)
(c),δ,λ

1
2
(
O+
δ+1,J1+J2−1,λ,(a)(x, z)−O−δ+1,J1+J2−1,λ,(a)(x, z)

)
. (5.50)

Plugging this into (5.48) we conclude

L[O1](x, z1)L[O2](x, z2) = 1
2
∑
λ∈Λ12

∫ d−2
2 +i∞

d−2
2 −i∞

dδ

2πiN
(a)
(c),δ,λĈ

(c)
δ,λ(z1, z2; ∂z2)

×
(
O+
δ+1,J1+J2−1,λ,(a)(x, z)−O−δ+1,J1+J2−1,λ,(a)(x, z)

)
+ · · · .
(5.51)

In the last step we fixed a subtlety that we glossed over before: the identification of
three-point structures in (5.43) can only be performed for low transverse spin λ since the
right-hand side simply does not exist for higher transverse spin. Therefore, in (5.51) we
have only correctly identified the low transverse spin contributions, and (· · · ) denotes the
higher transverse spin contributions that we deal with in the next sections.

We can simplify equation (5.51) further, by defining

C(a)
δ,λ (z1, z2; ∂z2) = 1

2πiN
(a)
(c),δ,λĈ

(c)
δ,λ(z1, z2; ∂z2). (5.52)

Note that while Ĉ(c)
δ,λ are linearly-independent, C(a)

δ,λ are not. In terms of C(a)
δ,λ we get

L[O1](x, z1)L[O2](x, z2) = πi
∑
λ∈Λ12

∫ d−2
2 +i∞

d−2
2 −i∞

dδ

2πiC
(a)
δ,λ (z1, z2; ∂z2)

×
(
O+
δ+1,J1+J2−1,λ,(a)(x, z)−O−δ+1,J1+J2−1,λ,(a)(x, z)

)
+ · · · .
(5.53)
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Using (5.47) and (5.36) we can give an equivalent characterization of C(a)
δ,λ ,

C(a)
δ,λ (z1,z2,∂z2)〈L[O](x,z2)L[O†](x′,z′)〉=

〈0|L+[O2](x,z2)L[O†](x′,z′)L−[O1](x,z1)|0〉(a)
+

vol(SO(1,1)) .

(5.54)

Equations (5.54) and (5.53) reproduce equations (3.97) and (3.98) of [1], respectively.39 We
refer to (5.54) as the “celestial map” formula because it maps the d-dimensional tensor
structures appearing on the right-hand side to the (d − 2)-dimensional OPE differential
operators C(a)

δ,λ . Note that (5.40) implies that m(a) such that N (a)
(c),δ,λm(a) = 0 satisfy

〈0|L+[O2](x, z2)L[O†](x′, z′)L−[O1](x, z1)|0〉(a)
+

vol(SO(1, 1)) m(a) = 0, (5.55)

i.e. the kernel of N (a)
(c),δ,λ is the same as the kernel of the celestial map.

Finally, to reproduce the low transverse spin terms in (5.1), we note, analogously to the
discussion around (4.69), that in order for the left-hand side of (5.53) to be well-defined,
we need the Regge intercept to satisfy J0 < J1 + J2 − 1, in which case we can use a
superconvergence sum rule [1, 23] which states that O(−1)J1+J2−1

δ+1,J1+J2−1,λ,(a)(x, z) = 0. This allows
us to rewrite (5.53) as

L[O1](x,z1)L[O2](x,z2)

=πi(−1)J1+J2
∑
λ∈Λ12

∫ d−2
2 +i∞

d−2
2 −i∞

dδ

2πiC
(a)
δ,λ (z1,z2;∂z2)O(−1)J1+J2

δ+1,J1+J2−1,λ,(a)(x,z)+· · · , (5.56)

which reproduces the first sum in (5.1).

5.2.3 Higher transverse spin

Now we would like to understand the higher transverse spin terms in the OPE (5.1). The
logic in this case is similar to the low transverse spin case, but with some extra complications.
Similarly to (5.34), we assume that

N (a)
(c),δ,λγ ,nDn

(∫
x≈2
x≈1−

ddx1d
dx2K

t
δ+1,J,λγ ,(a)(x1, x2;x, z)O1(x1)O2(x2)

)

−→
J→J1+J2−1+n

∫
Dd−2z1D

d−2z2kδ,λγ(+n),(c)(z1, z2; z)L[O1](x, z1)L[O2](x, z2). (5.57)

The evidence for this assumption is the same as for (5.34) and is discussed in section 5.2.2.
Using this statement in (5.6) requires some care. Indeed, plugging in this relation

(again definingM to be the left inverse to N ), we find∫
Dd−2z1D

d−2z2kδ,λγ(+n),(c)(z1,z2;z) 〈0|L
+[O2](x,z2)L[O†](x′,z′)L−[O1](x,z1)|0〉(a)

+

vol(SO(1,1))2 M(c′)
(a),δ,λγ ,n

= 1
2πi〈(DnL[O])(x,z)L[O†](x′,z′)〉δ(c′)

(c) . (5.58)

39There is a (−) sign in (5.53) which is not in (3.98) of [1], which is due to the more explicit treatment of
(−1)J signs in section 5.1.1 of this paper.
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The equality holds if J = Jn ≡ J1 + J2 − 1 + n. But for this value of J , the action of Dn is
conformally-invariant, and the right-hand side of (5.58) contains a conformally-invariant
two-point function for operators DnL[O] and L[O†]. However, the quantum numbers of
these operators are not Hermitian-conjugate to each other, and thus such two-point functions
do not exist! This means that the right-hand side vanishes, and so the left-hand side must
also vanish. Equation (5.58) at J = Jn is thus trivially satisfied.

To obtain nontrivial information, we must shift away from J = Jn. For this, it helps to
act with Dn on L[O†] on both sides of (5.58). We obtain on the right-hand side

1
2πi〈(DnL[O])(x, z)(DnL[O†])(x′, z′)〉δ(c′)

(c)

= (J − Jn) lim
J→Jn

1
2πi
〈(DnL[O])(x, z)(DnL[O†])(x′, z′)〉

J − Jn
δ

(c′)
(c) +O((J − Jn)2). (5.59)

After acting with Dn on the second operator, the limit

lim
J→Jn

1
2πi
〈(DnL[O])(x, z)(DnL[O†])(x′, z′)〉

J − Jn
(5.60)

is a conformally-invariant two-point function [27].
We now need to analyze the left-hand side of (5.6) away from J = Jn. One might

worry that we would need to know the subleading term in (5.57) in order to determine the
leading non-zero piece in the left-hand side of (5.58). Fortunately, this is not required. To
see this, let us first write for general J , from (5.6) and the above,∫

ddx1d
dx2

vol(SO(1, 1))2Dn
(
Kt,±

∆,J,λ(a)(x1, x2;x, z)θ(x ≈ 2, 1−)
)

×Dn
(
〈0|O2L[O†](x′, z′)O1|0〉(b)+ θ(2 > x′ > 1−)

)
= (J − Jn) lim

J→Jn

1
2πi
〈(DnL[O])(x, z)(DnL[O†])(x′, z′)〉

J − Jn
δ

(b)
(a) +O((J − Jn)2) (5.61)

Since the right-hand side is O(J − Jn), this should be true for the left-hand side as well.
We claim that in fact∫

ddx1d
dx2

vol(SO(1, 1))2F (x1, x2;x, z)Dn
(
〈0|O2L[O†](x′, z′)O1|0〉(b)+ θ(2 > x′ > 1−)

)
∈ O(J − Jn)

(5.62)

for any conformally-invariant kernel F that transforms at x with the quantum numbers of
DnL[O]. This statement implies that we can use (5.58) directly at J = Jn = J1 +J2− 1 +n

for the purposes of determining the O(J − Jn) term.
We actually need the following refined version of (5.62),∫
ddx1d

dx2
vol(SO(1,1))2F (x1,x2;x,z)Dn

(
〈0|O2L[O†](x′,z′)O1|0〉(b)+ θ(2>x′> 1−)

)
= (J−Jn)

∫
ddx1d

dx2
vol(SO(1,1))F (x1,x2;x,z)Dn

(
〈0|O2L[O†](x′,z′)O1|0〉(b)+ θ(2>x′> 1−)

)∣∣∣
J=Jn

+O((J−Jn)2). (5.63)
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Note that the expressions on the left-hand and right-hand sides differ by the power of the
factor vol(SO(1, 1)). The reason for this is that while at J = Jn and J 6= Jn both integrals
have 2 reparameterization zero modes, in the integral on the right, one of the modes is
similar to x→ αx in ∫

dx δ(x) = 1, (5.64)

and doesn’t require Faddeev-Popov fixing. A simple model for the above equation is
provided by the integral∫ ∞

0

dx

vol(SO(1, 1))2 · x−(J−Jn)∂x(xJ−Jnθ(x)) = 2(J − Jn). (5.65)

Clearly, the coefficient 2 in front of (J − Jn) can be computed by setting J = Jn and
removing the vol(SO(1, 1)) factor. The result (5.63) can be shown by an explicit calculation
in the case when O1,O2 are scalars,40 and then noting that integrands in both sides have the
same transformation properties under weight-shifting operators acting on O1,O2,O [28, 35].

Combining everything together, we find the following equation for the kernel kδ,λγ(+n),(a),∫
Dd−2z1D

d−2z2
vol(SO(1, 1)) kδ,λγ(+n),(c)(z1, z2; z)

×Dn
(
〈0|L+[O2](x, z2)L[O†](x′, z′)L−[O1](x, z1)|0〉(a)

+

)
M(c′)

(a),δ,λγ ,n

= lim
J→Jn

1
2πi
〈(DnL[O])(x, z)(DnL[O†])(x′, z′)〉

J − Jn
δ

(c′)
(c) . (5.66)

From this equation, following precisely the same steps as in the derivation of low transverse
spin terms in the previous section, we find that if the operators C(a)

δ,λγ(+n) are defined by

C(a)
δ,λγ(+n)(z1, z2, ∂z2) lim

J→Jn

〈(DnL[O])(x, z2)(DnL[O†])(x′, z′)〉
J − Jn

= (−1)nDn
(
〈0|L+[O2](x, z2)L[O†](x′, z′)L−[O1](x, z1)|0〉(a)

+

)
, (5.67)

then the contribution of higher transverse spin terms is given by the second sum in (5.1).41

In appendix E we consider which representations λγ(+n) can be generated in this way,
and show that there are enough d-dimensional structures that survive this celestial map to
account for all the celestial OPE structures.

5.3 Celestial map without light transforms

In the previous section we derived the celestial map formulas (5.54) and (5.67) that determine
the OPE differential operators C(a)

δ,λ appearing in (5.1). These formulas involve taking several
light-transforms of tensor structures analytically continued to Wightman correlators, which
in practice can be a difficult calculation. Fortunately, as first observed in [1] and proved for

40It is easy to convince oneself that it suffices to ensure that the result of this section agrees with the
result of section 4.

41Here we introduced a sign (−1)n by hand in order to simplify (5.1).
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traceless-symmetric operators, there exists a simpler version of the celestial map formulas
that contains only simple algebraic manipulations.

We will show that the following is equivalent to (5.54),

C(a)
δ,λ (z1,w1, z2,w2, ∂z2 , ∂w2)

(
(−2H20)〈O(X2, Z2,W2)O†(X0, Z0,W0)〉

) ∣∣∣∣∣
celestial

= X12 |−2V0,21| 〈O1(X1, Z1,W1)O†(X0, Z0,W0)O2(X2, Z2,W2)〉(a)
+

∣∣∣∣∣
celestial

, (5.68)

and the following equivalent to (5.67),

C(a)
δ,λγ(+n)(z1,w1,z2,w2,∂z2 ,∂w2)

(
lim
J→Jn

(−2H20) 〈(D
′
nO)(X2,Z2,W2)(D′nO†)(X0,Z0,W0)〉

J−Jn

)∣∣∣∣∣
celestial

= (−1)nX12

δ(−2V0,21)D
′
n

(
θ(V0,12)〈O1(X1,Z1,W1)O†(X0,Z0,W0)O2(X2,Z2,W2)〉(a)

+

)∣∣∣∣∣
celestial

.

(5.69)

(Note that we have used the 〈· · ·〉(a)
+ structures defined in section 5.1.1.) In the above

equations, we have explicitly reintroduced polarization vectors wi for the second and higher
rows of Young diagrams of Oi, as described in section 3. Furthermore, we have used
embedding space notation [19] on the right-hand side, with the standard tensor structures

Xij ≡ −2Xi ·Xj (5.70)

Vi,jk ≡
Zi ·XjXi ·Xk − Zi ·XkXi ·Xj

Xj ·Xk
, (5.71)

Hij ≡ −2(Zi · ZjXi ·Xj − Zi ·XjZj ·Xi). (5.72)

Finally, the notation (· · · )|celestial stands for substituting the following values for the em-
bedding space coordinates,

Z0 = −(1, 0, 0), Z1 = −(0, 1, 0), Z2 = −(0, 1, 0),
Xi = (0, 0, zi), Wi,j = (0, 0, wi,j), (5.73)

where we specify coordinates in the order (Y +, Y −, Y µ), µ = 0, · · · , d − 1. Note that
in (5.69) we divide by δ(−2V0,21). By this we mean that the result of the action of D′n is
proportional to δ(−2V0,21), and we simply read off the coefficient of this delta-function.
Note that this coefficient is only well-defined in configurations where V0,21 = 0, which is
indeed the case for the celestial locus (5.73).

5.3.1 Factoring out the light-transforms

We start by proving (5.69). The proof of (5.68) is only a simple modification that we
comment on below.
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The proof proceeds with evaluation of light-transforms in both sides of (5.67). We start
with the right-hand side

Dn
(
〈0|L+[O2](x, z2,w2)L[O†](x0, z0,w0)L−[O1](x, z1,w1)|0〉(a)

+

)
. (5.74)

Here Dn acts on (x0, z0,w0). We can rewrite this equivalently as

= DnL1L2
(
〈0|O2(x, z2,w2)L[O†](x0, z0,w0)O1(x, z1,w1)|0〉(a)

+ θ(2 > 0 > 1−)
)

= DnL1L2
(
〈O1(x, z1,w1)O2(x, z2,w2)L[O†](x0, z0,w0)〉(a)

+ θ(V0,12)
)
, (5.75)

where Li denotes light-transform acting on (xi, zi,wi). In the last equality we used the
following fact. First of all,

V0,12 = z0 · x10x
2
20 − z0 · x20x

2
10

x2
12

(5.76)

is positive for 1 ≈ 2 and 2 > 0 > 1−, and is negative for 1 ≈ 2 and 1 > 0 > 2−. In (5.23)
we have two terms, and multiplying by θ(V0,12) selects the first term, which is the one
appearing in the first line of (5.75).

Now we can use (3.25) to rewrite this further as

= L1L2L0D′n
(
〈O1(x, z1,w1)O2(x, z2,w2)O†(x0, z0,w0)〉(a)

+ θ(V0,12)
)
, (5.77)

where we took into account the easily verified fact that V0,12 commutes with L0.

5.3.2 Appearance of δ(−2V0,12)

Note that without the theta-function we would have

D′n〈O1(x, z1,w1)O2(x, z2,w2)O†(x0, z0,w0)〉(a) = 0. (5.78)

This is because for J = Jn, all possible three-point tensor structures above are polynomial
in z0, and hence killed by D′n. To see this, note that the way non-polynomial structures in
z0 appear is through the factors of the form

〈O1(x, z1,w1)O2(x, z2,w2)O†(x0, z0,w0)〉(a) = (· · · )V J−k
0,12 (5.79)

when J < k, where k > 0 is the degree of z0 in (· · · ). Non-polynomiality cannot appear in
any other way, because we require that all polarizations except z0 enter polynomially, and
V0,12 is the only invariant that involves only z0. We see that for sufficiently large integer J
all structures are therefore polynomial, and the appearance of non-polynomial structures
is indicated by the reduction in the number of polynomial structures. The number of
polynomial structures can be computed using group-theoretic counting rules [40], and a
simple calculation shows that the polynomial structures start disappearing for J = J1+J2−1
(see appendix E). This means that for J = J1 + J2 − 1 the maximal non-polynomiality is
V −1

0,12, and for J = Jn = J1 + J2 − 1 + n with n > 0 there are no non-polynomial structures.
More generally, the smallest possible exponent of V0,12 is

V J−J1−J2
0,12 . (5.80)
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Since all structures are polynomial for J = Jn, the properties of D′n discussed in section 3
ensure (5.78).

However, we are interested in

D′n
(
〈O1(x, z1,w1)O2(x, z2,w2)O†(x0, z0,w0)〉(a)

+ θ(V0,12)
)
. (5.81)

We can obtain derivatives of delta functions δ(m)(−2V0,12) from D′n hitting the theta-function.
We claim that we get a result which is proportional to δ(−2V0,12). To see this, we regularize
by analytic continuation in J . Note that in (5.81) the most negative power of V0,12 is

V J−J1−J2−n
0,12 = V J−Jn−1

0,12 , (5.82)

because D′n has n derivatives which will therefore hit V J−J1−J2
0,12 , which is the most negative

power of V0,12 before acting with D′n, at most n times. In other words, we have for each (a)

D′n
(
〈O1(x, z1,w1)O2(x, z2,w2)O†(x0, z0,w0)〉(a)

+ θ(V0,12)
)

= (J − Jn)(· · · )V J−Jn−1
0,12 θ(V0,12) +R, (5.83)

where R involves higher powers of V0,12 or (J − Jn). As we send J → Jn, we then find
R→ 0 and

(J − Jn)V J−Jn−1
0,12 θ(V0,12)→ δ(V0,12). (5.84)

We therefore conclude that

D′n
(
〈O1(x, z1,w1)O2(x, z2,w2)O†(x0, z0,w0)〉(a)

+ θ(V0,12)
)

= δ(−2V0,21)× finite. (5.85)

5.3.3 Symmetries of the integrand

Defining

f(X1, Z1,W1;X2, Z2,W2;X0, Z0,W0)

≡ D′n
(
〈O1(X1, Z1,W1)O2(X2, Z2,W2)O†(X0, Z0,W0)〉(a)

+ θ(V0,12)
)
, (5.86)

and

f(α1, α2, α0) = f(Z1 − α1X∞,−X∞,W1;Z2 − α2X∞,−X∞,W2;Z0 − α0X0,−X0,W0),
(5.87)

where

X∞ = (0, 1, 0), X0 = (1, 0, 0), (5.88)
Zi = (0, 0, zi), Wi,j = (0, 0, wi,j), (5.89)

we can rewrite (5.77) and thus (5.74) for x =∞, x′ = 0 as

Dn〈0|L+[O2](∞, z2,w2)L[O†](0, z0,w0)L−[O1](∞, z1,w1)|0〉(a)
+

=
∫ +∞

−∞
dα1dα2dα0f(α1, α2, α0). (5.90)
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Our goal here will be to find an expression for f(α1, α2, α0) based solely on symmetries.
First, we check that the boost in the embedding space which sends

X∞ → λX∞, X0 → λ−1X0 (5.91)

implies that for λ > 0

f(α1, α2, α0) = λJ1+J2−J ′f(λα1, λα2, λ
−1α0), (5.92)

where J ′ = Jn − n = J1 + J2 − 1 is the spin we get after the action of D′n. That is, we have

f(α1, α2, α0) = λf(λα1, λα2, λ
−1α0). (5.93)

Second, the symmetry that in Minkowski space is represented by translation along z0
acts on embedding space coordinates as

X0 → X0 + λZ0, Zi → Zi + 2(zi · z0)λX∞ (i = 1, 2), (5.94)

leaving all other coordinates invariant.42 We can check that it implies the following equation
for f ,

f(α1, α2, α0) = (1− α0λ)−∆−J ′f(α1 − 2(z1 · z0)λ, α2 − 2(z2, z0)λ, (α−1
0 − λ)−1) (5.95)

for 1− α0λ > 0.
Now recall from the previous discussion that f(α1, α2, α0) is proportional to δ(−2V0,21),

and so we can write

f(α1, α2, α0) = δ

(
α1(z0 · z2)− α2(z0 · z2)

(z1 · z2)

)
g(α2, α0), (5.96)

for some g. Here we eliminated the α1-dependence using the delta-function. In terms of g,
the symmetries discussed above read

g(α2, α0) = g(λα2, λ
−1α0), (5.97)

g(α2, α0) = (1− α0λ)−∆−J ′g(α2 − 2(z2, z0)λ, (α−1
0 − λ)−1), (5.98)

for λ > 0 and 1− α0λ > 0 respectively. Let us consider g0 defined by

g0(α2, α0) = |α2α0 − 2(z2 · z0)|−∆−J ′ . (5.99)

It is easy to check that g0 satisfies the same symmetries as g, and thus g/g0 is simply
invariant under the above transformations of α2, α0. Note that we have two continuous
families of transformations, and it is easy to verify that the 2 vector fields by which they are

42To be more precise, we have

Wi,j →Wi,j + 2(wi,j · z0)λX∞ (i = 1, 2),

but since in (5.87) Wi,j are inserted with first-row polarization −X∞, the shift by X∞ has no effect on the
value of f .
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generated are generically linearly-independent. Since we have only two coordinates α2, α0,
we find that g/g0 should be locally constant and can only change value where these vector
fields degenerate. This only happens when α2α0 − 2(z2 · z0) = 0 or α0 = 0.

Note that g(α2, α0) comes from a three-point structure, and the three-point structures
are analytic away from Xij = 0, which are given by

X12 = −2(z1 · z2), (5.100)
X10 = α1α0 − 2(z1 · z0), (5.101)
X20 = α2α0 − 2(z2 · z0), (5.102)

so g/g0 cannot have a discontinuity at α0 = 0. We thus only need to determine how g/g0
changes when crossing X20 = 0. Since g comes from a time-ordered three-point structure, a
non-analyticity near X20 = 0 must have the form

(X20 + iε)#, (5.103)

where we use the usual iε-prescription for time-ordered correlators. It follows that

g(α2, α0) = A(α2α0 − 2(z2 · z0) + iε)−∆−J ′ (5.104)

for some A, for all real values of α2, α0. It is convenient to express A in terms of g(0, 0),

g(α2, α0) = (−2z2 · z0)∆+J ′g(0, 0)(α2α0 − 2(z2 · z0) + iε)−∆−J ′ . (5.105)

5.3.4 Computing the light-transforms

We can now compute the integrals in (5.90),∫
dα1dα2dα0f(α1,α2,α0)

=
∫
dα1dα2δ

(
α1(z0 ·z2)−α2(z0 ·z2)

(z1 ·z2)

)∫
dα0(−2z2 ·z0)∆+J ′g(0,0)(α2α0−2(z2 ·z0)+iε)−∆−J ′

= g(0,0)(−2z2 ·z0)
∫
dα1dα2δ

(
α1(z0 ·z2)−α2(z0 ·z2)

(z1 ·z2)

)∫
dα0(α2α0+1+iε)−∆−J ′

= −2πi
∆+J ′−1g(0,0)(−2z2 ·z0)

∫
dα1dα2δ

(
α1(z0 ·z2)−α2(z0 ·z2)

(z1 ·z2)

)
δ(α2)

= −2πi
∆+J ′−1(−2z1 ·z2)g(0,0), (5.106)

where we used the equation∫ +∞

−∞

dx

(xy + 1 + iε)a = − 2πi
a− 1δ(y) (5.107)

which we prove in appendix G.2. Unwinding the definitions, we check that

(−2z1 · z2)g(0, 0)

= X12
δ(−2V0,21)D

′
n

(
θ(V0,12)〈O1(X1, Z1,W1)O†(X0, Z0,W0)O2(X2, Z2,W2)〉(a)

+

) ∣∣∣∣∣
celestial

.

(5.108)
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It only remains to compute the light-transforms in the left-hand side of (5.67). For
this, note that

lim
J→Jn

〈(DnL[O])(x2, z2,w2)(DnL[O†])(x0, z0,w0)〉
J − Jn

= L2L0 lim
J→Jn

〈(D′nO)(X2, Z2,W2)(D′nO†)(X0, Z0,W0)〉
J − Jn

(5.109)

and defining

g′(X2,Z2,W2;X0,Z0,W0)≡ lim
J→Jn

〈(D′nO)(X2,Z2,W2)(D′nO†)(X0,Z0,W0)〉
J−Jn

, (5.110)

g′(α2,α0)≡ g′(Z2−α2X∞,−X∞,W2;Z0−α0X0,−X0,W0), (5.111)

we find that g′ satisfies the same properties as g above, and the same arguments lead to

g′(α2, α0) = (−2z2 · z0)∆+J ′g′(0, 0)(α2α0 − 2(z2 · z0) + iε)−∆−J ′ . (5.112)

We can then similarly compute

L2L0 lim
J→Jn

〈(D′nO)(X2, Z2,W2)(D′nO†)(X0, Z0,W0)〉
J − Jn

=
∫
dα2dα0g

′(α2, α0)

= −2πi
∆ + J ′ − 1(−2z2 · z0)g′(0, 0).

(5.113)

Since (−2z2 · z0) = −2H20|celestial, we find

(−2z2 · z0)g′(0, 0) =
(

lim
J→Jn

(−2H20)〈(D
′
nO)(X2, Z2,W2)(D′nO†)(X0, Z0,W0)〉

J − Jn

) ∣∣∣∣∣
celestial

.

(5.114)

Combining with (5.67), (5.90), (5.106), (5.109), (5.113), and (5.108), we arrive at (5.69).

5.3.5 Low transverse spin case

The only modification to the above proof required for the case of low transverse spin —
(5.54) and (5.68) — concerns the appearance of the delta-function in the analogue of (5.81).

(〈O1(x, z1,w1)O2(x, z2,w2)O†(x0, z0,w0)〉(a)
+ θ(V0,12)). (5.115)

In principle, there is no delta-function here. Instead, from the discussion in section 5.3.2 we
know that for J = J1 + J2 − 1 there are structures which contain the most negative power
of V0,21 which is

(· · · )(−2V0,21)−1θ(V0,12). (5.116)

This inverse power of V0,21 leads to the divergence in the triple light-transform in (5.54)
which is canceled by the SO(1, 1) factor. Similarly to the discussion around (5.63) we can
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remove the vol(SO(1, 1)) factor and replace (in fact, this is exactly the same replacement
as in (5.63))

(−2V0,21)−1θ(V0,12)→ δ(−2V0,21) (5.117)

and then the above proof can be applied to (5.68). The only remaining difference is that in
the final formula we prefer to factor out (−2V0,21)−1 before the above substitution instead
of factoring out δ(−2V0,21) after the substitution.

6 Examples

6.1 Re-deriving the L[φ1]× L[φ2] OPE from general formulas

In this section we rederive the scalar detector OPE (4.69) from the general result (5.1).
The first step is to work out the low-transverse spin terms in (4.69). The set of transverse

spins Λ12 is constrained to consist of traceless-symmetric representations λ of spin j because
L[φ1] and L[φ2] both transform as scalars on the celestial sphere. In d-dimensional language,
the transverse spin j is the length of the second row of the Young diagram of a SO(d− 1, 1)
irrep, and is therefore constrained to be j = 0 since only traceless-symmetric light-ray
operators appear in φ1 × φ2 OPE. The low-transverse spin contributions are then given by

L[φ1](x, z1)L[φ2](x, z2) = πi

∫ d−2
2 +i∞

d−2
2 −i∞

dδ

2πiCδ,j=0(z1, z2, ∂z2)O+
δ+1,J=−1(x, z2) + · · · , (6.1)

where we also substituted J1 = J2 = 0 and removed dependence on the transverse polar-
izations wi since all operators are traceless-symmetric. In order for this to agree with the
j = 0 term of (4.69), we need to verify that Cδ,j=0 normalized as in (4.20) also satisfies
the celestial map (5.68). We do this by computing the structures entering in (5.68) and
comparing them to the structures in (4.20).

First of all, we need to determine the expression for the three-point structure enter-
ing (5.68). Our d-dimensional structures for integer J are defined in appendix B, and
the analytic continuation should be performed following the conventions of section 5.1.1.
Comparing (B.3) and (5.18) we see that n = 0 in (5.18) and f0 is given by some product
of distances xij which is positive for space-like separated points. Looking at (5.22) we see
that in our case the analytically-continued three-point structures appearing in (5.68), when
all points are spacelike-separated, are equal to the absolute value of (B.3).

We can therefore use (B.5) and substitute the celestial locus values (5.73) into it. We
find for J = −1,

X12|−2V3,12|〈φ1(X1)φ2(X2)O(X3, Z3)〉|celestial

= 1

X
∆1+∆2−∆−1

2
12 X

∆1+∆−∆2−1
2

13 X
∆2+∆−∆1−1

2
23

∣∣∣∣∣
celestial

= 1

(−2z1 · z2)
δ1+δ2−δ

2 (−2z1 · z3)
δ1+δ−δ2

2 (−2z2 · z3)
δ2+δ−δ1

2

, (6.2)
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and since this is positive and all Xi are space-like separated in (5.73), it follows, according
to the discussion above, that this is equal to the right-hand side of (5.68) after substitution
3→ 0.

The left-hand side of (5.68) is easily computed from (B.4) to be equal to

(−2H23)〈O(X2, Z2)O(X3, Z3)〉|celestial = (−2z2 · z3)−δ, (6.3)

after substitution 3→ 0. Using these results in (5.68) we see immediately that it gives the
same normalization of Cδ,j=0 as (4.20).

A similar logic works for the higher transverse spin terms in (5.1). We have λγ(+n) =
(n, γ). The set Γ12 in (5.1) then consists of just the trivial representation, because only
traceless-symmetric representations appear in the φ1 × φ2 OPE. We thus find that the
contribution of higher transverse spins is

L[O1](x, z1,w1)L[O2](x, z2,w2)

= πi
∞∑
n=1

∫ d−2
2 +i∞

d−2
2 −i∞

dδ

2πiCδ,j=n(z1, z2, ∂z2 , ∂w2)(DnO(−1)n
δ+1,n−1)(x, z2,w2) + · · · . (6.4)

Therefore, in order to verify that (5.1) reproduces (4.69), we need to check that the
normalizations of Cδ,j defined by (4.20) and (5.69) are consistent.

Reasoning analogously to the lower transverse spin case, we find that we need to compute
the action of D′n defined by (3.22) on the absolute value of (B.3). Since in (5.69) we have
θ(V0,12), we need to restrict to the region where V0,12 is positive. In this region, we have

D′n〈φ1(x1)φ2(x2)O(x3, z)〉+

= D′n
(−2z · x23 x

2
13 + 2z · x13 x

2
23)J

x∆1+∆2−∆+J
12 x∆1+∆−∆2+J

13 x∆2+∆−∆1+J
23

= J(J − 1) · · · (J − n+ 1)
n! (−2w · x23 x

2
13 + 2w · x13 x

2
23)n

× (−2z · x23 x
2
13 + 2z · x13 x

2
23)J−n

x∆1+∆2−∆+J
12 x∆1+∆−∆2+J

13 x∆2+∆−∆1+J
23

. (6.5)

Multiplying by θ(V0,12) and taking limit J → n− 1, we find

D′n (〈φ1(x1)φ2(x2)O(x3, z)〉+θ(V0,12))

= 1
n

(−2w · x23 x
2
13 + 2w · x13 x

2
23)n

x∆1+∆2−∆+n+1
12 x∆1+∆−∆2+n−1

13 x∆2+∆−∆1+n−1
23

δ(−2V0,12). (6.6)

Lifting this to embedding space and evaluating at the celestial locus (5.73), we find that
the right-hand side of (5.69) is

(−1)nX12
δ(−2V0,21)D

′
n

(
θ(V0,12)〈φ1(X1)O(X0, Z0)φ2(X2)〉(a)

+

) ∣∣∣∣∣
celestial

= 1
n

(−4W ·X2X1 ·X3 + 4W ·X1X2 ·X3)n

X
∆1+∆2−∆+n−1

2
12 X

∆1+∆−∆2+n−1
2

13 X
∆2+∆−∆1+n−1

2
23

∣∣∣∣∣
celestial

= 1
n

(−4w · z2 z1 · z3 + 4w · z1 z2 · z3)n

(−2z1 · z2)
δ1+δ2−δ+n

2 (−2z1 · z3)
δ1+δ−δ2+n

2 (−2z2 · z3)
δ2+δ−δ1+n

2

(6.7)
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which up to a factor of 1/n agrees with the standard three-point structure (4.17) which
appears in (4.20).

We now need to compute the left-hand side of (5.69). We have

〈(D′nO)(x2, z2)(D′nO)(x0, z0)〉

= D′n,2D′n,0
(−2z2 · I(x20) · z0)J

x2∆
20

=
(J)(n)
n! D

′
n,2(−2z2 · I(x20) · w0)n (−2z2 · I(x20) · z0)J−n

x2∆
20

=
n∑
k=0

(
n

k

)
(J)(n)
n!

(n)(k)(J − n)(n−k)
n! (−2w2 · I(x20) · w0)k(−2z2 · I(x20) · w0)n−k

× (−2w2 · I(x20) · z0)n−k (−2z2 · I(x20) · z0)J−2n+k

x2∆
20

, (6.8)

where we have defined (a)(b) ≡ a(a− 1) · · · (a− b+ 1). We now send J → n− 1 to find

lim
J→n−1

1
J − n+ 1〈(D

′
nO)(x2, z2)(D′nO)(x0, z0)〉

=
n∑
k=0

(
n

k

)
1
n

(−1)n−k(−2w2 · I(x20) · w0)k(−2z2 · I(x20) · w0)n−k

× (−2w2 · I(x20) · z0)n−k (−2z2 · I(x20) · z0)−1−n+k

x2∆
20

,

= 1
n

((−2w2 · I(x20) · w0)(−2z2 · I(x20) · z0)− (−2w2 · I(x20) · z0)(−2z2 · I(x20) · w0))n

× (−2z2 · I(x20) · z0)−1−n

x2∆
20

= 1
n

(
(−2HWW

20 )(−2H20)− (−2HWZ
20 )(−2HZW

20 )
)n (−2H20)−1−n

X∆+n−1
20

(6.9)

where HAB
ij is defined by replacing Zi by Ai and Zj by Bj in Hij . This can now be evaluated

in the configuration (5.73) which yields, after multiplying by −2H02, for the structure in
the left-hand side of (5.69)(

lim
J→n−1

(−2H20)〈(D
′
nO)(X2, Z2,W2)(D′nO†)(X0, Z0,W0)〉

J − Jn

) ∣∣∣∣∣
celestial

= 1
n

((4z2 · z0w2 · w0 − 4z2 · w0z0 · w2))n

(−2z2 · z0)δ+n . (6.10)

This agrees up to a factor of 1/n with the standard two-point structure (4.21) which appears
in (4.20). We thus find that both sides of (5.69) differ from (4.20) by a factor of 1/n, and
therefore the two equations are equivalent.

6.2 Selection rules in the L[J ]× L[J ] OPE

In this section we consider the light-ray operators that contribute to the light-ray OPE (5.1)
of two identical charge detectors, i.e. to the two light-transforms of identical U(1) currents
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L[J ]. (The analysis for the non-abelian case is similar.43) For concreteness we focus on
d = 4 and we do not assume parity symmetry. However, the results we find will be valid in
any dimension d ≥ 4.

In d = 4 the SO(d−1, 1) = SO(3, 1) representations are parametrized by two-row Young
diagrams, which can be supplemented with self- or anti-self duality constraints. However,
since we are considering a non-chiral setup, it is convenient to use real tensor representations
of SO(d − 1, 1) which do not have self-duality constraints. We thus parametrize these
representations by pairs (J, j). Local operators always have J ≥ j.

First, we consider the local OPE of a U(1) current J with itself. Using the counting
rules of [40] it is easy to see that for sufficiently large J we have operators in the J ×J OPE
in irreps (J, 0), (J, 1) with even and odd J , and in irreps (J, 2) with even J . This generic-J
behavior determines the light-ray operators that appear in the J × J OPE. To see this
explicitly, recall that for even J+j the number of structures is given by the dimension of [40](

S2 ⊗ ResSO(3,1)
SO(3) (J, j)

)SO(3)
, (6.11)

where is the SO(3) vector irrep44 and for odd J + j we need instead(
∧2 ⊗ ResSO(3,1)

SO(3) (J, j)
)SO(3)

. (6.12)

We have

S2 = ⊕ •, ∧2 = , (6.13)

where • is the trivial representation, and the restriction of (J, j) to SO(3) is

ResSO(3,1)
SO(3) (J, j) =

J∑
l=j

(l) (6.14)

where (l) is the spin-l irrep of SO(3). We get tensor structures by matching SO(3) irreps
between (6.13) and (6.14). We immediately see that there are no structures with j > 2,
and that for j = 2 the spin J must be even. For j = 0, 1 J can be of any parity.

The transverse spins that appear in the J ×J OPE are thus 0, 1, 2. All these spins are
traceless-symmetric in d−2 dimensions and thus are allowed to appear in the celestial OPE.45

So, the set Λ12 in (5.1) is given by Λ12 = {0, 1, 2}. We then have the low transverse-spin
contributions, schematically

L[J ]× L[J ] =
∑
i

O+
i,J=1,j=0 + O+

i,J=1,j=1 + O+
i,J=1,j=2 + · · · . (6.15)

A subtlety here is that the celestial map (5.68) typically maps multiple three-point
tensor structures to zero, see appendix E for details. As we discuss there, the only structures

43Although note the discussion of contact terms in [1].
44Using an SO(3) irrep instead of an SO(4) irrep takes into account the conservation of J .
45Note in d > 5 three-row Young diagrams would appear in the J × J OPE, but the corresponding

transverse spins are not allowed to appear in the celestial OPE of two scalars.
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that survive are those that contain V −1
0,12, which are precisely those that are polynomial for

J > J1 + J2 − 1 but stop being polynomial exactly at J = J1 + J2 − 1. In our case we are
interested in even-spin structures which are polynomial for J = 2 but are not polynomial for
J = 1, i.e. those which disappear from the counting above as we change J = 2 to J = 1.46

We see that for j = 2 the number of structures changes from 1 to 0 and for j = 0 from 2 to
1. This happens because the SO(3) content of (J, j) changes: the spin-2 irrep disappears
and cannot be paired with the spin-2 irrep in S2 . However, for j = 1 the number of
structures doesn’t change because the only structure comes from pairing with the spin-1
irrep in ∧2 , and thus all j = 1 structures are annihilated by the celestial map.

The final form of the low transverse spin contributions is therefore

L[J ]× L[J ] =
∑
i

O+
i,J=1,j=0 + O+

i,J=1,j=2 + · · · . (6.16)

This is of course consistent with the fact that on the celestial sphere we have two identical
scalars, and thus only even j should be allowed.47

For higher transverse spin we find that the label γ in (5.1) is trivial because SO(d− 4)
is trivial in our case. We have λ(+n) = 2 + n and thus the higher transverse spin terms
take the schematic form

L[J ]× L[J ] =
∑
n,i

DnO(−1)n
i,J=1+n,j=2 + · · · . (6.17)

However, since O−i,J,j=2 do not appear in the J × J OPE, we find

L[J ]× L[J ] =
∑
n,i

D2nO+
i,J=1+2n,j=2 + · · · . (6.18)

Note that these contributions have even transverse spin j = 2 + 2n and thus this expansion
is again consistent with permutation symmetry on the celestial sphere.

Summarizing, we have the following schematic contributions to the OPE of two charge
detectors in d = 4,

L[J ]× L[J ] =
∑
i

(
O+
i,J=1,j=0 + O+

i,J=1,j=2

)
+
∑
n,i

D2nO+
i,J=1+2n,j=2. (6.19)

6.3 Selection rules in the L[T ]× L[T ] OPE

We now discuss the case of the OPE of two energy detectors, i.e. two light-transforms of T .
We use the same setup as in the previous section, i.e. we work in d = 4 and in terms of real
tensor irreps of SO(3, 1).

The transverse spins appearing in the T ×T OPE are analogous to the J ×J case. We
have spins j = 0, 1, 2, 3 for both even and odd J and spin j = 4 for even J . This translates

46Here we need to detach the notion of signature (even-spin or odd-spin) from parity of J since we are
analytically continuing in J . That is, for J = 1 we still use S2 for j = 0, 2 and ∧2 for j = 1.

47Here we assume, as usual, that the product L[J ]×L[J ] is well-defined and thus the two light-transforms
commute. This requires the Regge intercept J0 to satisfy J0 < J1 + J2 − 1 = 1 [23].
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to the following analogue of (6.15)

L[T ]× L[T ] =
∑
i

O+
i,J=3,j=0 + O+

i,J=3,j=1 + O+
i,J=3,j=2 + O+

i,J=3,j=3 + O+
i,J=3,j=4 + · · · .

(6.20)

However, we again must take care of the fact that the celestial map (5.68) annihilates some
tensor structures. In this case, using the same logic as before, we find that only j = 0, 2, 4
operators have tensor structures that are non-vanishing under the celestial map. Therefore,
the low-transverse spin contribution is actually

L[T ]× L[T ] =
∑
i

O+
i,J=3,j=0 + O+

i,J=3,j=2 + O+
i,J=3,j=4 + · · · . (6.21)

Again, this is consistent with the permutation symmetry on the celestial sphere that only
allows even j.

The analysis of higher transverse spin contributions is also the same as in the J × J
case. We have from (5.1)

L[T ]× L[T ] =
∑
n,i

DnO(−1)n
i,J=3+n,j=4 + · · · . (6.22)

Taking into account that only even-spin j = 4 operators appear in T × T and combining
with the low transverse spin terms, we find

L[T ]× L[T ] =
∑
i

(
O+
i,J=3,j=0 + O+

i,J=3,j=2 + O+
i,J=3,j=4

)
+
∑
n,i

D2nO+
i,J=3+2n,j=4. (6.23)

As mentioned above, although we have derived (6.23) in d = 4, the result is valid for any
d ≥ 4.

It is interesting to ask what are the leading operators appearing at various transverse
spins in the above expansion in a weakly-coupled gauge theory. At j = 0 it is well-known
that the leading twist is τ0 = 2 operators which can take the schematic form,

φ̄∂β1α̇1 · · · ∂βJ α̇Jφ, ψ̄α̇1∂β2α̇2 · · · ∂βJ α̇Jψβ1 , F̄α̇1α̇2∂β3α̇3 · · · ∂βJ α̇JFβ1β2 , (6.24)

where we assume that the gauge indices are implicitly contracted, and the dotted and
undotted indices are implicitly symmetrized. At j = 2 the leading twist48 is also τ2 = 2, for
the operators

Fβ1β2∂β5α̇5 · · · ∂βJ+2α̇J+2Fβ3β4 . (6.25)

To see that this is the minimal possible twist, note that τ ≥ 2 is the unitarity bound in
d = 4 for generic-J operators. To see that there are no other operators, note that the twist
of a product of symbols is bounded from below by the sum of constituent twists, and the
classical twist of all fundamental fields is 1, while the twist of a derivative is 0. Therefore
only products of two fundamental fields and any number of derivatives can have twist ≈ 2,

48For all transverse spins we define twist as ∆− J .
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provided no indices are contracted. Fixing the value of transverse spin then leaves us with
the above options.

From this argument it is clear that no j = 4 operators with twist τ = 2 exist. To build
the lowest-twist j = 4 operators we need to use more than 2 fundamental fields but as few
as possible. Since F carries the most transverse spin among all fundamental fields, we find
that the lowest-twist operators j = 4 have twist τ4 = 4 and are schematically given by,

F∂J1F∂J2F∂J3F, (6.26)

where we keep spinor indices uncontracted and symmetrized, with J1 + J2 + J3 + 4 = J .
Note that there are multiple ways in which the gauge indices can be contracted. The fact
that j = 4 operators have higher twist than required by the unitarity bound is in general a
consequence of the improved unitarity bounds of [41], which state

τ ≥ max{2, j}. (6.27)

In terms of the celestial quantum numbers, we get the following contributions. At j = 0
and j = 2 we have the leading contributions with dimension

δ = ∆− 1 ≈ τj + J − 1 = τj + 2 = 4. (6.28)

Note that this dimension corresponds to the singularity of the form θδ−δ1−δ2 = θ−2. For
j = 4 + 2n ≥ 4 we get

δ = ∆− 1 ≈ τ4 + J − 1 = τ4 + 2n+ 2 = 6 + 2n, (6.29)

which corresponds to the leading short-angle dependence of the form θ2n. Since the leading
classical twists τj are all at the (improved) unitarity bounds, the anomalous dimensions
should be positive. Therefore, the leading short-angle asymptotics from these contributions
in the interacting theory should be softer than the ones given above.

7 Example: event shape in N = 4 SYM

In this section we consider an example of an event shape that includes the transverse spin
structures discussed above. More precisely, we consider the following event shape in N = 4
SYM:

〈O20′(p)|L[O20′ ](∞, z1)L[O20′ ](∞, z2)|J(p, z3)〉, (7.1)

where J is the R-symmetry current, which is in the same multiplet as the half-BPS operator
O20′ . We will first compute (7.1) directly by performing the light transform of the relevant
four-point function. Next, we compute it using the light-ray OPE formula. In both cases,
we will derive a Ward identity that relates the event shape (7.1) to the energy-energy
correlator calculated in [1]. The result is given by (7.30) and (7.64). Despite the simplicity
of our result, the fact that the Ward identity can be derived in two independent ways still
provides a nontrivial check of our formulas.

– 56 –



J
H
E
P
0
5
(
2
0
2
2
)
0
5
9

7.1 Direct computation

The computation takes a few steps, summarized as follows. We start with the expression for
the correlator 〈O20′O20′O20′J〉 in terms of the scalar correlator 〈O20′O20′O20′O20′〉. The
two are related via the superconformal Ward identities [42]. Then, we go to the Mellin
space representation of the correlator, and perform the light transforms there. Finally, we
Fourier transform the separation of the in and out states to obtain the desired event shape.

The relevant four-point function is given by the following expression, see (3.15) in [42],

〈O20′(x4)O20′(x1)O20′(x2)Jαα̇,aa′(x3)〉= 1
4(∂x3)βα̇(y2

12y
2
14Y324−vy2

12y
2
24Y314−uy2

24y
2
14Y321)aa′

×〈X324,X314〉(αβ)
Φ(u,v)
x2

12x
2
24x

2
14
, (7.2)

where our spinor conventions can be found in appendix F. The function Φ(u, v) is the part
of the four-point function of O20′s that contains the nontrivial dynamical data, see e.g.
section 7.2 in [1]. It satisfies Φ(u, v) = Φ(v, u) = 1

vΦ(uv ,
1
v ). The rest of the ingredients are

various kinematical factors that require some unpacking. The α, α̇ = 1, 2 are spinor indices
for the Lorentz group SU(2)L × SU(2)R. The yi are auxiliary variables keeping track of the
SU(4) R-symmetry, see [42] for details. The structures Xijk and Yijk are defined as follows:

(Xijk)αα̇ =
(xij)αβ̇
x2
ij

(xjk)β̇γ
(xki)γα̇
x2
ik

, (Yijk)aa′ = (yij)ab′(yjk)b
′b(yki)ba′ . (7.3)

The commutator bracket 〈 , 〉 for spinor indices49 is defined as

〈a, b〉(αβ) ≡ aαα̇bα̇γεγβ − bαα̇aα̇γεγβ . (7.4)

Note that 〈a, b〉(αβ) is automatically symmetric under permutation of α and β.
To connect with the event shape, we set x4 = 0, and x3 will eventually be Fourier

transformed with momentum p. For now, we can replace the derivative (∂x3)βα̇ with i
2p
β
α̇.

We pass to index-free notation by introducing the polarization vector 1
2z
α̇α
3 , such that z2

3 = 0,
and contracting 1

2z
α̇α
3 Jαα̇ = zµ3 Jµ. Contracting with the polarization vector produces a term

pβα̇z
α̇α
3 = 1

2〈z3, p〉(βα) + (z3 · p)εβα . (7.5)

In terms of the polarization vector, the correlator becomes

〈O20′(x4)O20′(x1)O20′(x2)Jaa′(x3, z3)〉 = i

32(y2
12y

2
14Y324 − vy2

12y
2
24Y314 − uy2

24y
2
14Y321)aa′

× 〈z3, p〉(αβ)〈X324, X314〉(αβ)
Φ(u, v)
x2

12x
2
24x

2
14
. (7.6)

In this formula we only Fourier transformed the external derivative while keeping the rest
in coordinate space. The contraction of the brackets can be performed by the identity

〈a, b〉(αβ)〈c, d〉(αβ) = 8(gµσgνρ − gµρgνσ + iεµνρσ)aµbνcρdσ . (7.7)
49We use angular brackets to denote the commutator in spinor indices to avoid a clash with the commutator

in vector indices denoted by the traditional square brackets.
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To compute the event shape, we place the detectors at embedding space coordinates

Xi = X∞ = (0, 1, 0), Zi = (0, 0, zi), for i = 1, 2, (7.8)

and take the light-transforms

L[O20′ ](∞, zi) =
∫ ∞
−∞

dαiO20′(Zi − αiX∞), (7.9)

while the external states are placed at X3 = (1, x2
3, x3) and X4 = (1, 0, 0).

We find it convenient to work in the x Poincaré patch and approach the spatial infinity
insertion as follows

L[O20′ ](∞, zi) =
∫ ∞
−∞

dαi lim
ri→∞

r2
iO20′(rizi + αiz̄i), (7.10)

where z̄2
i = 0, (−zi · z̄i) = 1

2 , and z̄i is arbitrary otherwise. In the embedding space, (7.10)
corresponds to choosing

Zi = lim
r→∞

Zri =
( 1
ri
, 0, zi

)
,

X∞ = lim
r→∞

Xri
∞ =

(
0, 1, z̄i

ri

)
. (7.11)

Note that (Zri )2 = (Xri∞)2 = (Zri ·Xri∞) = 0. It is clear from the definition (7.9) that the
final result does not depend on the particular choice of z̄i. For convenience, we also define
the null coordinates

xi− ≡ (−xi · zi) = αi/2 ,
x3i− ≡ (−x3 · zi)− xi− , (7.12)

for i = 1, 2.
Next we evaluate the integrand in the kinematics above. The cross ratios u and v take

the form

u = x2
3z1 · z2

2x2−x31−
, v = x1−x32−

x2−x31−
, (7.13)

and the commutator becomes

〈X324, X314〉(αβ) = 1
2

1
x2

3x32−x31−

(
−x32−〈z1, x3〉(αβ) + x31−〈z2, x3〉(αβ) + 1

2x
2
3〈z2, z1〉(αβ)

)
.

(7.14)

With these expressions, the light transforms are evaluated by the integral

〈O20′(0)|L[O20′ ](∞, z1)L[O20′ ](∞, z2)|Jaa′(x3, z3)〉

=
∫ ∞
−∞

dx1−dx2−
i

32(y2
12y

2
14Y324 − vy2

12y
2
24Y314 − uy2

24y
2
14Y321)aa′

× 〈z3, p〉(αβ)〈X324, X314〉(αβ)
Φ(u, v)

(−2z1 · z2)x1−x2−
. (7.15)
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To perform the light transform integrals above, it is very convenient to use the Mellin
representation for Φ(u, v), see e.g. [43],

Φ(u, v) = v

u

∫
C0

dγ12dγ14
(2πi)2 Γ(γ12)2Γ(γ14)2Γ(2− γ12 − γ14)2M(γ12, γ14)u−γ12v−γ14 ,

C0 : Re[γ12] > −1, Re[γ14],Re[γ13] > 1, (7.16)

where γ12 + γ13 + γ14 = 2. The condition Re[γ13] > 1 thus becomes Re[γ12 + γ14] < 1. The
weak and strong coupling results take the form

Mweak(γ12, γ14) = −a4
γ2

12
(γ14 − 1)2(γ13 − 1)2 ,

M strong(γ12, γ14) = −1
2

γ2
12(1 + γ12)

(γ14 − 1)(γ13 − 1) . (7.17)

We can plug the Mellin representation (7.16) above into (7.15), and perform the
light-transform integrals using the formula∫ ∞

−∞
dx− (x− + iε)−a((−z · x)− x− + iε)−b = −2πi(−z · x)1−a−bΓ(a+ b− 1)

Γ(a)Γ(b) . (7.18)

The integral converges for Re[a+ b] > 1.
At this point, we observe that the terms in the correlator proportional to y2

12 produce
a divergent result. This means that the event shapes for the corresponding R-symmetry
structures are not well-defined. To obtain a well-defined event shape, we set y2

12 = 0, so that
only the −uy2

24y
2
14Y321 term survives. This term produces a finite result for the integral,

which converges for Re[γ12] < 0. Note that the condition y2
12 = 0 keeps representations

84, 105, 175 in the OPE of scalars O20′ [43], whereas in the J ×O20′ OPE we have the
representations

15× 20′ = 15 + 20′ + 45 + 4̄5 + 175 . (7.19)

Therefore, the only representation that appears in the event shape determined by y2
12 = 0 is

175. From now on, we will focus on this finite event shape in the 175 R-symmetry channel:

〈O20′ |L[O20′ ]L[O20′ ]|Jaa′〉|y2
12=0 = (y2

24y
2
14Y321)aa′〈O20′ |L[O20′ ]L[O20′ ]|J〉175. (7.20)

Performing the light-transforms for the event shape in the 175 channel, we arrive at
the expression

〈O20′(p)|L[O20′ ](∞, z1)L[O20′ ](∞, z2)|J(p, z3)〉175

= − i

32
1

(z1 · z2)2

∫
C0

dγ12dγ14
(2πi)2

M(γ12, γ14)
γ12

2π4

(sin πγ12)2Dp
∫
d4x

eipx

x4 γ
γ12−1, (7.21)

where γ = 2 (−x·z1)(−x·z2)
x2(z1·z2) . The differential operator Dp is given by

Dp≡〈z3,p〉(αβ)
(

(γ14−1)〈z1,∂p〉(αβ)z2 ·∂p−(γ13−1)〈z2,∂p〉(αβ)z1 ·∂p−
1
2γ12〈z2,z1〉(αβ)∂

2
p

)
.

(7.22)
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Finally, the Fourier transform can be performed using the following master formula:∫
ddx

eip·x

(x2 − iεx0)a γ
b = θ(p)× 21−2a+dπ1+ d

2 (−p2)a−
d
2
ζ−b 2F1(−b,−b, 1 + a− b− d

2 , ζ)
Γ(a+ b)Γ(1 + a− b− d

2)
,

(7.23)

where we introduced θ(p) ≡ θ(p0)θ(−p2) and the cross ratio

ζ = (−2z1 · z2)(−p2)
(−2p · z1)(−2p · z2) . (7.24)

Setting a = 2, b = γ12 − 1 and d = 4 we obtain∫
d4x

eipx

x4 γ
γ12−1 = 2π2 sin πγ12

γ12

∫ ζ

0
dww−γ12(1− w)γ12−1. (7.25)

Acting with Dp on the result of the Fourier transform (7.25) and using crossing symmetry
of the Mellin amplitude M(γ12, γ14) = M(γ12, γ13), we get

〈O20′(p)|L[O20′ ](∞, z1)L[O20′ ](∞, z2)|J(p, z3)〉175

= i
[z3, p] · [z1, z2]θ(p)

(−2z1 · z2)2

∫
C0

dγ12dγ14
(2πi)2 M(γ12, γ14) π6

sin πγ12

4
p2

(
ζ

1− ζ

)1−γ12

, (7.26)

where the commutator [a, b]µν is defined in the same way as (2.26), and contracting a pair
gives

[a, b] · [c, d] = 2 [(a · c)(b · d)− (a · d)(b · c)] . (7.27)

We can rewrite the result above as

〈O20′(p)|L[O20′ ](∞,z1)L[O20′ ](∞,z2)|J(p,z3)〉175 = 16iπ5 [z3,p]·[z1,z2](−p2)θ(p)
(−2p·z1)2(−2p·z2)2 FJO(ζ) ,

(7.28)

where

FJO(ζ) = − 1
4ζ2

∫
C0

dγ12dγ14
(2πi)2 M(γ12, γ14) π

sin πγ12

(
ζ

1− ζ

)1−γ12

. (7.29)

The result (7.29), see e.g. [12], immediately implies that

FJO(ζ) = −ζ2FE(ζ), (7.30)

where FE(ζ) was defined in [1] and computes the energy-energy correlator.
Using (7.30) and the formulas [1], or directly computing the Mellin integral in (7.29)

with the Mellin amplitudes (7.17), we get the results at weak and at strong coupling

Fweak
JO (ζ) = a

8
log 1− ζ
ζ(1− ζ) , F strong

JO (ζ) = −ζ4 . (7.31)
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7.2 Computation using the light-ray OPE

Now we compute the event shape (7.1) using the light-ray OPE formula. The complete
light-ray OPE formula for two scalars including higher transverse spin terms is given
by (4.69). Plugging the formula into (7.1), we have

〈O20′(p)|L[O20′ ](∞, z1)L[O20′ ](∞, z2)|J(p, z3)〉

= πi

∫ 2+i∞

2−i∞

d∆
2πi

(
C∆−1,0(z1, z2, ∂z)〈O20′(p)|O+

∆,J=−1(∞, z)|J(p, z3)〉

+ C∆−1,1(z1, z2, ∂z, ∂w)〈O20′(p)|(D1O−∆,J=0)(∞, z, w)|J(p, z3)〉
)

= −πi
∫ 2+i∞

2−i∞

d∆
2πi

(
C+
a (∆,−1)C∆−1,0(z1, z2, ∂z)〈O20′(p)|L[O∆,−1](∞, z)|J(p, z3)〉(a)

+

+ C−a (∆, 0)C∆−1,1(z1, z2, ∂z, ∂w)〈O20′(p)|D1L[O∆,0](∞, z, w)|J(p, z3)〉(a)
−

)
,

(7.32)

where C±a (∆, J) is a coefficient function that encodes the OPE data. It has poles of the form

C±a (∆, J) ∼ −
p

(a)
i,J

∆−∆i,J
(7.33)

where p(a)
i,J and ∆i,J are the product of OPE coefficients and the scaling dimension of an

exchanged operator. Note that there’s just one structure label in C±a (∆, J) because the
three-point function from the two O20′ ’s only has one tensor structure. In the second
equality in (7.32), we use the relation between light-ray operators O±∆,J and C±a (∆, J) [15]

〈O20′O±∆,JJ〉Ω = −C±a (∆, J)〈0|O20′L[O∆,J ]J |0〉(a)
± , (7.34)

where 〈0|O20′L[O∆,J ]J |0〉(a)
± is the analytic continuation of the continuous-spin Wightman

function 〈0|O20′L[O∆,J ]J |0〉(a) from either even or odd spin. It can be defined straightfor-
wardly following section 5.1.1. We will give their explicit expressions later in section 7.2.1.

Furthermore, as discussed in section 7.1, we focus on the 175 R-symmetry channel
event shape defined in (7.20). Since the 175 representation is antisymmetric under the
exchange of O20′ ’s, the OPE should only contain operators with odd spin, and we have
C+(∆, J) = 0 for all J . The 175 R-symmetry channel event shape is then given by

〈O20′(p)|L[O20′ ](∞, z1)L[O20′ ](∞, z2)|J(p, z3)〉175

= −πi
∫ 2+i∞

2−i∞

d∆
2πiC

′−
a (∆, 0)C∆−1,1(z1, z2, ∂z, ∂w)〈O20′(p)|D1L[O∆,0](∞, z, w)|J(p, z3)〉(a)

− ,

(7.35)

where C ′−a (∆, J) is simply given by the coefficient function C−a (∆, J) without the R-
symmetry factor (y2

24y
2
14Y321).
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7.2.1 Celestial blocks

In order to compute (7.35), we first note that by Lorentz invariance and homogeneity,

〈O20′(p)|D1L[O∆,0](∞,z,w)|J(p,z3)〉(a)
− ∝ (2w ·z3z ·p−2w ·pz ·z3)(−2p·z)−δ−1. (7.36)

Therefore, we need to solve for the j = 1 celestial block defined by

Cδ,1(z1, z2, ∂z, ∂w)
(
(2w · z3z · p− 2w · pz · z3)(−2p · z)−δ−1

)
. (7.37)

This is the higher transverse spin version of the celestial block computed in [1]. Lorentz
invariance and homogeneity imply that

Cδ,1(z1, z2, ∂z, ∂w)
(
[w, z] · [z3, p](−2p · z)−δ−1

)
= (−p2)

δ1+δ2−δ+1
2

(−2p · z1)δ1+1(−2p · z2)δ2+1

×
(

[z3, p] · [z1, z2]g(ζ) + {z3, p} · {z1, z2}h(ζ)− 4p · z1p · z2p · z3
p2 h(ζ)

)
, (7.38)

where once again [a, b]µν is defined in the same way as (2.26), and similarly

{a, b}µν = aµbν + bµaν , (7.39)

and the cross ratio ζ is given by (7.24). One way to obtain the functions g(ζ) and h(ζ) is
using the fact that (7.38) is an eigenvector of the quadratic Casimir of the Lorentz group
acting simultaneously on z1, z2 with eigenvalue δ(δ − d+ 2) + d− 3. Proceeding this way,
one gets two coupled second-order inhomogeneous differential equations of g(ζ) and h(ζ),
and their boundary conditions are given by the OPE limit of (7.38). However, finding the
solutions to these differential equations is a nontrivial task. Furthermore, the system of
differential equations gets more and more complicated when one has even higher transverse
spin. We would like a method that allows us to compute celestial blocks with general
transverse spin. Fortunately, this can be achieved by using weight-shifting operators [28]
and the j = 0 celestial block calculated in [1].

First, note that [w, z] · [z3, p](−2p ·z)−δ−1 can be written in terms of a “bubble diagram”

[w,z]·[z3,p](−2p·z)−δ−1 =
D0+
z,w ·D0−

z,w

(d−4)(δ−1)(δ−d+3)
(
[w,z]·[z3,p](−2p·z)−δ−1

)
, (7.40)

where D0+µ
z,w and D0−µ

z,w are weight-shifting operators defined in [28], with the embedding
space coordinates (X,Z) replaced with (z, w). The explicit expression of D0+µ

z,w is also
given in (3.26). The operator D0+µ

z,w increases the transverse spin and D0−µ
z,w decreases the

transverse spin, so acting D0+
z,w · D0−

z,w will basically give us the same expression with some
overall factor. One can perform crossing on the weight-shifting operator D0−µ

z,w such that

D0−µ
z,w

(
[w, z] · [z3, p](−2p · z)−δ−1

)
= Dµp (−2p · z)−δ, (7.41)
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where Dµp is a differential operator acting on p. By explicitly evaluating the left-hand side
of (7.41), we find that Dµp is given by

Dµp =−(d−4)
δ

(
(δ−d+3)pµz3 ·

∂

∂p
+p2z3 ·

∂

∂p

∂

∂pµ
+(δ+1)z3 ·p

∂

∂pµ
+δ(δ−d+3)zµ3

)
.

(7.42)

Alternatively, (−2p · z)−δ and [w, z] · [z3, p](−2p · z)−δ−1 can be viewed as spin 0 and spin 1
bulk-to-boundary propagators in AdSd−1/CFTd−2, and Dµp is simply an AdS weight-shifting
operator [44]. In particular, it is the AdS weight-shifting operator that increases spin by 1
multiplied by a bulk-to-boundary 6j symbol.

On the other hand, one can also perform crossing between D0+µ
z,w and the OPE differential

operator Cδ,1:

C(δ1,0,δ2,0)
δ,1 D0+µ

z,w = c1D0−µ
z1,w1C

(δ1,1,δ2,0)
δ,0 +c2D+0µ

z1,w1C
(δ1−1,0,δ2,0)
δ,0 +c3D−0µ

z1,w1C
(δ1+1,0,δ2,0)
δ,0 , (7.43)

where C(δ1,j1,δ2,j2)
δ,j is the OPE differential operator of Pδ,j ∈ Pδ1,j1 × Pδ2,j2 . To obtain the

coefficients c1, c2 and c3, we apply (7.43) to a scalar two-point function 〈PδPδ〉 and compare
the two sides of the equation. The result is given by

c1 = δ(δ + δ1 − δ2 − 1)
(d− 4)(δ1 − 1)(−δ1 + d− 3)

c2 = δ

(δ1 − 1)(δ1 − 2)(−δ1 + d− 3)(2δ1 − d+ 2)

c3 = δ(−δ1 − δ2 + δ + d− 3)(5− 2d+ δ + 3δ1 − δ2)
2(−δ1 + d− 3)(2δ1 − d+ 2) . (7.44)

Combining (7.40), (7.41) and (7.43), we have

Cδ,1(z1, z2, ∂z, ∂w)
(
[w, z] · [z3, p](−2p · z)−δ−1

)
= 1

(d− 4)(δ − 1)(δ − d+ 3)
(
c1Dp · D0−

z1,w1C
(δ1,1,δ2,0)
δ,0

+c2Dp · D+0
z1,w1C

(δ1−1,0,δ2,0)
δ,0 + c3Dp · D−0

z1,w1C
(δ1+1,0,δ2,0)
δ,0

)
(−2p · z)−δ . (7.45)

Now the calculation is straightforward since Cδ,0(−2p · z)−δ is simply the j = 0 celestial
block calculated in [1].50 Finally, we obtain that the functions g(ζ) and h(ζ) in the j = 1
celestial block (7.38) are given by

g(ζ) = ζ
δ−δ1−δ2−1

2
(

1
2(1 + δ2−δ1

δ−d+3)2F1( δ+δ1−δ2−1
2 , δ+δ2−δ1+1

2 , δ + 2− d
2 , ζ)

+ 1
2(1 + δ1−δ2

δ−d+3)2F1( δ+δ1−δ2+1
2 , δ+δ2−δ1−1

2 , δ + 2− d
2 , ζ)

)
h(ζ) = ζ

δ−δ1−δ2+1
2

(1− ζ)
(

1
2(1 + δ2−δ1

δ−d+3)2F1( δ+δ1−δ2−1
2 , δ+δ2−δ1+1

2 , δ + 2− d
2 , ζ)

− 1
2(1 + δ1−δ2

δ−d+3)2F1( δ+δ1−δ2+1
2 , δ+δ2−δ1−1

2 , δ + 2− d
2 , ζ)

)
. (7.46)

50The celestial block C(δ1,1,δ2,0)
δ,0 (−2p · z)−δ was not calculated in [1], but it can be easily obtained using

the Casimir equation method.
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One can check that (7.46) is indeed the solution to the Casimir differential equations of
g(ζ) and h(ζ) obtained by applying the quadratic Casimir to (7.38). For δ1 = δ2 = δφ, we
have h(ζ) = 0 and

g(ζ) = ζ
δ−2δφ−1

2 2F1

(
δ − 1

2 ,
δ + 1

2 , δ + 2− d

2 , ζ
)

= ζ
∆−2∆φ

2 2F1

(∆− 2
2 ,

∆
2 ,∆ + 1− d

2 , ζ
)
. (7.47)

Having solved for the celestial blocks, we can now calculate 〈O20′(p)|D1L[O∆,0]|J(p, z3)〉(a)

to obtain the proportionality constant in (7.36). For an operator O with weights (∆, J),
the three-point function 〈0|O20′OJ |0〉(a) has two tensor structures. With our choice of
conventions in appendix B, their expressions in the embedding space for integer J are given by

〈0|O20′(X4)O(X2, Z2)J(X3, Z3)|0〉(1) = (−2V2,34)J(−2V3,42)

X
∆+J−2

2
24 X

∆+J+2
2

23 X
6−∆−J

2
34

(7.48)

〈0|O20′(X4)O(X2, Z2)J(X3, Z3)|0〉(2) = (−2V2,34)J−1(−2H23)

X
∆+J−2

2
24 X

∆+J+2
2

23 X
6−∆−J

2
34

, (7.49)

where the structures Vi,jk and Hij are defined in (5.71) and (5.72). Note that after setting
J = 0, the first structure (7.48) is still a valid three-point function of local operators, and
hence it should be annihilated by the shortening condition D′1 (or equivalently D1L). So
we can just consider the second structure (7.49). As explained in section 5.1.1, its analytic
continuation for complex J should be given by

〈0|O20′(X4)O(X2, Z2)J(X3, Z3)|0〉(2)
± = ∓ (−2V2,43)J−1(−2H23)

X
∆+J−2

2
24 X

∆+J+2
2

23 X
6−∆−J

2
34

, (7.50)

where ∓ is due to the (−2V2,34)J−1 factor. Using the algorithm for computing light trans-
form and Fourier transform of three-point functions described in [23] and applying the
differential operator D1, we obtain

〈O20′(p)|D1L[O∆,0](∞, z, w)|J(p, z3)〉(2)
−

= 16π4 Γ(∆− 2)
Γ(∆

2 )2Γ(∆−2
2 )Γ(4−∆

2 )

× (−2p · z)−∆(2w · z3z · p− 2w · pz · z3)(−p2)
∆−2

2 θ(p), (7.51)

where θ(p) ≡ θ(−p2)θ(p0). Finally, combining (7.35), (7.38) and (7.51), we have

〈O20′(p)|L[O20′ ](∞, z1)L[O20′ ](∞, z2)|J(p, z3)〉175 = 16iπ5 [z3, p] · [z1, z2](−p2)θ(p)
(−2p · z1)2(−2p · z2)2 FJO(ζ),

(7.52)

where the function FJO(ζ) is

FJO(ζ) = −
∫ 2+i∞

2−i∞

d∆
2πiC

′−
2 (∆, 0) Γ(∆− 2)

Γ(∆
2 )2Γ(∆−2

2 )Γ(4−∆
2 )

g2,2
∆ (ζ), (7.53)
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and g2,2
∆ (ζ) is the j = 1 celestial block (7.47)

g2,2
∆ (ζ) = ζ

∆−4
2 2F1

(∆− 2
2 ,

∆
2 ,∆− 1, ζ

)
. (7.54)

Now the remaining task is to find the OPE data C ′−2 (∆, J) at J = 0 and calculate the event
shape. In the next section, we will show that there’s a superconformal Ward identity that
relates C ′−2 (∆, J) to the OPE data of the 〈O20′O20′O20′O20′〉 4-point function. Using the
identity, we can derive a simple relation between FJO(ζ) and the energy-energy correlator
calculated in [1].

7.2.2 Relation to energy-energy correlator

Deforming the contour of the ∆-integral in (7.53), we get

FJO(ζ) = −
∑
∆
p∆,J=0

Γ(∆− 2)
Γ(∆

2 )2Γ(∆−2
2 )Γ(4−∆

2 )
g2,2

∆ (ζ), (7.55)

where p∆,J is the three-point coupling of 〈O20′O20′O20′J〉 corresponding to the struc-
ture (7.49), analytically continued to J = 0, and the sum is over Regge trajectories.

We can obtain p∆,J from the four-point function 〈O20′O20′O20′J〉, whose expression is
given in (7.2). Note that the function Φ(u, v) can be written in terms of superconformal
blocks as [45]

Φ(u, v) = (2π)4 v

u3

∑
∆,J

a∆,Jg∆+4,J(u, v), (7.56)

where g∆,J is the usual 4d conformal block, and a∆,J is the product of the three-point
couplings to a given superconformal primary. Plugging this into (7.2) and specializing to
the configuration x1 = 0, x3 = 1, x4 =∞, we find51

〈O20′(∞)O20′(0)O20′(u, v)J(1)〉

= (2π)4∑
∆,J

a∆,J

(
− ∆ + 1

8 G∆+3,J+1(u, v) + (J − 1)(∆ + 1)
8(J + 1) G∆+3,J−1(u, v)

+ (∆ + 3)(∆ + 4)(∆ + J + 4)2

128(∆ + 2)(∆ + J + 3)(∆ + J + 5)G∆+5,J+1(u, v)

− (J − 1)(∆ + 3)(∆ + 4)(∆− J + 2)2

128(J + 1)(∆− J + 3)(∆− J + 1)(∆ + 2)G∆+5,J−1(u, v)
)
, (7.57)

where G∆,J is the conformal block of one conserved current and three scalars with dimension
2, which can be calculated using e.g. [46]. The above expression should agree with the usual
conformal block decomposition

〈O20′(∞)O20′(0)O20′(u, v)J(1)〉 =
∑
∆,J

p∆,JG∆,J(u, v). (7.58)

51To obtain this equation, we studied the small z, z̄ limit on both sides and matched each term in the
series expansion.
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Therefore, there is a superconformal Ward identity that relates the three-point coupling
coefficients p∆,J and a∆,J :

p∆,J = (2π)4
(
− ∆− 2

8 a∆−3,J−1 + J(∆− 2)
8(J + 2) a∆−3,J+1

+ (∆− 2)(∆− 1)(∆ + J − 2)2

128(∆− 3)(∆ + J − 3)(∆ + J − 1)a∆−5,J−1

− J(∆− 2)(∆− 1)(∆− J − 4)2

128(J + 2)(∆− J − 3)(∆− J − 5)(∆− 3)a∆−5,J+1

)
. (7.59)

Setting J = 0 in the above identity and plugging it into (7.55), we have

FJO(ζ) =−(2π)4∑
∆

(
−∆−2

8 a∆−3,−1+ (∆−2)3

128(∆−3)2a∆−5,−1

)
Γ(∆−2)

Γ(∆
2 )2Γ(∆−2

2 )Γ(4−∆
2 )

g2,2
∆ (ζ)

=−(2π)4∑
∆
a∆−4,−1

Γ(∆−2)
8Γ(∆−1

2 )3Γ(3−∆
2 )

(
g2,2

∆−1(ζ)+ (∆−1)
4(∆−2)g

2,2
∆+1(ζ)

)
. (7.60)

The sum of j = 1 celestial blocks in the parentheses satisfies

g2,2
∆−1(ζ) + (∆− 1)

4(∆− 2)g
2,2
∆+1(ζ) = ζf4,4

∆ (ζ), (7.61)

where f4,4
∆ (ζ) is the j = 0 celestial block:

f4,4
∆ (ζ) = ζ

∆−7
2 2F1

(∆− 1
2 ,

∆− 1
2 ,∆− 1, ζ

)
. (7.62)

This gives

FJO(ζ) = −ζ2

(∑
∆
a∆−4,−1

4π4Γ(∆− 2)
Γ(∆−1

2 )3Γ(3−∆
2 )

f4,4
∆ (ζ)

)
. (7.63)

Note that the term in the parentheses is simply the function FE(ζ) related to the energy-
energy correlator calculated in [1], see (7.11) and (7.16) there. Therefore, we have

FJO(ζ) = −ζ2FE(ζ), (7.64)

which agrees with (7.30) from direct computation.

8 Discussion and future directions

We have seen that a product of light-transformed local operators L[O1]L[O2] is encoded
in a nontrivial way inside the space of light-ray operators. Low transverse spin terms in
the product are special linear combinations of light-ray operators with spin J1 + J2 − 1.
Higher transverse spin terms are primary descendants, obtained by acting with the special
conformally-invariant differential operators Dn on higher-J light-ray operators.
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The differential operators Dn appear in the general classification of reducible generalized
Verma modules described in [24]. Most of the operators in this classification act on multiplets
with quantum numbers below the unitarity bound. Thus, when they were first identified, it
was not obvious a priori what roles they could play in physical unitary CFTs. However,
light-ray operators naturally have quantum numbers that violate the unitarity bound, and
indeed we have identified a role for Dn acting on this space. It is interesting to ask whether
there are similar roles in Lorentzian observables for other conformally-invariant differential
operators. In addition, it would be interesting to further explore interrelationships between
conformally-invariant differential operators, conformally-invariant pairings, conformally-
invariant integral transforms, and weight-shifting operators.

One way to motivate the light-ray OPE is by thinking about null-integrated operators
as primaries in a fictitious d−2-dimensional CFT. Now that we have a complete description
of the terms in this OPE, can we push the analogy with CFTd−2 further? For example,
what are the implications of the light-ray OPE for multi-point event-shapes, such as the
three-point energy correlators studied in [47]? Associativity of the light-ray OPE should
give rise to a nontrivial crossing equation satisfied by three-point event shapes, and it would
be interesting to study this “celestial” crossing equation using bootstrap techniques. One of
the first lessons of the analytic bootstrap is that the crossing equations imply the existence
of “double-twist” operators with arbitrarily large spin, via the lightcone bootstrap [48, 49].
Similar arguments for the light-ray OPE could imply the existence of terms with arbitrarily-
large transverse spin j. It would be interesting to understand the relationship between
these operators and the usual large-spin operators in the lightcone bootstrap.

To fully develop a celestial bootstrap program, one would need to understand OPEs
of more general light-ray operators, such as a product of a null-integrated local operator
L[O] with a general light-ray operator O∆,J , or even a product of two general light-ray
operators. This is an important problem for the future. A key conceptual question is: do
new types of operators appear beyond the ones constructed in [15]? For the OPE explored
in this work, the answer turned out to be “no” for rather nontrivial reasons. For more
general light-ray OPEs, the answer is less clear. It is natural to conjecture, however, that
any light-ray operators allowed by symmetries will appear. For example, we expect that the
leading light-ray operator in the three-fold OPE of average null energy operators is L[X4],
where X4 is the lowest-twist spin-4 local operator. This claim and its implications should
be testable using the results of [47].

Currently, the best available data about multi-point event shapes comes from Hofman
and Maldacena’s calculation of energy correlators in N = 4 Super Yang Mills theory at
large ’t Hooft coupling [7]. They computed the first few terms in the large-λ expansion of a
multi-point energy correlator up to order 1/λ3/2. It would be interesting to understand the
structure of their result from the point of view of the light-ray OPE, and also the “t-channel”
expansion of [23].

Correlators of average null energy operators do not capture complete information about
the energy distribution of a state. In particular, they are blind to the value of retarded
time when excitations reach future null infinity. To probe this more refined information, it
is natural to weight integrals along null infinity by non-constant functions of retarded time.
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In [50], it was shown that meromorphic weighting functions with carefully-chosen poles can
give rise to useful “dispersive sum rules” that constrain the data of a CFT. Alternative
weighting functions may have other useful applications and are worth exploring.

Finally, it would be interesting to explore the structure of the short-angle expansion of
energy-energy correlators and other event shapes in non-conformal theories, and in particular
how the higher-transverse spin terms arise there [4]. When the conformal symmetry is
present, the operators Dn acting on light-ray operators inserted at spatial infinity (in which
case Dn become expressed in terms of special conformal generators) define some new discrete
set of translationally-invariant detectors. As the conformal symmetry is broken, this relation
between these detectors and the continuous Regge trajectories gets broken as well. We thus
expect that in theories such as QCD some new discrete set of anomalous dimensions should
appear in observables for which higher transverse spin is important (such as higher-point
event shapes or oriented two-point event shapes).
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A Comments on existence of light-ray operators

In section 4.3.1 we described a picture in which light-ray operators exist in any CFT and
provide analytic continuation of local operators in the sense of equation (4.28). This picture
is supported, for example, by perturbative examples, where explicit expressions can be
given for Ô±i,J,λ(x, z,w) in terms of fundamental fields and (4.28) can be verified. However,
this picture is not rigorously known to be valid in non-perturbative CFTs as we now review.

In [15] a construction was given for light-ray operators in general CFTs, which we
reviewed in 4.3.1. The following statements need to be established before it can be claimed
that the story of section 4.3.1 is correct.

First of all, it needs to be shown that the functions

〈Ψ|O±∆,J(x, z)|Φ〉 (A.1)

are meromorphic in ∆ for general J . Furthermore, we need to prove that the positions of
the poles are independent of the choice of the states Ψ,Φ, as well as of the operators φ1, φ2
used to define O±∆,J . Finally, we have to argue that the residues of these poles depend on
φ1, φ2 only through an OPE coefficient f12O† .
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All these statements are known to be true for non-negative integer J (with (−1)J =±) [15]
but, to the best of our knowledge, no proof is known for other values. In the main text
we assume that these are true, since this simplifies the statement of our results. However,
even if none of the above statements hold, the results of this paper, and in particular (5.1),
continue to hold in the following sense. One needs to take matrix element of (5.1) between
the states of interest, which for concreteness we take to be created by single insertions of
primaries O3,O4. The right-hand side is then given by δ integrals of

〈O3O±δ+1,J,λ,(a)O4〉, (A.2)

which can be expressed in terms of the function Cab(∆, J, λ) which is computed by the
Lorentzian inversion integral [15] for the four-point function

〈O1O2O3O4〉. (A.3)

The Lorentzian inversion integral and thus Cab(∆, J, λ) is well-defined on the δ integration
contour of (5.1), and so we get a rigorous interpretation of (5.1) without assuming any of
the above facts about the light-ray operators. Moreover, the entire derivation of (5.1) can
be carried out in this language, which is what is essentially done in [1] and appendix D.

In this language, where the matrix elements

〈O3L[O1]L[O2]O4〉 (A.4)

are expressed as an integral of Cab(∆, J, λ) along principal series in ∆, the analysis of the
small angle limit between the detectors can be carried out in the usual way, by analytically
continuing Cab(∆, J, λ) away from the principal series and deforming the integration contour
to the right, picking up the singularities that one encounters on the way.

B Conventions for two- and three-point structures

We follow the same conventions for two- and three-point structures of traceless-symmetric
operators as in [15]. In particular, we define

〈O(x1, z1)O(x2, z2)〉 = (−2z1 · I(x12) · z2)J

x2∆
12

(B.1)

where

Iµν(x) = δµν − 2x
µxν
x2 . (B.2)

For three-point structures we define

〈φ1(x1)φ2(x2)O(x3, z)〉 = (2z · x23 x
2
13 − 2z · x13 x

2
23)J

x∆1+∆2−∆+J
12 x∆1+∆−∆2+J

13 x∆2+∆−∆1+J
23

. (B.3)
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In terms of embedding-space formalism these become

〈O(X1, Z1)O(X2, Z2)〉 = (−2H12)J

X∆+J
12

, (B.4)

〈φ1(X1)φ2(X2)O(X3, Z3)〉 = (−2V3,12)J

X
∆1+∆2−∆−J

2
12 X

∆1+∆−∆2+J
2

13 X
∆2+∆−∆1+J

2
23

, (B.5)

where as usual

Xij ≡ −2Xi ·Xj (B.6)

Vi,jk ≡
Zi ·XjXi ·Xk − Zi ·XkXi ·Xj

Xj ·Xk
, (B.7)

Hij ≡ −2(Zi · ZjXi ·Xj − Zi ·XjZj ·Xi). (B.8)

Recall that we project from embedding space using

(X+, X−, Xµ) = (1, x2, xµ), (Z+, Z−, Zµ) = (0, 2x · z, zµ), (B.9)

and the embedding space metric is

X2 = −X+X− +XµXµ. (B.10)

We use these conventions both for d-dimensional structures as well as for (d − 2)-
dimensional celestial structures. For example, replacing X → z, Z → w,∆→ δ and J → j

we find

〈φ1(z1)φ2(z2)O(z, w)〉 =
(−2w·z1z·z2−w·z2z·z1z1·z2 )j

(−2z1 · z2)
δ1+δ2−δ−j

2 (−2z1 · z)
δ1+δ−δ2+j

2 (−2z2 · z)
δ2+δ−δ1+j

2

= (4w · z1z · z2 − 4w · z2z · z1)j

(−2z1 · z2)
δ1+δ2−δ+j

2 (−2z1 · z)
δ1+δ−δ2+j

2 (−2z2 · z)
δ2+δ−δ1+j

2

= (−4)j(w · z2z · z1 − w · z1z · z2)j

(−2z1 · z2)
δ1+δ2−δ+j

2 (−2z1 · z)
δ1+δ−δ2+j

2 (−2z2 · z)
δ2+δ−δ1+j

2

,

(B.11)

in agreement with (4.17).
Sometimes we need the standard tensor structures for continuous spin. We define them

for the Wightman functions as

〈0|φ1(x1)O(x3, z)φ2(x2)|0〉 = (2z · x23 x
2
13 − 2z · x13 x

2
23)J

x∆1+∆2−∆+J
12 x∆1+∆−∆2+J

13 x∆2+∆−∆1+J
23

. (B.12)

For non-integer J , this is defined to be positive for x2
ij > 0 and z · x23 x

2
13 − z · x13 x

2
23 > 0.

The values in other configurations are obtained by analytic continuation assuming standard
analyticity properties of Wightman functions.
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C A Lorentzian formula for the light-ray kernel

In this appendix, we prove the Lorentzian formula for the light-ray kernel (5.6). We follow
the notation of [15]. Our starting point is the generalized Lorentzian inversion formula

Ctab(∆, J, λ) = −1
2πi

∫
3>4
1>2

ddx1 · · · ddx4

vol(S̃O(d, 2))
T2T4〈Ω|[O4,O1][O2,O3]|Ω〉GO, (C.1)

GO =

(
T2〈0|O2L[O†]O1|0〉(a)

)−1 (
T4〈0|O4L[O]O3|0〉(b)

)−1

〈L[O]L[O†]〉−1 . (C.2)

We have written the formula in slightly different conventions relative to [15]. Firstly, we
made the change of variables x2 → T2x2 and x4 → T4x4, so that the causal relationships
become 3 > 4 and 1 > 2 with all other pairs spacelike separated. This choice makes it
simpler to apply the Lorentzian two and three-point pairings defined in [15]. In addition,
we only wrote the t-channel term in the inversion formula. The treatment of the u-channel
term is analogous. In our notation, O is a representation with quantum numbers (∆, J, λ).

The objectGO is a conformal block with internal quantum numbers (J+d−1,∆−d+1, λ).
In (C.2), we have written it in schematic notation, where the three-point structures in the
numerator should be glued using the two-point structure in the denominator. In more
precise notation, GO is defined by

GO =
∫

1>x>2
ddxDd−2zA(a)(x1, x2, x, z)

(
T4〈0|O4L[O]O3|0〉(b)

)−1
(C.3)

where the kernel A(a) satisfies∫
1>x>2

ddxDd−2zA(a)(x1,x2,x,z)〈L[O](x,z)L[O†](x′,z′)〉−1 =
(
T2〈0|O2L[O†](x′,z′)O1|0〉(a)

)−1

(C.4)

Recall that dual structures 〈· · ·〉−1 are defined using the Lorentzian two and three-point
pairings defined in [15]. In [15], the block GO was defined by specifying its behavior in the
OPE limit x1 → x2. The above definition in terms of the integral kernel A(a) is equivalent
and more convenient for our purposes.

The light-ray kernel should satisfy∫
1>x>2−

ddx1d
dx2K

t
∆,J.λ(a)(x1,x2;x,z)〈Ω|O4O1O2O3|Ω〉=−Ctab(∆,J,λ)〈0|O4L[O]O3|0〉(b).

(C.5)

In the expression (C.5), we can replace 〈Ω|O4O1O2O3|Ω〉 with a double commutator. The
reason is that the kernel Kt

∆,J,λ(a) factors through null integrals of x1 and x2, which
annihilate the past and future vacuum, see [15] for details. Furthermore, let us make the
change of variables x2 → T2x2 and x4 → T4x4, so that we have∫

1>x>2
ddx1d

dx2(T2K
t
∆,J.λ(a))T2T4〈Ω|[O4,O1][O2,O3]|Ω〉=−Ctab(∆,J,λ)T4〈0|O4L[O]O3|0〉(b).

(C.6)
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For brevity, here and in the following, we assume the arguments of T2K
t
∆,J.λ(a) are

(x1, x2;x, z). The arguments of L[O] will always be (x, z), and we use the notation L[O′†]
to indicate L[O†](x′, z′).

Pairing both sides with the dual of the right-hand structure, we obtain

−Ctab(∆,J,λ) =
∫

1>x>2
3>4

ddx1d
dx2d

dx3d
dx4d

dxDd−2z

vol S̃O(d,2)
(T2K

t
∆,J.λ(a))

(
T4〈0|O4L[O]O3|0〉(b)

)−1

×T2T4〈Ω|[O4,O1][O2,O3]|Ω〉. (C.7)

Comparing with (C.1), (C.3), and (C.4), we conclude∫
1>x>2

ddxDd−2z(T2K
t
∆,J.λ(a))〈L[O]L[O′†]〉−1 = 1

2πi
(
T2〈0|O2L[O′†]O1|0〉(a)

)−1
. (C.8)

This is essentially the desired result, written in terms of dual structures. To put it in a
more conventional form, we must apply the two- and three-point pairings that appear in
the definition of the dual structures. Pairing both sides with T2〈0|O2L[O†](x′, z′)O1|0〉(b),
we find∫

1>x>2
x′≈1,2

ddx1d
dx2d

dxDd−2zddx′Dd−2z′

vol S̃O(d,2)
(T2K

t
∆,J.λ(a))

(
T2〈0|O2L[O′†]O1|0〉(b)

)
〈L[O]L[O′†]〉−1

= 1
2πiδ

(b)
(a) (C.9)

Comparing with the definition of the Lorentzian two-point pairing in [15], finally gives∫
1>x>2

ddx1d
dx2

(volSO(1,1))2 (T2K
t
∆,J.λ(a))T2〈0|O2L[O′†]O1|0〉(b) = 1

2πiδ
(b)
(a)〈L[O]L[O′†]〉, (C.10)

where the equality is valid if x′ ≈ 1, 2. Finally, after changing variables x2 → T −1
2 x2, we

obtain (5.6).

D An alternative derivation for the light-ray OPE formula

In this appendix, we give another derivation for the light-ray OPE formula (5.1). We will
first review the derivation for the low transverse spin terms given in [1]. Then we will derive
the “higher transverse spin” terms by generalizing the derivation in [1].

D.1 Review: derivation of [1]

We first briefly review the proof given in [1]. We are interested in an expansion for

L[O1](x, z1)L[O2](x, z2). (D.1)

For simplicity, we assume O1,O2 are traceless symmetric tensors. Generalization to arbitrary
representations will become straightforward after finishing the proof. We will study the
matrix element

W (z1, z2) = 〈Ω|O4L[O1](x, z1)L[O2](x, z2)O3|Ω〉, (D.2)

– 72 –



J
H
E
P
0
5
(
2
0
2
2
)
0
5
9

where O3,O4 are some local primary operators. Then we can apply harmonic analysis on
the celestial sphere to expand W (z1, z2) into partial waves. The result is given by (4.22)
and (4.24). The object Wδ,j(z1, z2) can be further written as

Wδ,j(x, z)

= αδ,j

∫
Dd−2z1D

d−2z2〈P̃†δ1(z1)P̃†δ2(z2)Pδ,j(z)〉〈Ω|O4L[O1](x, z1)L[O2](x, z2)O3|Ω〉

=
∫
ddx1d

dx2D
d−2z1D

d−2z2 Lδ,j(x1, z1, x2, z2;x, z)〈Ω|O4O1(x1, z1)O2(x2, z2)O3|Ω〉,

(D.3)

and the kernel Lδ,j is

Lδ,j(x1, z1, x2, z2;x, z)

= αδ,j〈P̃†δ1(z1)P̃†δ2(z2)Pδ,j(z)〉

×
∫ ∞
−∞

dα1dα2(−α1)−δ1−J1−1(−α2)−δ2−J2−1δ(d) (x− z1/α1 − x1) δ(d) (x− z2/α2 − x2) .

(D.4)

Note that we have suppressed the Lorentz indices carried by Wδ,j and Lδ,j . They are
contracted with the indices carried by Cδ,j in (4.22).

Using (D.3) and the fact that L[Oi] annihilates the vacuum, we have

Wδ,j(x, z) =
∫
ddx1d

dx2D
d−2z1D

d−2z2Lδ,j(x1, z1, x2, z2;x, z)θ(4 > 1)θ(2 > 3)

× 〈Ω|[O4,O1(x1, z1)][O2(x2, z2),O3]|Ω〉. (D.5)

By conformal invariance, we also have

Wδ,j(x, z) = Ab(δ, j)〈0|O4L[O](x, z)O3|0〉(b)+ , (D.6)

where O has quantum numbers (∆, J, λ) = (δ + 1, J1 + J2 − 1, j), (b) is the tensor structure
index, and 〈0|O4L[O](x, z)O3|0〉(b)+ is the continuous-spin structure analytically continued
from even spin.52 In order to proceed, we need to introduce conformally-invariant pairings
for two-point and three-point continuous spin structures in the Lorentzian signature. The
pairings are described in detail in appendix E of [15]. For a two-point structure of O in
representation (∆, J, λ), it can be paired with a two-point structure of OS in representation

52The analytic continuation of 〈0|O4L[O](x, z)O3|0〉(b) to complex spin has to be done separately for
even and odd spin due to our convention of the three-point function, so we have to make a choice in the
right-hand side of (D.6). However, this choice doesn’t affect our final result. It will only change how we
relate C±(∆, J) and O±(∆, J) in the final step of our derivation. With our choice in (D.6), we need to
identify C+(∆, J)→ O+

∆,J and C−(∆, J)→ −O−∆,J .
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(d−∆, 2− d− J, λ). The two-point pairing is defined by(
〈OO†〉, 〈OSOS†〉

)
L

vol(SO(1, 1))2

≡
∫
x1≈x2

ddx1d
dx2D

d−2z1D
d−2z2

vol(S̃O(d, 2))
〈Oa(x1, z1)Ob†(x2, z2)〉〈OSb (x2, z2)OS†a (x1, z1)〉

= 〈O
a(0, z1)Ob†(∞, z2)〉〈OSb (∞, z2)OS†a (0, z1)〉

22d−2 vol(SO(d− 2))
1

(−2z1 · z2)2−d , (D.7)

where in the last line we use S̃O(d, 2) transformations to gauge-fix to x1 = 0, x2 =∞, and
a, b are the indices carried by the representation λ. The three-point pairing is defined by(

〈O1O2O〉, 〈Õ†1Õ
†
2O

S†〉
)
L

≡
∫

2<1
x≈1,2

ddx1d
dx2d

dxDd−2z

vol(S̃O(d, 2))
〈O1(x1)O2(x2)O(x, z)〉〈Õ†1(x1)Õ†2(x2)OS†(x, z)〉

= 1
22d−2 vol(SO(d− 2))

〈O1(e0)O2(0)O(∞, z)〉〈Õ†1(e0)Õ†2(0)OS†(∞, z)〉
(−2z · e0)2−d . (D.8)

Similarly, in the last line, we gauge-fixed x1 = e0, x2 = 0, x =∞.
We can then obtain Ab(δ, j) by taking a Lorentzian three-point pairing of both sides

with a dual structure

Ab(δ, j) =
((
T4〈0|O4L[O](x, z)O3|0〉(b)+

)−1
, T4Wδ,j(x, z)

)
L

=
∫

4>1
2>3

ddx1d
dx2d

dx3d
dx4D

d−2z1D
d−2z2

vol S̃O(d, 2)
〈Ω|
[
O4,O1(x1, z1)

][
O2(x2, z2),O3

]
|Ω〉

× T −1
2 T

−1
4

[ ∫
ddxDd−2z

(
T4〈0|O4L[O](x, z)O3|0〉(b)+

)−1

× (T2Lδ,j)(x1, z1, x2, z2;x, z)θ(4+ > 1)θ(2+ > 3)
]
, (D.9)

where T2, T4 translate the points x2, x4 to the next Poincaré patch on the Lorentzian cylinder.
They are introduced so that the causality configuration in the three-point Lorentzian pairing
is satisfied. The structure

(
T4〈0|O4L[O](x, z)O3|0〉(b)+

)−1
is defined by((

T4〈0|O4L[O](x, z)O3|0〉(b)+

)−1
, T4〈0|O4L[O](x, z)O3|0〉(d)

+

)
L

= δ
(d)
(b) . (D.10)

The derivation up to this point is true for all transverse spin j. In the rest of this section we
first finish the derivation assuming j ≤ jmax, and explain what goes wrong when j > jmax,
where jmax is the maximal allowed transverse spin in the O1 × O2 OPE. We then give
the derivation for j > jmax in section D.3. Note that since we assume O1,O2 are traceless
symmetric tensors, in what follows we will simply use jmax = J1 + J2.

In (D.9), the term in the bracket is a conformally-invariant four-point structure, and is
an eigenfunction of the quadratic Casimir acting on 1,2 (or 3,4). Therefore it is a linear
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combination of conformal blocks, and we can study it by taking the OPE limit. In the OPE
limit x3, x4 → x′, the 34 three-point structure should be given by a linear operator B34O
acting on a two-point function:53

(
T4〈0|O4L[O](x, z)O3|0〉(b)+

)−1
= B34O(x3, x4, ∂x′ , ∂z′)〈OF (x′, z′)OF †(x, z)〉, (D.11)

where OF has quantum numbers (∆F , JF , jF ) = (J+d−1,∆−d+1, j), where J = J1+J2−1
and ∆ = δ + 1. Plugging this into (D.9), one can then show that the bracketed term is the
conformal block that appears in the Lorentzian inversion formula, and therefore we can
relate Ab(δ, j) to C±(δ + 1, J1 + J2 − 1, j). Using (D.6) and the relation between light-ray
operators O±∆,J and C±(∆, J), we obtain that

L[O1](x, z1)L[O2](x, z2)

=
∑

j≤J1+J2

∫ d−2
2 +i∞

d−2
2 −i∞

dδ

2πiC
(a)
δ,j (z1, z2, ∂z)

(
O+
δ+1,J1+J2−1,j(a)(x, z)−O−δ+1,J1+J2−1,j(a)(x, z)

)
+ higher transverse spin, (D.12)

where the differential operator C(a)
δ,j (z1, z2, ∂z) can be obtained from a celestial map formula

C(a)
δ,j (z1,z2,∂z)〈L[O](∞,z2)L[O†](0,z1)〉=

〈0|L+[O2](∞,z2)L[O†](0,z)L−[O1](∞,z1)|0〉(a)
+

volSO(1,1) .

(D.13)

This result agrees with the first sum in (5.1).
When j > J1 + J2, the invalid step in this derivation is (D.11). The reason is that the

linear operator B34O becomes divergent when j > J1 +J2. To see this, consider a conformal
block

C34O(x3, x4, ∂x′)〈O1(x1)O2(x2)O(x′)〉. (D.14)

It has been shown that this conformal block has simple poles in ∆, the scaling dimension
of O, due to null descendant states [24, 27].54 Furthermore, the poles come from the
differential operator C34O and have the form

C34O ∼
N

∆−∆∗
C34O′D, (D.15)

where N is some coefficient, O′ is a primary descendant of O, D is a differential operator
such that O′ = DO (at ∆ = ∆∗), and C34O′ is the OPE operator for O′ ∈ O3 ×O4. The
possible pole positions ∆∗ are classified in [24] using representation theory of the conformal
group. For us, the relevant cases are what are called type I and type II poles in [24]. If the

53For continuous spin, the operator B34O should be an integral operator. See appendix H of [15].
54In even d, some of the poles can become double poles when more than one simple poles are at the same

position. However, one can explicitly check that for the case we are discussing (type II poles with k = 2),
the poles don’t overlap with other poles and hence remain simple poles in even d ≥ 4.
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exchanged operator has representation (l1, l2, . . . , lN ), where lk is the number of boxes of
the k-th row of the Young diagram, then the positions of the type I and type II poles are

∆∗Ik,n = k − lk − n (n = 1, 2, . . . , lk−1 − lk)
∆∗IIk,n = d+ lk − k − n (n = 1, 2, . . . , lk − lk+1), (D.16)

and we call D for the type I and type II case DIk,n and DIIk,n respectively.55 In (D.11),
the operator OF has scaling dimension ∆F = J + d − 1 = d + J1 + J2 − 2. Therefore, if
j = J1 + J2 + n for some n ≥ 1, then ∆∗IIk=2,n

= d+ j − 2− n = ∆F . This implies that the
linear operator B34O is divergent for all j > J1 + J2. To fix (D.11), we can separate the
pole part and the finite part of B34O near ∆F = ∆∗II2,n:

B34O = 1
∆F −∆∗II2,n

C34O′DII2,n +Bfinite
34O , (D.17)

where n = j− J1− J2, and C34O′ is a new linear operator proportional to the OPE operator
of DII2,nOF ∈ O3 ×O4. Plugging the above expression for B34O into (D.11), we obtain

(
T4〈0|O4L[O](x, z)O3|0〉(b)+

)−1
= Bfinite

34O (x3, x4, ∂x′ , ∂z′)〈OF (x′, z′)OF †(x, z)〉

+ C34O′(x3, x4, ∂x′ , ∂z′)〈DII2,nOF (x′, z′)OF †(x, z)〉lim,
(D.18)

where

〈DII2,nOF (x′, z′)OF †(x, z)〉lim = lim
∆F→∆∗II2,n

〈DII2,nOF (x′, z′)OF †(x, z)〉
∆F −∆∗II2,n

. (D.19)

Note that 〈DII2,nOF (x′, z′)OF †(x, z)〉 ∼ O(∆F −∆∗II2,n) because when ∆F = ∆∗II2,n it is a
two-point function between two primaries with different scaling dimensions and therefore
is zero. So the above limit should be finite. This structure is not conformally-invariant,
since it doesn’t vanish under the special conformal transformation Kµ. However, the result
we get by integrating it against T2Lδ,j is still a conformally-invariant three-point structure.
To see this, note that [Kµ,DII2,n] = O(∆2 −∆∗II2,n) since DII2,n is conformally-invariant at
∆∗II2,n. So, we can define

Dµ ≡ lim
∆F→∆∗II2,n

[Kµ,DII2,n]
∆F −∆∗II2,n

. (D.20)

Then, we have

Kµ

∫
ddxDd−2z〈DII2,nOF (x′, z′)OF †(x, z)〉limT2Lδ,j(x1, z1, x2, z2, x, z)

=
∫
ddxDd−2z〈DµOF (x′, z′)OF †(x, z)〉T2Lδ,j(x1, z1, x2, z2, x, z). (D.21)

55DI2,n is the differential operator Dn we use extensively in the main text.
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This is simply a derivative of the Lorentzian shadow transform of T2Lδ,j . In [1] it has
been shown that the Lorentzian shadow transform of T2Lδ,j vanishes for j > J1 + J2, and
therefore (D.21) should vanish as well.

The operator DII2,nOF has quantum numbers (J + d− 1 + n,∆− d+ 1, j − n). Thus,
the appearance of C34O′ in (D.18) suggests that for j = J1 + J2 + n, Ab(δ, j) should come
from exchanged operators with quantum numbers (δ + 1, J1 + J2 − 1 + n, J1 + J2). As we
will see briefly, this is indeed the case.

D.2 Relation between DI2,n and DII2,n

We now describe an interesting relation between the differential operators DI2,n and DII2,n.
This relation will be used later in the derivation for the j > J1 + J2 case. First, note that
DI2,n and DII2,n change the quantum numbers in the following way:

DI2,n : (2− j, l1, j − n)→ (2− j + n, l1, j)
DII2,n : (d+ j − n− 2, 2− d− l1, j)→ (d+ j − 2, 2− d− l1, j − n), (D.22)

and their explicit expressions can be chosen to be56

DI2,n = (−1)nΓ(j − n− 1− l1)
Γ(j − 1− l1)Γ(n+ 1)

(
∂x · D0+

z,w

)n
DII2,n = (−1)nΓ(j − n− 1− l1)

Γ(j − 1− l1)Γ(n+ 1)
(
∂x · D0−

z,w

)n
, (D.23)

where D0+
z,w and D0−

z,w are weight-shifting operators that increase and decrease the transverse
spin, respectively [28]. As shown in [35], in a pairing between operators one can always
integrate weight-shifting operators by parts. In particular, we have

(D0−
z,w|J,j)∗ = −2j(h− 2 + j)D0+

z,w|2−d−J,j−1, (D.24)

where h = d−2
2 , and D|J,j indicates that D acts on a multiplet with usual spin J and

transverse spin j. Using this relation, one can show that

(DII2,n|d−∆−n,2−d−l1,j)
∗ = Nn,jDI2,n|∆,l1,j−n, (D.25)

where

Nn,j = 2n Γ(j + 1)Γ(h− 1 + j)
Γ(j − n+ 1)Γ(h− 1 + j − n) . (D.26)

Note that this relation holds for general ∆, but DI2,n and DII2,n are conformally-invariant
only when ∆ = 2−j. More explicitly, for an operator O1 with quantum numbers (∆, l1, j−n)
and O2 with quantum numbers (d−∆− n, 2− d− l1, j), we have∫

ddxDd−2z O1(x, z)(DII2,nO2)(x, z) = Nn,j

∫
ddxDd−2z (DI2,nO1)(x, z)O2(x, z).

(D.27)

In other words, DII2,n and Nn,jDI2,n are adjoint to each other.
56After replacing j − n→ j and l1 → 1−∆, the definition of DI2,n agrees with (3.26).
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We end this section by deriving two relations that will be used later in the derivation
for the higher-transverse spin terms. First, consider operators O1 with quantum numbers
(∆1, l1, j − n) and O2 with quantum numbers (∆2, 2− d− l1, j), where ∆1 + ∆2 = d. Then
by (D.25), we have for general ∆1,∆2

∫
x≈x′

ddxddx′Dd−2zDd−2z′〈DII2,nO2DII2,nO
′†
2 〉〈O1O′†1 〉

= N2
n,j

∫
x≈x′

ddxddx′Dd−2zDd−2z′〈O2O′†2 〉〈DI2,nO1DI2,nO
′†
1 〉, (D.28)

where we use the short-hand notation that Oi is at point (x, z) and O′i is at point (x′, z′).
Setting ∆1 → ∆∗I2,n and ∆2 → ∆∗II2,n, this equation can be rewritten as

(∆2 −∆∗II2,n)
∫
x≈x′

ddxddx′Dd−2zDd−2z′ lim
∆2→∆∗II2,n

〈DII2,nO2DII2,nO
′†
2 〉

∆2 −∆∗II2,n
〈O1O′†1 〉

= N2
n,j(∆1 −∆∗I2,n)

∫
x≈x′

ddxddx′Dd−2zDd−2z′〈O2O′†2 〉 lim
∆1→∆∗I2,n

〈DI2,nO1DI2,nO
′†
1 〉

∆1 −∆∗I2,n
.

(D.29)

Finally, using (∆2 −∆∗II2,n) = −(∆1 −∆∗I2,n), we can conclude that

(
lim

∆2→∆∗II2,n

〈DII2,nO2DII2,nO
†
2〉

∆2−∆∗II2,n
,〈O1O†1〉

)
L

=−N2
n,j

(
〈O2O†2〉, lim

∆1→∆∗I2,n

〈DI2,nO1DI2,nO
†
1〉

∆1−∆∗I2,n

)
L

.

(D.30)

The second relation is about the integral

∫
ddx1d

dx2d
dx′Dd−2z′〈DII2,nOF (x′, z′)OF †(x, z)〉F (x1, x2, x, z)

× T2〈0|O2L[O†](x′, z′)O1|0〉+θ((1 > 2) ≈ x′), (D.31)

where OF has quantum numbers (∆F , JF , j), O has (∆, J, j − n), and F (x1, x2, x, z) is a
conformally-invariant kernel that transforms as 〈Õ†1Õ

†
2DI2,nL[O]〉. Note that ∆F + n+ (1−

J) = d in order for the integral to be conformally-invariant. By applying (D.25), we have
for general ∆F∫

ddx1d
dx2d

dx′Dd−2z′〈DII2,nOF (x′, z′)OF †(x, z)〉F (x1, x2, x, z)

× T2〈0|O2L[O†](x′, z′)O1|0〉+θ((1 > 2) ≈ x′)

= Nn,j

∫
ddx1d

dx2d
dx′Dd−2z′〈OF (x′, z′)OF †(x, z)〉F (x1, x2, x, z)

×DI2,n
(
T2〈0|O2L[O†](x′, z′)O1|0〉+θ((1 > 2) ≈ x′)

)
. (D.32)

– 78 –



J
H
E
P
0
5
(
2
0
2
2
)
0
5
9

Now we set ∆F → ∆∗II2,n and J → J∗I = ∆∗II2,n − d + 1 + n, then DI2,n and DII2,n are
conformally-invariant, and the above equation becomes

(∆F −∆∗II2,n)
∫
ddx1d

dx2d
dx′Dd−2z′ lim

∆F→∆∗II2,n

〈DII2,nOF (x′, z′)OF †(x, z)〉
∆F −∆∗II2,n

F (x1, x2, x, z)

× T2〈0|O2L[O†](x′, z′)O1|0〉+θ((1 > 2) ≈ x′)

= Nn,j(J − J∗I )
∫
ddx1d

dx2d
dx′Dd−2z′〈OF (x′, z′)OF †(x, z)〉F (x1, x2, x, z)

× lim
J→J∗I

1
J − J∗I

DI2,n
(
T2〈0|O2L[O†](x′, z′)O1|0〉+θ((1 > 2) ≈ x′)

)
.

(D.33)

Moreover, in the right-hand side we can apply (5.63) and finally obtain∫
ddx1d

dx2d
dx′Dd−2z′ lim

∆F→∆∗II2,n

〈DII2,nOF (x′,z′)OF †(x,z)〉
∆F−∆∗II2,n

F (x1,x2,x,z)

×T2〈0|O2L[O†](x′,z′)O1|0〉+θ((1> 2)≈x′)

= vol(SO(1,1))Nn,j

∫
ddx1d

dx2d
dx′Dd−2z′〈OF (x′,z′)OF †(x,z)〉F (x1,x2,x,z)

×DI2,n
(
T2〈0|O2L[O†](x′,z′)O1|0〉+θ((1> 2)≈x′)

)
, (D.34)

where we also use the fact that (∆F −∆∗II2,n) = (J − J∗I ).

D.3 Derivation for the higher transverse spin case

Now we give the derivation for the higher-transverse spin terms, where j > J1 + J2. We
can follow the same steps for the j ≤ J1 + J2 until (D.5), but we should change (D.6) to57

Wδ,j(x, z) = Ab(δ, j)〈0|O4DI2,nL[O](x, z)O3|0〉(b)+ , (D.35)

where O has quantum numbers (∆, J, j) = (δ+1, J1 +J2−1+n, J1 +J2) and n = j−J1−J2
in order for DI2,n to be conformally-invariant. We expect that Ab(δ, j) is related to the
OPE data of O1 ×O2 OPE. In particular, we want to show that Ab(δ, j) is proportional to
C+(δ + 1, J1 + J2 − 1 + n, J1 + J2) +C−(δ + 1, J1 + J2 − 1 + n, J1 + J2). We follow the old
derivation and take the Lorentz pairing with a dual structure:

Ab(δ, j) =
((
T4〈0|O4DI2,nL[O](x, z)O3|0〉(b)+

)−1
, T4Wδ,j(x, z)

)
L

=
∫

4>1
2>3

ddx1d
dx2d

dx3d
dx4D

d−2z1D
d−2z2

vol S̃O(d, 2)
〈Ω|
[
O4,O1(x1, z1)

][
O2(x2, z2),O3

]
|Ω〉

× T −1
2 T

−1
4

[ ∫
ddxDd−2z

(
T4〈0|O4DI2,nL[O](x, z)O3|0〉(b)+

)−1

× (T2Lδ,j)(x1, z1, x2, z2;x, z)θ(4+ > 1)θ(2+ > 3)
]
. (D.36)

57Note that this is just a rewriting of (D.6), but in (D.6) the operator O has quantum numbers (δ +
1, J1 + J2 − 1, j). Here we use the relation L[Oδ+1,J1+J2−1,j ] ∝ DI2,nL[Oδ+1,J1+J2−1+n,J1+J2 ] and call the
operator Oδ+1,J1+J2−1+n,J1+J2 as O. We hope that this does not cause confusion.
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In the OPE limit where x3, x4 → x′, the step functions θ(4+ > 1)θ(2+ > 3) should become
θ((1 > 2) ≈ x′). Also, from the discussion in section D.1, we know that the three-point
function

(
T4〈0|O4DI2,nL[O](x, z)O3|0〉(b)

)−1
in the OPE limit is given by(

T4〈0|O4DI2,nL[O](x, z)O3|0〉(b)+

)−1

= Bfinite
34O (x3, x4, ∂x′ , ∂z′)〈OF (x′, z′)OF †(x, z)〉

+ C34O′(x3, x4, ∂x′ , ∂z′)〈DII2,nOF (x′, z′)OF †(x, z)〉lim. (D.37)

As shown in [1], one gets zero after integrating the finite part Bfinite
34O 〈OFOF †〉 against T2Lδ,j .

Therefore, we have∫
ddxDd−2z

(
T4〈0|O4DI2,nL[O]O3|0〉(b)+

)−1
(T2Lδ,j(x1, z1, x2, z2;x, z))θ(4+ > 1)θ(2+ > 3)

= C34O′(x3, z3, x4, z4, ∂x′ , ∂z′) lim
∆F→∆∗II2,n

1
∆F −∆∗II2,n

×
∫
x≈x′

ddxDd−2z〈DII2,nOF (x′, z′)OF †(x, z)〉T2Lδ,j(x1, z1, x2, z2;x, z)θ((1 > 2) ≈ x′)

= C34O′(x3, z3, x4, z4, ∂x′ , ∂z′)(DII2,nS[T2Lδ,j ])lim(x1, z1, x2, z2;x′, z′)θ((1 > 2) ≈ x′),
(D.38)

where S represents the Lorentzian shadow transform, and we have defined

(DII2,nS[T2Lδ,j ])lim(x1,z1,x2,z2;x′,z′)

= lim
∆F→∆∗II2,n

1
∆F−∆∗II2,n

∫
x≈x′

ddxDd−2z〈DII2,nOF (x′,z′)OF †(x,z)〉T2Lδ,j(x1,z1,x2,z2;x,z).

(D.39)

This is a conformally-invariant three-point function that transforms like 〈Õ†1Õ
†
2DII2,nOF 〉.

The expression in (D.38) should then give a conformal block. To compute it, let us first act
DII2,n on both sides of (D.37):

DII2,n
(
T4〈0|O4DI2,nL[O](x, z)O3|0〉(b)+

)−1

= C34O′(x3, x4, ∂x′ , ∂z′) lim
∆F→∆∗II2,n

〈DII2,nOF (x′, z′)DII2,nOF †(x, z)〉
∆F −∆∗II2,n

. (D.40)

Using (D.25) and the definition of the three-point dual structure
(
T4〈0|O4L[O](x,z)O3|0〉(b)

)−1
,

one can find

DII2,n
(
T4〈0|O4DI2,nL[O](x,z)O3|0〉(b)+

)−1
=Nn,j

(
T4〈0|O4L[O](x,z)O3|0〉(b)+

)−1
. (D.41)

Combining (D.38), (D.40), and (D.41), we obtain∫
ddxDd−2z

(
T4〈0|O4DI2,nL[O]O3|0〉(b)+

)−1
(T2Lδ,j(x1, z1, x2, z2;x, z))

= Nn,j

((DII2,nS[T2Lδ,j ])limθ((1 > 2) ≈ x′))
(
T4〈0|O4L[O]O3|0〉(b)+

)−1

lim∆F→∆∗II2,n
〈DII2,nOFDII2,nOF†〉

∆F−∆∗II2,n

. (D.42)
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This is a conformal block whose exchanged operator has quantum numbers (J1 + J2 + d−
2 + n, δ − d + 2, J1 + J2). Plugging this into (D.36) and comparing with the Lorentzian
inversion formula, we find

Ab(δ,j) =−2πi× 1
2(C+

ab(δ+1,J1+J2−1+n,J1+J2)+C−ab(δ+1,J1+J2−1+n,J1+J2))

×Nn,j
〈L[O]L[O†]〉−1

lim∆F→∆∗II2,n
〈DII2,nOFDII2,nOF†〉

∆F−∆∗II2,n

×
(
(DII2,nS[T2Lδ,j ])limθ((1> 2)≈x′),T2〈0|O2L[O†]O1|0〉(a)

+

)
L
. (D.43)

This result can be simplified by integrating DII2,n by parts. For the second line, using (D.30)
we have

Nn,j
〈L[O]L[O†]〉−1

lim∆F→∆∗II2,n
〈DII2,nOFDII2,nOF†〉

∆F−∆∗II2,n

= N−1
n,j

(
limJ→J∗I

〈DI2,nL[O]DI2,nL[O†]〉
J−J∗I

)−1

〈OFOF †〉
, (D.44)

where J∗I = J1 + J2 − 1 + n. For the third line, using (D.34) we have

(
(DII2,nS[T2Lδ,j ])limθ((1> 2)≈x′),T2〈0|O2L[O†]O1|0〉(a)

+

)
L

= vol(SO(1,1))Nn,j

∫
x≈x′

ddx1d
dx2d

dx′ddxDd−2z1D
d−2z2D

d−2z′Dd−2z

vol S̃O(d,2)
〈OF (x′,z′)OF †(x,z)〉

×T2Lδ,j(x1,z1,x2,z2;x,z)DI2,n
(
T2〈0|O2(x2,z2)L[O†](x′,z′)O1(x1,z1)|0〉(a)

+ θ((1> 2)≈x′)
)
.

(D.45)

Plugging in the definition of Lδ,j in (D.4), we find that Ab(δ, j) is given by

Ab(δ, j) = −πi(C+
ab(δ + 1, J1 + J2 − 1 + n, J1 + J2) + C−ab(δ + 1, J1 + J2 − 1 + n, J1 + J2))

×

((
limJ→J∗I

〈DI2,nL[O]DI2,nL[O†]〉
J−J∗I

)−1
, Q

(a)
δ,j

)
L

vol SO(1, 1) , (D.46)

where

Q
(a)
δ,j (x, z, x′, z′) = αδ,j

∫
Dd−2z1D

d−2z2 〈P̃†δ1(z1)P̃†δ2(z2)Pδ,j(z)〉

× 〈0|L+[O2](x, z2)DI2,nL[O†](x′, z′)L−[O1(x, z1)]|0〉(a)
+ , (D.47)

where L+[O2] indicates that the light transform contour is restricted to 2 > x′, and L−[O1]
is restricted to 1 ≈ x′. Finally, comparing the expression of Ab(δ, j) with the old derivation
for the lower transverse spin case, we find that the for higher transverse spin j > J1 + J2,
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we have

L[O1](x, z1)L[O2](x, z2)

=
∞∑
n=1

(−1)n
∫ d−2

2 +i∞

d−2
2 −i∞

dδ

2πiC
(a)
δ,j (z1, z2, ∂z)

×
(
DI2,nO

+
δ+1,J1+J2−1+n,J1+J2(a)(x, z)−DI2,nO

−
δ+1,J1+J2−1+n,J1+J2(a)(x, z)

)
+ lower transverse spin, (D.48)

where n = j − J1 − J2. The celestial map formula for C(a)
δ,j is given by

C(a)
δ,j (z1,w1, z2,w2, ∂z2 , ∂w2)

(
lim
J→J∗I

〈DI2,nL[O](∞, z2,w2)DI2,nL[O†](0, z0,w0)〉
J − JI∗

)
= (−1)n〈0|L+[O2](∞, z2,w2)DI2,nL[O†](0, z0,w0)L−[O1](∞, z1,w1)|0〉(a)

+ . (D.49)

This result agrees with the second sum in (5.1).

E Kernel of the celestial map

In the main text we have given the celestial map formulas (5.68) and (5.69) which map d-
dimensional three-point tensor structures to OPE differential operators in (d−2)-dimensional
space. The latter are in turn in one-to-one correspondence with three-point tensor structures
in (d − 2)-dimensional space. In general the space Td of three-point structures in d and
the space Td−2 of three-point structures in d− 2 dimensions have different dimensionality.
Therefore, the celestial map Td → Td−2 in general has non-trivial kernel or cokernel. In
this appendix we identify a part K0 ⊆ K of the kernel K ⊆ Td of this map and conjecture
that it is in fact the entire kernel (K = K0) and that the cokernel is trival, i.e. that the
celestial map is surjective. We give support to this conjecture by matching the dimension
of Td/K0 with the dimension of Td−2. Finally, we consider the SO(d− 2) representations λ
that can be generated by the celestial map and show that they cover all the representations
appearing in the (d− 2)-dimensional OPE.

We begin by identifying K0. Let us start with the low transverse spin case (5.54). We
are instructed to evaluate the structure from Td in configuration (5.73) after multiplying by
V0,12. Since in this configuration V0,12 vanishes, the only structures that survive are those
which contain V −1

0,12. Structures with more negative powers of V0,12 will be singular and the
structures with non-negative powers will vanish. We claim that no structures have more
singular power of V0,12 and that there is a simple rule for counting those with V −1

0,12.
To see this, let us label the SO(d− 1, 1) irreps of the operators as ρ1 = (J1, λ1), ρ2 =

(J2, λ2) and ρ = (J, λ). For large J the number of three-point tensor structures is J-
independent. This is because the number of structures is given [15] by the dimension of

(ρ1 ⊗ ρ2 ⊗ ρ)SO(d−1). (E.1)

The dependence on J can be exhibited by first computing the SO(d− 1) content of ρ1 ⊗ ρ2
and matching SO(d − 1) irreps there to dual irreps in SO(d − 1) content of ρ. As J is
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increased, all that happens is that new irreps appear in SO(d− 1) decomposition of ρ, but
any given irrep appears at most once.58 Since ρ1 ⊗ ρ2 contains finitely many SO(d − 1)
irreps, at some point the number of matching dual pairs stabilizes.

As J is decreased to sufficiently low values, some structures disappear from this counting.
In terms of explicit expressions this happens because the structures at large J depend on
V J−n

0,12 for various n, and as J becomes less than n such structures cease to be polynomial
in z and have to disappear from the above counting. We are interested in the maximal n
among all structures, which is therefore the same as the value of J at which the number
of structures stabilizes. As J is increased by 1, the SO(d− 1) content of ρ is appended by
representations with the first row of length J . Since the maximal length of the first row
of SO(d− 1) representations in ρ1 ⊗ ρ2 is J1 + J2,59 it follows that the stable number of
representations is achieved starting from at most J = J1 +J2. This implies that n ≤ J1 +J2.
This means that the power of V0,12 is no smaller than

V J−J1−J2
0,12 . (E.2)

This finishes the proof of the claim that structures analytically continued to J = J1 + J2− 1
have at most V −1

0,12 singularity.
We thus find that the map (5.68) is well-defined and the structures with V0,12 to non-

negative powers get mapped to 0. These structures constitute the set K0. We conjecture
that (5.68) is non-degenerate on the remaining structures in Td, i.e. those which contain
V −1

0,12. To support this conjecture, let us count these structures and match their number to
the number of structures in Td−2.

To do that, note that the above discussion implies that the number of structures with
V −1

0,12 is precisely the difference between the number of polynomial structures for J = J1 +J2
and the number of polynomial structures for J = J1 + J2 − 1, i.e. the dimension of60

(ρ1 ⊗ ρ2 ⊗ (J1 + J2, λ))SO(d−1) 	 (ρ1 ⊗ ρ2 ⊗ (J1 + J2 − 1, λ))SO(d−1)

= (ρ1 ⊗ ρ2 ⊗ ResSO(d−1,1)
SO(d−1) ((J1 + J2, λ)	 (J1 + J2 − 1, λ)))SO(d−1). (E.3)

We can simplify this by noting that

ResSO(d−1,1)
SO(d−1) ((J1 + J2, λ)	 (J1 + J2 − 1, λ)) =

⊕
τ∈ResSO(d−2)

SO(d−3)λ

(J1 + J2, τ). (E.4)

In particular, this only involves SO(d− 1) irreps with the first row of length J1 + J2. As
mentioned above, this is the maximal length of the first row in SO(d− 1) irreps in ρ1 ⊗ ρ2,

58In what follows we use facts about dimensional reduction of SO(N) irreps. See, e.g., [51] for a review.
59To see this, note that the length of the first row of the Young diagram gives the maximal eigenvalue under

any given boost. Since it is Ji for ρi, it must be J1 + J2 for ρ1 ⊗ ρ2. Choosing a boost in (a complexification
of) SO(d− 1) yields the desired result.

60Here we use the formal difference 	. To make this precise one can interpret all identities involving it as
character identities.
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and this part of the tensor product ρ1 ⊗ ρ2 simplifies61

ResSO(d−1,1)
SO(d−1) ρ1 ⊗ ρ2 =

⊕
τ∈ResSO(d−2)

SO(d−3)λ1⊗λ2

(J1 + J2, τ)⊕ · · · , (E.5)

where the dots represent irreps with shorter first row. By comparing the last two equations
we see that

(ρ1 ⊗ ρ2 ⊗ (J1 + J2, λ))SO(d−1) 	 (ρ1 ⊗ ρ2 ⊗ (J1 + J2 − 1, λ))SO(d−1)

= (λ1 ⊗ λ2 ⊗ λ)SO(d−3) (E.6)

which is the same rule as for counting the structures in Td−2.
We now turn to the higher transverse spin case. In this case the celestial map is applied

to three-point structures with representations (Ji, λi) and (J, λ) where J = J1 + J2 − 1 + n

and λ = (J1 + J2, γ). As discussed in section 5.3.2, the structures that contain V0,12 to
powers higher than the minimal possible J − J1 − J2 are mapped to zero by the celestial
map (5.69). Similarly to the above, we can determine the number of structures which
contain V J−J1−J2

0,12 by taking the difference between the number of polynomial structures at
J = J1 + J2 and J = J1 + J2 − 1. However, since λ = (J1 + J2, γ), there are no polynomial
structures for J = J1 +J2−1. Therefore, all tensor structures with such λ contain V J−J1−J2

0,12 .
In this case K0 is trivial and we simply would like to match the dimensions of Td and Td−2.

Since λ = (J1 + J2, γ), the minimal length of the first row in SO(d− 1) irreps contained
in (J, λ) with sufficiently large J ,62 is J1 + J2, in particular

ResSO(d−1,1)
SO(d−1) (J, λ) =

⊕
τ∈ResSO(d−2)

SO(d−3)λ

(J1 + J2, τ) + · · · , (E.7)

where the dots represent irreps with longer first row. Taking into account (E.5), we find

(ρ1 ⊗ ρ2 ⊗ (J, λ))SO(d−1) = (λ1 ⊗ λ2 ⊗ λ)SO(d−3). (E.8)

Since λi has first row that is no larger than Ji, it follows that λ1⊗λ2 only contains SO(d−3)
irreps with first row at most of length J1 + J2. Since the first row of λ is already J1 + J2, it
makes no difference to increase it by n,

(ρ1 ⊗ ρ2 ⊗ (J, λ))SO(d−1) = (λ1 ⊗ λ2 ⊗ λ(+n))SO(d−3). (E.9)

This establishes the equality of dimensions of Td and Td−2.
Finally, let us discuss which representations λ can be generated through celestial map.

The low transverse spin terms contain λ’s which are parts of the ρ = (J, λ) representations
which appear in O1 × O2 OPE. We claim that they cover all λ’s that can appear in

61One can see this by treating SO(d− 1, 1) irreps as shortened parabolic Verma modules of SO(d− 1, 1),
in which case it is analogous to the statement that all primaries of dimension ∆1 + ∆2 one can build out of
primaries Oa1 ,Ob2 of dimensions ∆1,∆2 are those given by decomposing Oa1Ob2 into irreducible Lorentz irreps.

62We need the number of analytically-continued tensor structures, which is the same as for very large J .
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(d− 2)-dimensional OPE and have first row length at most J1 + J2. Indeed, using any such
λ in (E.6) we find that

dim(ρ1 ⊗ ρ2 ⊗ (J, λ))SO(d−1) ≥ dim(λ1 ⊗ λ2 ⊗ λ)SO(d−3) (E.10)

for J = J1 + J2 and thus for any larger J . Since the right-hand side is non-zero whenever λ
appears in (d − 2)-dimensional OPE, and the left-hand side being non-zero implies that
(J, λ) appears in d-dimensional OPE, we obtain the desired result.

It remains to establish that the higher-transverse spin terms cover all λ’s in (d− 2)-
dimensional OPE with first row of length more than J1 +J2. Any such λ′ can be represented
as λ(+n) where λ has first row J1 + J2. This can be then used in (E.9) to conclude that
(J, λ) appears in O1 ×O2 OPE for generic J .

F Spinor conventions

We use conventions from [42] but switch to mostly plus signature, see appendix A in that
paper. A four-dimensional vector zµ = (z0, ~z) is represented by 2× 2 matrix

zαα̇ = zµ(σ̄µ)αα̇ = z0σ0 + ~z · ~σ,
zα̇α = zµ(σµ)α̇α = −z0σ0 + ~z · ~σ (F.1)

where σµ = (1, ~σ), σ̄µ = (−1, ~σ) and ~σ = (σ1, σ2, σ3).
Convention for lowering and raising of indices is

xβ̇β = εβαxαα̇ε
α̇β̇ ,

aαβ = εαγaγδε
δβ . (F.2)

The Levi-Civita tensors are normalized as follows

ε12 = ε12 = ε1̇2̇ = ε1̇2̇ = 1 . (F.3)

The X matrices are defined as follows

(Xijk)αα̇ =
(xij)αβ̇
x2
ij

(xjk)β̇γ
(xki)γα̇
x2
ik

. (F.4)

Using sigma matrix identities we can simplify

Xijk = −xij · xjkxkiµ + xjk · xkixijµ − xij · xkixjkµ
x2
ijx

2
ki

σ̄µ . (F.5)

G Distributional formulas

In this appendix we formally derive some of the expressions involving distributions that
were used in the main text.

– 85 –



J
H
E
P
0
5
(
2
0
2
2
)
0
5
9

G.1 Analytic continuation of distributions

In this section we prove (4.61), i.e. we study the analytic continuation of the distribution

(s+ t)asbtcθ(s)θ(t) (G.1)

from the region a, b, c > 0, where it is represented by a locally-integrable function, to general
complex a, b, c.

First, let us clarify the idea of analytic continuation of a distribution. Let us restrict to
one-variable case with one parameter, i.e. we consider a distribution ga(x) defined for values
of parameter a ∈ U ⊆ C. Assume that this distribution depends on a holomorphically.
That is, for any test function f(x) the pairing

〈ga, f〉 ≡
∫
dxga(x)f(x) (G.2)

is a holomorphic function of a. We say that a distribution ha(x) defined and holomorphic
for a ∈ V ⊆ C is an analytic continuation of ga(x) if U ⊆ V and for any test function f(x)
we have

〈ha, f〉 = 〈ga, f〉 (G.3)

for all a ∈ U . Similarly, we say that ga(x) is meromorphic for a ∈ U if 〈ga, f〉 is meromorphic
for any test function f and the set of poles is independent of f (of course, some poles
may disappear for a specially chosen f). We say that h(x) is the residue of ga(x) at a∗ if
〈h, f〉 = resa=a∗〈ga, f〉 for any f , etc. All these notions generalize straightforwardly to the
case of several variables and several parameters.

Before studying (G.1), let us consider a simpler example,

ga(x) = xaθ(x). (G.4)

For Re a > −1 this is an integrable function of x, and is holomorphic in a as a distribution.
We claim that it admits analytic continuation to C \ Z<0 that is meromorphic in C with
simple poles at negative integer a. As a simple example, consider a test function f(x) that
is equal to e−x for x ≥ 0 and for x < 0 is completed in some smooth way so that it decays
quickly at x→ −∞.63 We have then

〈ga, f〉 =
∫ ∞

0
e−xxadx = Γ(a+ 1), (G.5)

which is indeed meromorphic and has simple poles at negative integer a. To see that this
statement holds for more general test functions, recall that

(x± iε)a (G.6)

63Everywhere in this section we can work with tempered distributions, so that e−x is an appropriate test
function for x > 0 (i.e. it is Schwartz).
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is a distribution that is an entire function of a.64 For Re a > −1 we can write the equality
of distributions

xaθ(x) = (x− iε)aeiπa − (x+ iε)ae−iπa

2i sin πa , (G.7)

where the right-hand side is in fact analytic for all a ∈ C \ Z. We can compute the residue
at a = −n as

resa=−n
(x− iε)aeiπa − (x+ iε)ae−iπa

2i sin πa = (x− iε)−n − (x+ iε)−n

2iπ

= (−1)n−1

(n− 1)! δ
(n−1)(x). (G.8)

In particular, this vanishes for n ≤ 0, consistently with ga(x) being analytic for Re a > −1.
We conclude that ga(x) = xaθ(x) can be analytically continued so that it has simple

poles at a = −n with residues

resa=−nx
aθ(x) = (−1)n−1

(n− 1)! δ
(n−1)(x). (G.9)

Let us perform a simple check with the f(x) defined above. We have

resa=−n〈ga, f〉 = resa=−nΓ(a+ 1) = (−1)n−1

(n− 1)! (G.10)

and this is indeed equal to

〈resa=−nga, f〉 = (−1)n−1

(n− 1)! 〈δ
(n−1), f〉 = (−1)n−1

(n− 1)! . (G.11)

Note that the non-trivial part of this analytic continuation is taking care of the singularity
at x = 0, since for x > x0 > 0 the function xaθ(x) is locally-integrable for any a ∈ C.

This simple result for xaθ(x) can be extended a more general setup: consider a finite
set of k smooth functions qi(x), x ∈ Rn and consider the function

ga(x) =
k∏
i=1

θ(qi(x))qi(x)ai . (G.12)

For Reαi > 0 this defines a locally-integrable function. Provided that the functions qi are
in general position (clarified below), we claim that the distribution ga(x) can be analytically
continued to a distribution meromorphic for a ∈ Ck. To see this, suppose we want to
define the analytic continuation in a neighborhood of some point x0 where r functions
qi1(x), · · · , qir(x) vanish. Provided that the matrix of derivatives

Mjl = ∂lqij (x0) (G.13)
64The notation (x± iε)a means the boundary value of xa on real line, approached either from above or

below. Since xa has at most power-law singularity for any a, Vladimirov’s theorem [52] ensures that it’s
boundary values are well-defined tempered distributions in x, analytic in the parameter a. See, e.g. [53] for
a review of these facts.

– 87 –



J
H
E
P
0
5
(
2
0
2
2
)
0
5
9

has rank r (in particular, r ≤ n), we can use yj ≡ qij (x) as the first r coordinates in a
neighborhood U of x0. This condition is what we mean by “general position” above. With
this choice of coordinates, we simply have

ga(y) = g̃a(y)
r∏
j=1

y
aij
j θ(yj), (G.14)

where g̃a(y) is a smooth function in U . Each of y
aij
j θ(yj) can be analytically continued as

above, and we can take their product because they are distributions in different variables
yj . We can then finally multiply the resulting distribution by the smooth function g̃a(y).

This more general result still doesn’t apply to (G.1) because in (G.1) we have functions

q1(s, t) = s, q2(s, t) = t, q3(s, t) = s+ t (G.15)

which are not in general position near s, t = 0. The conclusion about analytic continuation,
however, still holds. To establish it, one needs to use a general result about resolution of
singularities. We do not reproduce this argument, and instead refer to [54, 55]. Here we
simply work out the required resolution in the concrete example of (G.1). Our goal is to
define the integral ∫

dsdt(s+ t)asbtcθ(s)θ(t)f(s, t) (G.16)

for test functions f . To do so, we define new coordinates u, v by

s = uv, t = u(1− v). (G.17)

The region s, t > 0 is mapped one-to-one onto the region u > 0, 0 < v < 1, and the
integral (G.16) can be written as∫

dudvua+b+c+1vb(1− v)cθ(u)θ(v)θ(1− v)f̃(u, v) (G.18)

where

f̃(u, v) ≡ f(uv, u(1− v)). (G.19)

Importantly, f̃(u, v) is a test function in u, v. Therefore, if we manage to define

ua+b+c+1vb(1− v)cθ(u)θ(v)θ(1− v) (G.20)

as a distribution meromorphic in a, b, c, we are done. In this case, setting

q1(u, v) = u, q2(u, v) = v, q3(u, v) = 1− v, (G.21)

we find that qi are in general position at all points x0 where at least one function vanishes.
(The coordinates u, v “resolve the singularity” that we had at s, t = 0.) In particular, we
find poles at

a+ b+ c+ 1 = −n (G.22)
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with residues proportional to δ(n)(u), poles at

b = −n (G.23)

with residues proportional to δ(n)(v), and poles at

c = −n (G.24)

with residues proportional to δ(n)(1− v). As explained in the main text, we are interested
in the pole near

a+ b+ c+ 1 = −1, (G.25)

in which case from the analysis above we get

ua+b+c+1vb(1−v)cθ(u)θ(v)θ(1−v)∼ 1
a+b+c+2δ(u)vb(1−v)cθ(v)θ(1−v). (G.26)

Now we only need to pull this back to s, t coordinates, i.e. evaluate (G.18) with f̃ given
by (G.19). We find∫

dsdt(s+ t)asbtcθ(s)θ(t)f(s, t)

=
∫
dudvua+b+c+1vb(1− v)cθ(u)θ(v)θ(1− v)f̃(u, v)

∼ 1
a+ b+ c+ 2

∫
dudvδ(u)vb(1− v)cθ(v)θ(1− v)f̃(u, v)

= 1
a+ b+ c+ 2

∫
dvvb(1− v)cθ(v)θ(1− v)f̃(0, v)

= f(0, 0)
a+ b+ c+ 2

∫
dvvb(1− v)cθ(v)θ(1− v)

= f(0, 0)
a+ b+ c+ 2

Γ(b+ 1)Γ(c+ 1)
Γ(b+ c+ 2) . (G.27)

This implies that

(s+ t)asbtcθ(s)θ(t) ∼ 1
a+ b+ c+ 2

Γ(b+ 1)Γ(c+ 1)
Γ(b+ c+ 2) δ(s)δ(t), (G.28)

as stated in (4.61).

G.2 An identity

In this section, we show ∫ +∞

−∞

dx

(xy + 1 + iε)a = − 2πi
a− 1δ(y) (G.29)

We define the integral by analytic continuation from the region Re a > 1. Thus, let us
evaluate it assuming Re a > 1. Suppose first that y is nonzero. If y > 0, the integrand is holo-
morphic in the upper-half plane for x. Furthermore, because Re a > 1, it decays sufficiently
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quickly at infinity that the integration contour can be deformed into the upper half-plane,
giving zero. If y < 0, a similar argument shows that the integral can be deformed into the
lower half-plane, giving zero. It follows that the distribution (G.29) is supported at y = 0.

Now consider the integral against a test function f(y). Because (G.29) is supported at
y = 0, we can restrict the y integral to the range [−1, 1] (or any finite-size interval containing
the origin). We furthermore substitute the Taylor expansion of f(y) and integrate term
by term: ∫ 1

−1
dy

∫ +∞

−∞

dx

(xy + 1 + iε)a
∞∑
n=0

f (n)(0)
n! yn (G.30)

Let us evaluate the term proportional to f(0). Swapping the order of integration, we have

f(0)
∫ +∞

−∞
dx

∫ 1

−1
dy

1
(xy + 1 + iε)a = f(0)

∫ +∞

−∞
dx

(1 + iε+ x)1−a − (1 + iε− x)1−a

(1− a)x
(G.31)

Because the integrand on the right-hand side is holomorphic at x = 0, we can deform the
contour so that it moves slightly above the origin (staying below the singularity at x = 1+iε).
We denote this by

∫∞
−∞ →

∫
y. After this deformation, we split the integrand into two terms

f(0)
1− a

∫
y
dx

(
(1 + iε+ x)1−a

x
− (1 + iε− x)1−a

x

)
(G.32)

The first term is holomorphic in the positive imaginary direction for x, so we can deform
the contour that direction and obtain zero. The second term is holomorphic in the negative
imaginary direction for x, except for the pole at x = 0. Thus, we can deform the contour
that direction and pick up only the residue at x = 0. We obtain

2πi
1− af(0). (G.33)

Finally, consider the terms in (G.30) proportional to f (n)(0). For these terms, note that

yn

(xy + 1 + iε)a ∝ ∂
n
x

1
(xy + 1 + iε)a−n (G.34)

This is a total derivative in x, and hence integrates to zero. Together with (G.33), this
establishes (G.29).
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