CP violation in Bs to J/psi phi : update from ATLAS

Sinem Simsek (sinem.sahin@cern.ch) On behalf of ATLAS Collaboration

23 September 2020

▲口▶ ▲圖▶ ▲厘▶ ▲厘▶

æ

Beauty 2020

Motivation

• Interference of direct decay and decay with mixing into the same final state of $B_s^0 \rightarrow J/\psi \phi$ gives rise to time-dependent CP violation (CPV)

- CPV phase ϕ_s is the weak phase difference between the $B_s^0 \bar{B}_s^0$ mixing amplitude and the direct $b \rightarrow c\bar{c}s$ decay amplitude
- In the Standard Model (SM) the ϕ_s is related to the CKM matrix and is small:

$$\phi_s \simeq -2\beta_s = -2argrac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*} = -0.0363^{+0.0016}_{-0.0015} ~{
m rad}$$

- New Physics (NP) processes could contribute to the mixing box diagrams, potentially allowing for large deviations in ϕ_s from the SM prediction
- Alongside ϕ_s , other quantities are describing the differential decay rate:
 - Decay widths of the two mass eigenstates
 - CP even/odd state amplitudes and phases

《口》《聞》《臣》《臣》

Experimental Status: CPV in $B_s^0 \rightarrow J/\psi\phi$

- LHC Run 1 results consistent with the Standard Model prediction
- Search for New Physics needs increase of the ϕ_s precision

★ 문 ► ★ 문 ►

Data and Monte Carlo simulation samples

Run 2 Data:

- Uses 80.5 ${\rm fb}^{-1}$ of pp 2015 (4.9 ${\rm fb}^{-1}$) 2016 (31.3 ${\rm fb}^{-1}$) and 2017 (44.3 ${\rm fb}^{-1}$) data (13 TeV)
- Statistically combined with Run1 ATLAS results: 4.9 ${\rm fb}^{-1}$ (7 TeV, 2011) 14.3 ${\rm fb}^{-1}$ (8 TeV, 2012)
- Events collected with mixture of triggers based on $J/\psi \rightarrow \mu^+\mu^$ identification, with muon $p_{\rm T}$ thresholds of either 4 GeV or 6 GeV

MC samples:

- $B_s^0 \rightarrow J/\psi \phi$ MC events (2015-2017)
- MC samples for peaking backgrounds $B^0_d \rightarrow J/\psi K^{*0}$, $B^0_d \rightarrow J/\psi K\pi$ and $\Lambda^0_b \rightarrow J/\psi Kp$
- MC samples for tagging calibration channel $B^{\pm} \rightarrow J/\psi K^{\pm}$ (systematics and cross-checks only, data used for calibration)

Reconstruction and candidate selection

Event

- Triggers (previous slide) and Good Data selection
- At least one primary vertex (PV) formed from at least 4 inner detector (ID) tracks
- \bullet At least one pair of ID+MS (muon spectrometer) identified $\mu^+\mu^-$

$J/\psi \to \mu^+\mu^-$

- Dimuon vertex fit $\chi^2/d.o.f. < 10$
- Three dimuon invariant mass windows for BB/BE/EE (barrel(B), endcap(E)) muon combinations

$$\phi \to K^+ K^-$$

• $p_{\mathrm{T}}(K) > 1 \,\mathrm{GeV}$

• 1008.5 MeV
$$< m(KK) < 1030.5$$
 MeV

$B_s^0 ightarrow J/\psi(\mu^+\mu^-)\phi(K^+K^-)$

- $p_{\mathrm{T}}(B_s^0) > 10 \ \mathrm{GeV}$
- Four-track vertex fit $\chi^2/{\rm d.o.f.} <$ 3 (J/ ψ mass constrained)
- \bullet Keep only the candidate with best vertex fit $\chi^2/{\rm d.o.f.}$ in event
- 5150 MeV $< m(B_s^0) <$ 5650 MeV \rightarrow in total 2 977 526 B_s^0 candidates

Angular analysis

- $B^0_s
 ightarrow J/\psi \phi$ decay = decay of pseudoscalar to vector-vector
- Final state: admixture of CP-odd (L = 1) and CP-even (L = 0, 2) states
- Distinguishable through time-dependent angular analysis
- Non-resonant S-wave decay $B_s^0 \to J/\psi K^+ K^-$ contributes to the final state and is included in the differential decay rate due to interference with the signal $B_s^0 \to J/\psi(\mu^+\mu^-)\phi(K^+K^-)$ decay
- The transversity angles, $\Omega = (\Theta_{\mathcal{T}}, \Psi_{\mathcal{T}}, \phi_{\mathcal{T}})$ are defined as below

Mass-lifetime-angular fit

We perform unbinned maximum likelihood fit simultaneously for B_s^0 mass, decay time and the decay angles:

$$\begin{split} \ln \mathcal{L} &= \sum_{i=1}^{N} \{ w_i \cdot \ln(f_{\mathrm{s}} \cdot \mathcal{F}_{\mathrm{s}}(m_i, t_i, \sigma_{m_i}, \sigma_{t_i}, \Omega_i, P(B|Q), p_{\mathrm{T}_i}) \\ &+ f_{\mathrm{s}} \cdot f_{B^0} \cdot \mathcal{F}_{B^0}(m_i, t_i, \sigma_{m_i}, \sigma_{t_i}, \Omega_i, P(B|Q), p_{\mathrm{T}_i}) \\ &+ f_{\mathrm{s}} \cdot f_{\Lambda_b} \cdot \mathcal{F}_{\Lambda_b}(m_i, t_i, \sigma_{m_i}, \sigma_{t_i}, \Omega_i, P(B|Q), p_{\mathrm{T}_i}) \\ &+ (1 - f_{\mathrm{s}} \cdot (1 + f_{B^0} + f_{\Lambda_b})) \mathcal{F}_{\mathrm{bkg}}(m_i, t_i, \sigma_{m_i}, \sigma_{t_i}, \Omega_i, P(B|Q), p_{\mathrm{T}_i}) \} \end{split}$$

Physics parameters

- CPV phase: ϕ_s
- Decay widths: $\Delta \Gamma_s$, Γ_s
- Decay amplitudes: $|A_0(0)|^2$, $|A_{||}(0)|^2$, $\delta_{||}$, δ_{\perp}
- S-wave: $|A_{S}(0)|^{2}$, δ_{S}
- Δm_s fixed to PDG, $|\lambda|$ fixed to 1

Observables

- Base observables: m_i , t_i , Ω_i
- Conditional observables per-candidate:
 - resolutions: σ_{m_i} , σ_{t_i} (*B*- p_{T_i} dependent)
 - tagging probability and method: P(B|Q)

《口》《聞》《臣》《臣》

Flavour tagging overview

Opposite side tagging

- Uses $b-\bar{b}$ correlation to determine initial signal flavour from the other *B*-meson in the event
 - b
 ightarrow I transitions give a clean tagging method
 - $\bullet~b \rightarrow c \rightarrow {\it I}$ and neutral B-meson oscillations dilute the tagging
- Provides probability P(B|Q) of signal candidate to be B_s^0 or \bar{B}_s^0

Tagger types

• tight muon, low- p_{T} muon, electron, b-tagged jet

 Signal flavour probability derived from charge of p_T weighted tracks in a cone around the opposite side primary object (e[±], μ[±], b-jet)

$$Q_{\mathrm{x}} = rac{\sum_{i}^{N \mathrm{ tracks}} q_{i} \cdot (p_{\mathrm{T}i})^{\kappa}}{\sum_{i}^{N \mathrm{ tracks}} (p_{\mathrm{T}i})^{\kappa}}$$

• Search order based on best purity: tight muons, electrons, low- $p_{\rm T}$ muons, b-jets

 B_{\circ}

 $\bar{B}_{u,d,s}$

Tagging calibration

Calibration using $B^{\pm} \rightarrow J/\psi K^{\pm}$ events (data)

- Self-tagging non-oscillating channel
- Dimuon candidates in range 2.8 $< m(\mu\mu) <$ 3.4 GeV
- $p_{\mathrm{T}}(\mu) > 4 \; \mathrm{GeV}$, $p_{\mathrm{T}}(K^{\pm}) > 1 \; \mathrm{GeV}$
- Invariant mass in range 5.0 $< m(\mu\mu K^{\pm}) <$ 5.6 ${
 m GeV}$
- $au(B^{\pm}) > 0.2 \ {
 m ps}^{-1}$ reducing prompt combinatorial background

Tagging performance

- Efficiency $\epsilon = N_{\text{tagged}}/N_{\text{Bcand.}}$ (fraction of tagged signals)
- Dilution D = (1 2w)
 (w is mistag probability)
- Tagging power $TP = \epsilon D^2$ (figure of merit of tagger performance)

Tagging performance

• Tagging performance in the B^{\pm} channel

Tag method	ϵ_x [%]	D_x [%]	T_x [%]
Tight muon	4.50 ± 0.01	43.8 ± 0.2	0.862 ± 0.009
Electron	1.57 ± 0.01	41.8 ± 0.2	0.274 ± 0.004
Low- $p_{\rm T}$ muon	3.12 ± 0.01	29.9 ± 0.2	0.278 ± 0.006
Jet	12.04 ± 0.02	16.6 ± 0.1	0.334 ± 0.006
Total	21.23 ± 0.03	28.7 ± 0.1	1.75 ± 0.01

• Tag charge (Q_{μ}) distribution and calibration curve (for tight muons)

Projections of the mass-lifetime-angular fit

- Pull plots include both statistical and systematical uncertainties
- \bullet Deviations within 2σ and thus covered by declared systematics

Run-2 $B_s^0 \rightarrow J/\psi \phi$ Analysis

Two Solutions of Likelihood Function

- While for most of the physics parameters, including φ , ΔΓ , Γ, the fit determines a single solution, for the strong-phases δ_⊥ and δ_{||} two well separated local maxima of the likelihood are found, and shown as solution (a) and (b) in the table of results.
- The difference in likelihood values, between the two solutions is equal to 0.03, favouring (a) but without ruling out (b).

Parameter	Value	Statistical	Systematic				
		uncertainty	uncertainty				
ϕ_s [rad]	-0.081	0.041	0.020				
$\Delta\Gamma_s \text{ [ps}^{-1}\text{]}$	0.0607	0.0047	0.0022				
$\Gamma_s [\mathrm{ps}^{-1}]$	0.6687	0.0015	0.0018				
$ A_{\parallel}(0) ^2$	0.2213	0.0019	0.0022				
$ A_0(0) ^2$	0.5131	0.0013	0.0034				
$ A_S(0) ^2$	0.0321	0.0033	0.0044				
$\delta_{\perp} - \delta_S$ [rad]	-0.25	0.05	0.04				
	Solution (a)						
δ_{\perp} [rad]	3.12	0.11	0.05				
δ_{\parallel} [rad]	3.35	0.05	0.08				
Solution (b)							
δ_{\perp} [rad]	2.91	0.11	0.05				
δ_{\parallel} [rad]	2.94	0.05	0.08				

• Systematics assumed uncorrelated $\rightarrow \text{Total} = \sqrt{\sum_i \text{syst}_i^2}$

	d	ΔΓ	Г	$ A_{ii}(0) ^2$	$ A_{\alpha}(0) ^{2}$	$ A_{\alpha}(0) ^{2}$	δ.	8	$\delta_{1} = \delta_{2}$
	ψ_s	$[10^{-3} \text{ pc}^{-1}]$	$[10^{-3} \text{ pc}^{-1}]$	[10 ⁻³]	[10-3]	[10-3]	$[10^{-3} \text{ rod}]$	$[10^{-3} \text{ rod}]$	$0_{\perp} = 0_{S}$
		[10 ps]	[10 ps]	[10]]	[10]]	[10]]		[10 Tau]	[10 Tau]
Tagging	19	0.4	0.3	0.2	0.2	1.1	17	19	2.3
Acceptance	0.5	< 0.1	< 0.1	1.0	0.8	2.6	33	56	7.0
ID alignment	0.8	0.2	0.5	< 0.1	< 0.1	< 0.1	11	7.2	< 0.1
Best candidate selection	0.5	0.4	0.7	0.5	0.2	0.2	12	17	7.5
Background angles model:									
Choice of fit function	2.5	< 0.1	0.3	1.1	< 0.1	0.6	12	0.9	1.1
Choice of $p_{\rm T}$ bins	1.3	0.5	< 0.1	0.4	0.5	1.2	1.5	7.2	1.0
Choice of mass interval	0.4	0.1	0.1	0.3	0.3	1.3	4.4	7.4	2.3
Dedicated backgrounds:									
B^0_d	2.3	1.1	< 0.1	0.2	3.0	1.5	10	23	2.1
Λ_{b}^{a}	1.6	0.3	0.2	0.5	1.2	1.8	14	30	0.8
Alternate Δm_s	1.0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	15	4.0	< 0.1
Fit model:									
Time res. sig frac	1.4	1.1	0.5	0.5	0.6	0.8	12	30	0.4
Time res. $p_{\rm T}$ bins	0.7	0.5	0.8	0.1	0.1	0.1	2.2	14	0.7
S-wave phase	0.3	< 0.1	< 0.1	< 0.1	< 0.1	0.2	8	15	37
Fit bias	5.7	1.3	1.2	1.3	0.4	1.1	3.3	19	0.3
Total	20	2.2	1.8	2.2	3.4	4.4	51	84	38

Combination of the results with the previous from Run 1

- A Best Linear Unbiased Estimate (BLUE) combination is performed to combine the current result with the Run 1 measurement
- The BLUE combination uses the measured values and uncertainties of the parameters as well as the correlations between them

		Solution (a)			Solution (b)			
Parameter	Value	Statistical	Systematic	Value	Statistical	Systematic		
		uncertainty	uncertainty		uncertainty	uncertainty		
ϕ_s [rad]	-0.087	0.036	0.019	-0.088	0.036	0.019		
$\Delta\Gamma_s \text{ [ps}^{-1}\text{]}$	0.0641	0.0043	0.0024	0.0640	0.0043	0.0024		
$\Gamma_s [ps^{-1}]$	0.6697	0.0014	0.0015	0.6698	0.0014	0.0015		
$ A_{\parallel}(0) ^2$	0.2221	0.0017	0.0022	0.2218	0.0017	0.0022		
$ A_0(0) ^2$	0.5149	0.0012	0.0031	0.5149	0.0012	0.0031		
$ A_{S} ^{2}$	0.0343	0.0031	0.0044	0.0348	0.0031	0.0044		
δ_{\perp} [rad]	3.22	0.10	0.05	3.03	0.10	0.05		
δ_{\parallel} [rad]	3.36	0.05	0.08	2.95	0.05	0.08		
$\delta_{\perp} - \delta_S$ [rad]	-0.24	0.05	0.04	-0.24	0.05	0.04		

Updated overview of the experimental results

Conclusions

- \bullet Analysis of the 2015+2016+2017 data of 80.5 ${\rm fb^{-1}}$ performed
- Results combined with those from the previous Run 1 analysis
- Results are compatible with LHCb and CMS ones as well as with the Standard Model prediction
- Our new measurement improves precision of the parameters

Current results on ϕ_s from LHC								
	<i>φ</i> ₅ [rad]							
LHC Combined Run 1	-0.021 ± 0.031 (stat)							
LHCb 4.9 fb $^{-1}$ EUR. PHYS. J. C 79 (2019)	-0.0042 ± 0.025 (stat)							
ATLAS Run 1 JHEP08, 147	-0.090 ± 0.078 (stat) ± 0.041 (syst)							
CMS 96.4 fb ⁻¹ CMS-PAS-BPH-20-001	-0.021 ± 0.045 (stat)							
ATLAS 2015/16/17 (80.5 ${ m fb}^{-1}$) \oplus Run 1 (19.2 ${ m fb}^{-1}$)	-0.087 ± 0.037 (stat) ± 0.019 (syst)							

Probability density functions

$$\ln \mathcal{L} = \sum_{i=1}^{N} \{ w_i \cdot \ln(f_{\mathrm{s}} \mathcal{F}_{\mathrm{s}} + f_{\mathrm{s}} f_{B^0} \mathcal{F}_{B^0} + f_{\mathrm{s}} f_{\Lambda_b} \mathcal{F}_{\Lambda_b} + (1 - f_{\mathrm{s}} (1 + f_{B^0} + f_{\Lambda_b})) \mathcal{F}_{\mathrm{bkg}} \}$$

Signal PDFs

- Mass: Gaussian with per-candidate width and scalefactor
- Time-angles: signal decay 4D function
 - Convolved with per-candidate time resolution
 - Flavour-dependent terms weighted by tagging probability P(B|Q)
 - Applied B- $p_{\rm T}$ dependent angular acceptance

Decay time correction

• Correction of bias in the proper decay time by weighting events

$$w_i = p_0 \cdot [1 - p_1 \cdot (\operatorname{Erf}((t_i - p_3)/p_2) + 1)]$$

- Extracted from MC separately for data periods and trigger selection
- Typically $10-20~{
 m fs}^{-1}$, in more biased periods 70 ${
 m fs}^{-1}$

Probability density functions

$$\ln \mathcal{L} = \sum_{i=1}^{N} \{ w_i \cdot \ln(f_{\mathrm{s}}\mathcal{F}_{\mathrm{s}} + f_{\mathrm{s}}f_{B^0}\mathcal{F}_{B^0} + f_{\mathrm{s}}f_{\Lambda_b}\mathcal{F}_{\Lambda_b} + (1 - f_{\mathrm{s}}(1 + f_{B^0} + f_{\Lambda_b}))\mathcal{F}_{\mathrm{bkg}} \}$$

Peaking backgrounds

- Contributions from $B^0_d \to J/\psi K^{*0}$, $B^0_d \to J/\psi K\pi$ and $\Lambda^0_b \to J/\psi Kp$
- Shapes of distributions changed due to wrong mass assignment (KK)
- PDFs extracted from MC and then fixed in the main fit
- Fractions calculated from:
 - Efficiencies and acceptance from MC
 - BR from PDG
 - Fragmentation fractions from other measurements

Combinatorial background PDFs

- Mass: exponential + constant
- Time: delta-function and 3 exponentials convolved with per-candidate time resolution
- Angles: Legendre polynomials from sidebands; fixed in the main fit

イロト イヨト イヨト イヨト

k	$\mathcal{O}^{(k)}(t)$	$g^{(k)}(heta_{ au},\psi_{ au},\phi_{ au})$
1	$\frac{1}{2} A_0(0) ^2 \left[(1+\cos\phi_s) e^{-\Gamma_{\rm L}^{(s)}t} + (1-\cos\phi_s) e^{-\Gamma_{\rm H}^{(s)}t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$	$2\cos^2\psi_{T}(1-\sin^2 heta_{T}\cos^2\phi_{T})$
2	$\frac{1}{2} A_{\parallel}(0) ^{2}\left[\left(1+\cos\phi_{s}\right)e^{-\Gamma_{L}^{(s)}t}+\left(1-\cos\phi_{s}\right)e^{-\Gamma_{H}^{(s)}t}\pm2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2\psi_{\mathcal{T}}(1-\sin^2 heta_{\mathcal{T}}\sin^2\phi_{\mathcal{T}})$
3	$\frac{1}{2} A_{\perp}(0) ^{2}\left[(1-\cos\phi_{s})e^{-\Gamma_{L}^{(s)}t}+(1+\cos\phi_{s})e^{-\Gamma_{H}^{(s)}t}\mp2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2\psi_T\sin^2 heta_T$
4	$\frac{1}{2} A_0(0) A_{\parallel}(0) \cos\delta_{\parallel} $	$\frac{1}{\sqrt{2}}$ sin $2\psi_T$ sin ² θ_T sin $2\phi_T$
	$\left[\left(1+\cos\phi_s\right)e^{-\Gamma^{(s)}_{\rm L}t}+\left(1-\cos\phi_s\right)e^{-\Gamma^{(s)}_{\rm H}t}\pm 2e^{-\Gamma_s t}\sin(\Delta m_s t)\sin\phi_s\right]$	
5	$ A_{\parallel}(0) A_{\perp}(0) [\frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t} - e^{-\Gamma_{\rm H}^{(s)}t})\cos(\delta_{\perp} - \delta_{ })\sin\phi_{s}$	$-\sin^2\psi_{\mathcal{T}}\sin2 heta_{\mathcal{T}}\sin\phi_{\mathcal{T}}$
	$\pm e^{-\overline{\Gamma}_s t}(\sin(\delta_{\perp} - \delta_{\parallel})\cos(\Delta m_s t) - \cos(\delta_{\perp} - \delta_{\parallel})\cos\phi_s\sin(\Delta m_s t))]$	
6	$ A_0(0) A_{\perp}(0) rac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t} - e^{-\Gamma_{\rm H}^{(s)}t})\cos\delta_{\perp}\sin\phi_s$	$\frac{1}{\sqrt{2}}$ sin $2\psi_T$ sin $2\theta_T$ cos ϕ_T
	$\pm e^{-\Gamma_s t}(\sin \delta_\perp \cos(\Delta m_s t) - \cos \delta_\perp \cos \phi_s \sin(\Delta m_s t))]$	v -
7	$\frac{1}{2} A_{S}(0) ^{2}\left[(1-\cos\phi_{s})e^{-\Gamma_{L}^{(s)}t}+(1+\cos\phi_{s})e^{-\Gamma_{H}^{(s)}t}\mp2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$rac{2}{3}\left(1-\sin^2 heta_ au\cos^2\phi_ au ight)$
8	$\alpha A_{\mathcal{S}}(0) A_{\parallel}(0) [\frac{1}{2} (e^{-\Gamma_{\mathrm{L}}^{(s)}t} - e^{-\Gamma_{\mathrm{H}}^{(s)}t}) \sin(\delta_{\parallel} - \delta_{\mathcal{S}}) \sin \phi_{s}$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin^2\theta_T\sin 2\phi_T$
	$\pm e^{-\hat{T}_{s}t}(\cos(\delta_{\parallel}-\delta_{S})\cos(\Delta m_{s}t)-\sin(\delta_{\parallel}-\delta_{S})\cos\phi_{s}\sin(\Delta m_{s}t))]$	5
9	$rac{1}{2}lpha A_{\mathcal{S}}(0) A_{\perp}(0) \sin(\delta_{\perp}-\delta_{\mathcal{S}})$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin2 heta_T\cos\phi_T$
	$\left[\left(1-\cos\phi_s\right)e^{-\Gamma_{\rm L}^{(s)}t}+\left(1+\cos\phi_s\right)e^{-\Gamma_{\rm H}^{(s)}t}\mp 2e^{-\Gamma_s t}\sin(\Delta m_s t)\sin\phi_s\right]$	
10	$\alpha A_0(0) A_S(0) [\frac{1}{2} (e^{-\Gamma_H^{(s)} t} - e^{-\Gamma_L^{(s)} t}) \sin \delta_S \sin \phi_s$	$\frac{4}{3}\sqrt{3}\cos\psi_{T}\left(1-\sin^{2}\theta_{T}\cos^{2}\phi_{T}\right)$
	$\pm e^{-\Gamma_s t} (\cos \delta_S \cos(\Delta m_s t) + \sin \delta_S \cos \phi_s \sin(\Delta m_s t))]$	· · · · ·

Performing the calibration

- For Muons and Jets, now use fits to mass distribution in bins of Q-variable Result of the fit provide $N_B \pm Q^{=i}$; P(Q|B+) = N(B+|Q)/N(B+)

Calibration curve separated into Continuous part and Discrete part • ۲ Converts Q-values into a Probability:

 \bullet Fraction of tag-charge equal to ± 1 in signal and background events

Tag method	Sig	nal	Background		
	f_{+1}	f_{-1}	f_{+1}	f_{-1}	
Tight μ	0.069 ± 0.003	0.075 ± 0.003	0.047 ± 0.001	0.049 ± 0.001	
Electron	0.20 ± 0.01	0.19 ± 0.01	0.168 ± 0.002	0.173 ± 0.002	
Low-pt μ	0.109 ± 0.005	0.117 ± 0.005	0.070 ± 0.001	0.076 ± 0.001	
Jets	0.0451 ± 0.0015	0.0458 ± 0.0016	0.0376 ± 0.0003	0.0386 ± 0.0003	

• Fraction of tag-methods in signal and background events

Tag method	Signal	Background		
Tight μ	0.0400 ± 0.0006	0.0316 ± 0.0001		
Electron	0.0187 ± 0.0004	0.01479 ± 0.0001		
Low-pT μ	0.0291 ± 0.0005	0.0264 ± 0.0001		
Jets	0.144 ± 0.001	0.1196 ± 0.0002		
Untagged	0.767 ± 0.003	0.8077 ± 0.0005		

Tag "Punzi" distributions - continuous

《口》《聞》《臣》《臣》

Fit correlations between the physical parameters

• Fit correlations between the physical parameters of interest, obtained from the fit for solution (a)

	ΔΓ	Γ_s	$ A_{ }(0) ^2$	$ A_0(0) ^2$	$ A_S(0) ^2$	δ_{\parallel}	δ_{\perp}	$\delta_{\perp} - \delta_S$
ϕ_s	-0.080	0.017	-0.003	-0.004	-0.007	0.007	0.004	-0.007
$\Delta\Gamma$	1	-0.586	0.090	0.095	0.051	0.032	0.005	0.020
Γ_s		1	-0.125	-0.045	0.080	-0.086	-0.023	0.015
$ A_{ }(0) ^2$			1	-0.341	-0.172	0.522	0.133	-0.052
$ A_0(0) ^2$				1	0.276	-0.103	-0.034	0.070
$ A_{S}(0) ^{2}$					1	-0.362	-0.118	0.244
δ_{\parallel}						1	0.254	-0.085
δ_{\perp}							1	0.001

• Fit correlations between the physical parameters of interest, obtained from the fit for solution (b)

	ΔΓ	Γ_s	$ A_{ }(0) ^2$	$ A_0(0) ^2$	$ A_{S}(0) ^{2}$	δ_{\parallel}	δ_{\perp}	$\delta_{\perp} - \delta_S$
ϕ_s	-0.084	0.019	-0.011	-0.003	-0.006	0.007	0.005	-0.006
$\Delta\Gamma$	1	-0.586	0.090	0.096	0.057	-0.029	-0.010	0.021
Γ_s		1	-0.116	-0.048	0.071	0.070	0.017	0.015
$ A_{ }(0) ^2$			1	-0.338	-0.110	-0.444	-0.106	-0.052
$ A_0(0) ^2$				1	0.269	0.080	0.017	0.070
$ A_{S}(0) ^{2}$					1	0.291	0.060	0.251
δ_{\parallel}						1	0.235	0.097
δ_{\perp}							1	0.056

S. Simsek for the analyzers

Correlation matrix of the BLUE combination

• Correlation matrix of the BLUE combination of the 7 TeV and 8 TeV results and the solution (a) of the 13 TeV result

	$\Delta\Gamma$	Γ_s	$ A_{\parallel}(0) ^2$	$ A_0(0) ^2$	$ A_S(0) ^2$	δ_{\parallel}	δ_{\perp}	$\delta_{\perp} - \delta_S$
ϕ_s	-0.039	0.002	0.001	0.000	-0.002	0.003	0.004	-0.004
$\Delta\Gamma$	1	-0.342	0.050	0.032	0.025	0.013	0.003	0.013
Γ_s		1	-0.052	-0.012	0.031	-0.027	-0.012	0.007
$ A_{\parallel}(0) ^2$			1	-0.076	-0.056	0.158	0.067	-0.023
$ A_0(0) ^2$				1	0.054	-0.017	-0.010	0.017
$ A_{S}(0) ^{2}$					1	-0.105	-0.057	0.109
δ_{\parallel}						1	0.111	-0.033
δ_{\perp}							1	0.001

• Correlation matrix of the BLUE combination of the 7 TeV and 8 TeV results and the solution (b) of the 13 TeV result

	ΔΓ	Γ_s	$ A_{\parallel}(0) ^2$	$ A_0(0) ^2$	$ A_S(0) ^2$	δ_{\parallel}	δ_{\perp}	$\delta_{\perp} - \delta_S$
ϕ_s	-0.041	0.003	-0.003	0.001	-0.001	0.003	0.004	-0.003
$\Delta\Gamma$	1	-0.342	0.050	0.032	0.028	-0.012	-0.007	0.013
Γ_s		1	-0.048	-0.012	0.028	0.022	0.009	0.007
$ A_{\parallel}(0) ^2$			1	-0.075	-0.035	-0.135	-0.052	-0.023
$ A_0(0) ^2$				1	0.053	0.014	0.005	0.017
$ A_S(0) ^2$					1	0.085	0.028	0.112
δ_{\parallel}						1	0.103	0.038
δ_{\perp}							1	0.037

S. Simsek for the analyzers

1D log-likelihood scans

Systematic uncertainties

- Tagging systematics:
 - calibration function (tag probability vs. tag charge)
 - $\bullet\,$ pile-up dependence (calibration for three $\textit{N}_{\rm PV}$ bins)
 - variation of tag probability and tag method "Punzi" terms (functions, histograms)
 - stat. uncertainty due to $B^\pm \to J/\psi {\cal K}^\pm$ data sample included in overall stat. err.
- Angular acceptance (binned fit of MC) by changing the bin widths and central values
- Inner detector alignment: Residual misalignment affects tracks impact parameter, effect in fit results in systematics
- \bullet S-wave phase by varying correction factor α that accounts for mass-dependence of phase difference between S and P waves
- Background angles model varying Legendre polynomials describing sidebands data:
 - their degree
 - *B*-*p*_T dependence (binning)
 - size of B_s^0 mass sidebands
- Contributions from peaking backgrounds $B_d^0 \rightarrow J/\psi K^{*0}$, $B_d^0 \rightarrow J/\psi K\pi$ and $\Lambda_b^0 \rightarrow J/\psi Kp$, accounting for:
 - production fraction uncertainties
 - uncertainties in modeling of decay angles (including S/P wave interference)
 - in the Λ_b^0 case also uncertainties in $\Lambda_b^0 \rightarrow J/\psi \Lambda^*$ BRs
 - uncertainties of fit-function describing the mass-time-angular PDFs
- Signal fit model:
 - adding second mass scale factor
 - varying B- $p_{\rm T}$ binning (decay time per-candidate errors sensitive to that)
 - varying signal fraction when determining the decay time "Punzi" terms

・ロト ・聞 ト ・ 聞 ト ・ 聞 ト