

Charm CP violation and mixing at LHCb

Alberto C. dos Reis, on behalf of the LHCb collaboration

19th International Conference on B-Physics at Frontier Machines, BEAUTY 2020

First observation of CP violation in charm

PRL **122**, 211803 (2019)

CP violation timeline

LHCb is a flavour factory: $\sigma(pp \to c\bar{c}X) = (2940 \pm 3 \pm 180 \pm 160) \ \mu b$ for $p_T < 8 \text{ GeV}, \ 2 < \eta < 4.5, \ \sqrt{s} = 13 \text{ TeV}$ JHEP 03 (2016) 159

 $\frac{\sigma_{c\bar{c}}}{\sigma_{\rm in}} \sim \frac{1}{20} : \mathcal{O}(10^9) \text{ reconstructed } D \text{ decays}$ JHEP 06 (2018) 100

Analysis combine Run 1 + Run 2 data sets $\longrightarrow \int \mathcal{L} \sim 9 \text{ fb}^{-1}$

Direct CP violation In this analysis: $f = K^-K^+, \ \pi^-\pi^+$

Time-dependent CP
asymmetry between states
produced as a
$$D^0$$
 or \overline{D}^0

 $\mathcal{A}_{CP}(f;t) \equiv \frac{\Gamma(D^0(t) \to f) - \Gamma(\overline{D}^0(t) \to f)}{\Gamma(D^0(t) \to f) + \Gamma(\overline{D}^0(t) \to f)}$

The time-integrated asymmetry, to first order in $D^0 - \overline{D}^0$ mixing

Assuming A_{Γ} to be independent of the final state $\mathcal{A}_{CP}(f) \simeq a_{CP}^{\text{dir}}(f) - A_{\Gamma}(f) \frac{\langle t(f) \rangle}{\tau(D^0)} \longleftarrow \begin{bmatrix} \text{mean} \\ \text{decay} \\ \text{time} \end{bmatrix}$

$$\Delta \mathcal{A}_{CP} \equiv \mathcal{A}_{CP}(K^+K^-) - \mathcal{A}_{CP}(\pi^+\pi^-)$$
$$\approx \Delta a_{CP}^{\text{dir}} - A_{\Gamma} \frac{\Delta \langle t \rangle}{\tau(D^0)}$$

 $\Delta a_{CP}^{\mathrm{dir}} \equiv a_{CP}^{\mathrm{dir}}(K^+K^-) - a_{CP}^{\mathrm{dir}}(\pi^+\pi^-)$

U-spin: CP asymmetries expected to have opposite signs PLB 492 (2000) 297

Two independent data sets (Run 2 data, 5.9 fb⁻¹ @ 13 TeV)

The measured quantities are the charge asymmetries

$$A_{\rm raw}^{\pi-{\rm tag}}(f) \equiv \frac{N(D^{*+} \to D^0(f)\pi^+) - N(D^{*-} \to \overline{D}^0(f)\pi^-)}{N(D^{*+} \to D^0(f)\pi^+) + N(D^{*-} \to \overline{D}^0(f)\pi^-)}$$
$$A_{\rm raw}^{\mu-{\rm tag}}(f) \equiv \frac{N(\overline{B} \to D^0(f)\mu^- X) - N(B \to \overline{D}^0(f)\mu^+ X)}{N(\overline{B} \to D^0(f)\mu^- X) + N(B \to \overline{D}^0(f)\mu^+ X)}$$

Asymmetries in production and detection efficiencies are small:

 $A_{\rm raw}^{\pi-{\rm tag}}(f) \approx \mathcal{A}_{CP}(f) + A_D(\pi) + A_P(D^*)$ $A_{\rm raw}^{\mu-{\rm tag}}(f) \approx \mathcal{A}_{CP}(f) + A_D(\mu) + A_P(B)$

Reweighting procedure matches kinematics of both final states and ensures cancellation of nuisance asymmetries

$$A_{\rm raw}(KK) - A_{\rm raw}(\pi\pi) = \left(\mathcal{A}_{CP}(KK) + A_D(\mathrm{tag}) + A_P\right) - \left(\mathcal{A}_{CP}(\pi\pi) + A_D(\mathrm{tag}) + A_P\right)$$

$$A_{\rm raw}(KK) - A_{\rm raw}(\pi\pi) = \mathcal{A}_{CP}(KK) - \mathcal{A}_{CP}(\pi\pi)$$

Results

Source	π tagged	μ tagged
Fit model	0.6	2
Mistag		4
Weighting	0.2	1
Secondary decays	0.3	
Peaking background	0.5	
B fractions		1
B reco. efficiency		2
Total	0.9	5

Systematic uncertainties (x 10-4)

 $\Delta \mathcal{A}_{CP}^{\pi-\text{tag}} = (-18.2 \pm 3.2 \pm 0.9) \times 10^{-4}$ $\Delta \mathcal{A}_{CP}^{\mu-\text{tag}} = (-9 \pm 8 \pm 5) \times 10^{-4}$

Combining results from the two samples and from Run 1,

 $\Delta \mathcal{A}_{CP} = (-15.4 \pm 2.9) \times 10^{-4}$

First observation of CP violation in charm - 5.3σ

Results

CP violation search in $\Xi_c^+ \rightarrow p K^- \pi^+$ LHCb-PAPER-2019-026

arXiv:2006.03145

- Analysis based on Run 1 data (~3 fb⁻¹ @ 7 and 8 TeV)
- Direct comparison between Ξ_c^- and Ξ_c^+ Dalitz plots (total yield ~ 190k) using two model-independent techniques
- Procedures tested on control channel $\Lambda_c^+ \to p K^- \pi^+$ (total yield ~ 1.9M) before applied to the signal

Binned method

• Dalitz plot divided into bins; for each bin compute the observable

$$S_{CP}^{i} = \frac{n_{+}^{i} - \alpha n_{-}^{i}}{\sqrt{\alpha(n_{+}^{i} + n_{-}^{i})}}, \quad \alpha = \frac{n_{+}^{i}}{n_{-}^{i}}: \text{ accounts for global asymmetries}$$

• A p-value from $\chi^2 \equiv \sum (S_{CP}^i)^2$: test if Ξ_c^- and Ξ_c^+ are statistically compatible

Unbinned method (kNN)

• Dalitz plot divided into regions around expected resonances. In each region compute the test statistic

$$T = \frac{1}{n_k(n_+ + n_-)} \sum_{i=1}^{n_+ + n_-} \sum_{k=1}^{n_k} I(i, k) \qquad (n_k = 50 \text{ in this analysis})$$

I(i,k) = 1 if the *i*th candidate and its *k*th nearest neighbour have the same charge

- For two statistically compatible samples, the distribution of *T* follows a normal distribution with known mean and width, (μ_T, σ_T)
- Compare *T* distribution with that for null CPV hypothesis

Results

CPV would be established with *p*-values < 3 x 10⁻⁷ (5 σ)

LHCb-PAPER-2019-026 (arXiv:2006.03145)

Measurement of the mass difference between neutral *D* mesons

PRL 122, 231802 (2019)

Flavoured neutral-meson systems have both virtual and real transitions common to particle and antiparticle \longrightarrow mixing

Mass eigenstates are linear combination of states with definite flavour

$$|D_{1,2}\rangle \equiv p|D^0\rangle \pm q|\overline{D}^0\rangle$$

Mixing is governed by four parameters $x \equiv \frac{m_1 - m_2}{\Gamma}, \quad y \equiv \frac{\Gamma_1 - \Gamma_2}{2\Gamma}, \quad \left|\frac{q}{p}\right|, \quad \phi_f \equiv \arg\left(\frac{q\overline{A}_f}{pA_f}\right)$

The most sensitive mode for measuring mixing parameters is $D^0 \to K_S^0 \pi^- \pi^+$

Direct CP violation is not expected in Cabibbo-favoured decays: $\phi_f \rightarrow \phi$

$$A_{\Gamma} = (|q/p| - |p/q|) y \cos \phi - (|q/p| + |p/q|) \underbrace{x \sin \phi}$$

CPV in mixing: $|q/p| \neq 1$ CPV in interference: $\phi \neq 0$

A transformation of variables increases the sensitivity to q/p:

 $z \equiv -(y - ix), \ (q/p)^{\pm}z \equiv z \pm \Delta z$ CP violating $x, \ y, \ (q/p), \phi \longrightarrow x_{CP}, \ y_{CP}, \ \Delta x, \ \Delta y$ CP violating

The bin-flip method PRD 99, 012007 (2019)

- Dataset divided into bins of decay time; Dalitz plot divided into bins of nearly constant strong-phase difference between D^0 and \overline{D}^0 decay amplitudes
- In each decay time and Dalitz plot bin, fit the D^0 and \overline{D}^0 invariant-mass distributions
- The mixing parameters are obtained from the ratios (details in backup slides)

$$R_b(t_j) = \frac{N_{-b}(t_j)}{N_b(t_j)}, \quad \overline{R}_b(t_j) = \frac{N_{-b}(t_j)}{\overline{N}_b(t_j)}$$

Analysis based on Run 1 dataset (Run 2 results to appear soon)

- Two independent samples: $D^{*+} \rightarrow D^0 (\rightarrow K_S^0 \pi^- \pi^+) \pi^+ \quad (2 \text{ fb}^{-1})$ $\overline{B} \rightarrow D^0 (\rightarrow K_S^0 \pi^- \pi^+) \mu^- X \quad (3 \text{ fb}^{-1})$
- Strong-phase differences are external input from CLEO PRD 82, 112006 (2010)
- Symmetric efficiency variation across the Dalitz plot for both samples

A. Reis, Charm CPV and mixing at LHCb

Results

The measured quantities are:

$$x_{CP} = -\operatorname{Im}(z_{CP}) = \frac{1}{2} \left[x \cos \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) + y \sin \phi \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) \right] \right]$$
$$\Delta x = -\operatorname{Im}(\Delta z) = \frac{1}{2} \left[x \cos \phi \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) + y \sin \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) \right]$$
$$y_{CP} = -\operatorname{Re}(z_{CP}) = \frac{1}{2} \left[y \cos \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) - x \sin \phi \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) \right]$$
$$\Delta y = A_{\Gamma} = -\operatorname{Re}(\Delta z) = \frac{1}{2} \left[y \cos \phi \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) - x \sin \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) \right]$$

Systematic uncertainties dominated by CLEO input, D^0 from *B* decays (prompt), and unrelated μD^0 combinations (semileptonic)

Value	s [10-3]	
$x_{CP} = 2.7 \pm 1.7 \pm 0.4$	$\Delta x = -0.53 \pm 0.70 \pm 0.22$	No evidence for
$y_{CP} = 7.4 \pm 3.6 \pm 1.1$	$\Delta y = 0.6 \pm 1.6 \pm 0.3$	indirect CPV

Results

A likelihood is formed to yield the usual mixing parameters:

https://hflav-eos.web.cern.ch/hflav-eos/charm/ICHEP20/results_mix_cpv.html

Time-dependent CP asymmetries in $D^0 \rightarrow K^+ K^-$ and $D^0 \rightarrow \pi^+ \pi^-$ PRD 101, 012005 (2020)

Mixing-induced CP violation has not been observed in charm yet

The time evolution of an initially pure beam of $D^0(\overline{D}^0)$ decaying to a final state f $\Gamma(D^0(t) \to f) = e^{-\Gamma t} |A_f|^2 [1 - |q/p| (y \cos \phi_f - x \sin \phi_f) \Gamma t]$ $\Gamma(\overline{D}^0(t) \to f) = e^{-\Gamma t} |\overline{A}_f|^2 [1 - |p/q| (y \cos \phi_f + x \sin \phi_f) \Gamma t]$

for xt, $yt \lesssim \Gamma^{-1}$ and with the usual definitions $x \equiv \frac{\Delta m}{\Gamma}$, $y \equiv \frac{\Delta \Gamma}{2\Gamma}$

The effective rates, due to the smallness of x and y $\hat{\Gamma}(D^0 \to f) = \Gamma[1 + |q/p|(y\cos\phi_f - x\sin\phi_f)]$ $\hat{\Gamma}(\overline{D}^0 \to f) = \Gamma[1 + |p/q|(y\cos\phi_f + x\sin\phi_f)]$

The asymmetry between effective decay rates is sensitive to indirect CP violation

$$A_{\Gamma}(f) \equiv \frac{\hat{\Gamma}(D^0 \to f) - \hat{\Gamma}(\overline{D}^0 \to f)}{\hat{\Gamma}(D^0 \to f) + \hat{\Gamma}(\overline{D}^0 \to f)} \approx x\phi_f + y(|q/p| - 1) - \underbrace{ya_{CP}^{\text{dir}}(f)}_{\mathcal{O}(10^{-5})}$$

The measured quantity is the time-dependent charge asymmetry

$$A_{\rm raw}(D^0 \to f; t) = \frac{N(\overline{B} \to D^0(f)\mu^- X) - N(B \to \overline{D}^0(f)\mu^+ X)}{N(\overline{B} \to D^0(f)\mu^- X) + N(B \to \overline{D}^0(f)\mu^+ X)}$$

$$A_{\rm raw}(D^0 \to f; t) \approx \mathcal{A}_{CP}(D^0 \to f; t) + A_{\rm det} + A_{\rm P}$$

The time-dependent CP asymmetry:

$$\mathcal{A}_{CP}(D^0 \to f; t) = \frac{\Gamma(D^0(t) \to f) - \Gamma(\overline{D}^0(t) \to f)}{\Gamma(D^0(t) \to f) + \Gamma(\overline{D}^0(t) \to f)} \approx a_{CP}^{\text{dir}} - A_{\Gamma}(f) \frac{t}{\tau}$$

The time-dependent charge asymmetry is computed for 20 bins of decay time and fitted to a linear function

$$A_{\rm raw}(t) = A_{\rm raw}(0) + A_{\Gamma} \frac{\langle t \rangle_i}{\tau}$$

Neglecting
CPV in decay:
$$\phi_f = \arg\left(\frac{q\overline{A}_f}{pA_f}\right) \approx \arg\left(\frac{q}{p}\right) = \phi \rightarrow A_{\Gamma}(KK) = A_{\Gamma}(\pi\pi)$$

A. Reis, Charm CPV and mixing at LHCb

time independent

1

Analysis based on Run 2 data (5.4 fb⁻¹ @13 TeV)

A. Reis, Charm CPV and mixing at LHCb

Dominant systematic uncertainties

Source of uncertainty $A_{\Gamma}(\pi^{+}\pi^{-})$ [10⁻⁴] $A_{\Gamma}(K^+K^-)$ [10⁻⁴] 0.3 Decay-time resolution 0.4 $\sigma_t \sim 127 \text{ fs}$ and acceptance Mistag probability 0.3 0.6 Mass-fit model 0.3 0.3 0.5 0.8 Total

Combining with Run1 results and assuming A_{Γ} to be universal

$$A_{\Gamma} = (-2.9 \pm 2.0 \pm 0.6) \times 10^{-4}$$

No indication of indirect CPV

PRD 101, 012005 (2020)

Summary and prospects

https://hflav-eos.web.cern.ch/hflav-eos/charm/ICHEP20/results_mix_cpv.html

- Ongoing searches for CPV in D^+ and charm baryons
- New results with full Run1+Run2 data to appear soon
- Warming up for Run 3, already looking forward to Upgrade II

Backup slides

The decay amplitude for $D^0 \to K_S^0 \pi^+ \pi^-$ (similar expression for $\overline{D}^0 \to K_S^0 \pi^+ \pi^-$) $A_f(m_+^2, m_-^2) = a_f(m_+^2, m_-^2) e^{i\delta(m_+^2, m_-^2)}$

Defining $g_{\pm}(t) = \theta(t)e^{-imt}e^{-t/2} \cosh(zt/2)$, the decay rate at decay time t:

$$\left|T_f(m_+^2, m_-^2; t)\right|^2 = \left|A_f(m_+^2, m_-^2) g_+(t) + \bar{A}_f(m_-^2, m_+^2) \frac{q}{p} g_-(t)\right|^2$$

With
$$F_b \equiv \int_b dm_+^2 dm_-^2 \left| A_f(m_+^2, m_-^2) \right|^2$$
 and
 $X_b \equiv \frac{1}{\sqrt{F_b \overline{F}_{-b}}} \int_b dm_+^2 dm_-^2 A_f^*(m_+^2, m_-^2) \overline{A}_f(m_-^2, m_+^2)$

the yield in bin *b* is

$$N_{b}(t) = \int_{b} dm_{+}^{2} dm_{-}^{2} \left| T_{f}(m_{+}^{2}, m_{-}^{2}; t) \right|^{2}$$

= $F_{b} \left| g_{+}(t) \right|^{2} + \left| \frac{q}{p} \right|^{2} \overline{F}_{-b} \left| g_{-}(t) \right|^{2} + 2\sqrt{\overline{F}_{-b}F_{b}} \operatorname{Re} \left[\frac{q}{p} X_{b} g_{+}^{\star}(t) g_{-}(t) \right]$

PRD 99, 012007 (2019)

Information regarding the strong phase difference taken from CLEO

$$c_{b} \equiv \frac{1}{\sqrt{F_{b}F_{-b}}} \int_{b} dm_{+}^{2} dm_{-}^{2} \left| A_{f}(m_{+}^{2}, m_{-}^{2}) \right| \left| A_{f}(m_{-}^{2}, m_{+}^{2}) \right| \cos[\Delta\delta(m_{+}^{2}, m_{-}^{2})]$$

$$s_{b} \equiv \frac{1}{\sqrt{F_{b}F_{-b}}} \int_{b} dm_{+}^{2} dm_{-}^{2} \left| A_{f}(m_{+}^{2}, m_{-}^{2}) \right| \left| A_{f}(m_{-}^{2}, m_{+}^{2}) \right| \sin[\Delta\delta(m_{+}^{2}, m_{-}^{2})]$$
PRD 82, 112006 (2010)

For
$$|z|t \ll 1$$
, $|g_{+}(t)|^{2} \approx e^{-t} + \frac{1}{4}e^{-t}t^{2}\operatorname{Re}(z^{2}) + \mathcal{O}(z^{4}),$
 $|g_{-}(t)|^{2} \approx \frac{1}{4}e^{-t}t^{2}|z|^{2} + \mathcal{O}(z^{4}),$ and
 $g_{+}^{\star}(t)g_{-}(t) \approx \frac{1}{2}e^{-t}tz + \mathcal{O}(z^{3}).$

Neglecting terms of $\mathcal{O}(z^3)$, the integration over decay time bin *j* yields

$$\int_{j} dt \ |g_{+}(t)|^{2} \approx n_{j} \left[1 + \frac{1}{4} \langle t^{2} \rangle_{j} \operatorname{Re} \left(z^{2} \right) \right], \quad \int_{j} dt \ |g_{-}(t)|^{2} \approx n_{j} \frac{1}{4} \langle t^{2} \rangle_{j} \ |z|^{2},$$
$$\int_{j} dt \ g_{+}^{\star}(t) g_{-}(t) \approx n_{j} \frac{1}{2} \langle t \rangle_{j} \ z,$$

The yield at Dalitz plot bin *b* and decay-time bin *j* is

$$N_{bj} = \int_{j} dt N_{b}(t)$$

$$\approx F_{b} \left[1 + \frac{1}{4} \langle t^{2} \rangle_{j} \operatorname{Re} \left(z^{2} \right) \right] + \frac{1}{4} \langle t^{2} \rangle_{j} |z|^{2} \left| \frac{q}{p} \right|^{2} F_{-b} + \langle t \rangle_{j} \sqrt{F_{-b} F_{b}} \operatorname{Re} \left(\frac{q}{p} X_{b} z \right)$$

The ratio between yields of bins *b* and -*b* is $(r_b = F_{-b} / F_b)$

$$R_{bj} = \frac{N_{-bj}}{N_{bj}} \approx \frac{r_b \left[1 + \frac{1}{4} \langle t^2 \rangle_j \operatorname{Re} \left(z^2 \right) \right] + \frac{1}{4} \langle t^2 \rangle_j |z|^2 \left| \frac{q}{p} \right|^2 + \langle t \rangle_j \sqrt{r_b} \operatorname{Re} \left(X_b^* \frac{q}{p} z \right)}{1 + \frac{1}{4} \langle t^2 \rangle_j \operatorname{Re} \left(z^2 \right) + \frac{1}{4} \langle t^2 \rangle_j |z|^2 r_b \left| \frac{q}{p} \right|^2 + \langle t \rangle_j \sqrt{r_b} \operatorname{Re} \left(X_b \frac{q}{p} z \right)}$$

With the definition $z_{CP} \pm \Delta Z \equiv (q/p)^{\pm} z$, the ratio between yields becomes

$$R_{bj} \approx \frac{r_b \left[1 + \frac{1}{4} \langle t^2 \rangle_j \operatorname{Re} \left(z_{CP}^2 - \Delta z^2 \right) \right] + \frac{1}{4} \langle t^2 \rangle_j \left| z_{CP} + \Delta z \right|^2 + \sqrt{r_b} \langle t \rangle_j \operatorname{Re} \left[X_b^* (z_{CP} + \Delta z) \right]}{1 + \frac{1}{4} \langle t^2 \rangle_j \operatorname{Re} \left(z_{CP}^2 - \Delta z^2 \right) + r_b \frac{1}{4} \langle t^2 \rangle_j \left| z_{CP} + \Delta z \right|^2 + \sqrt{r_b} \langle t \rangle_j \operatorname{Re} \left[X_b (z_{CP} + \Delta z) \right]}$$

CPV search in $\Xi \to p K^- \pi^+$

Definition of the Dalitz plot regions

In case of CP symmetry, the test statistic T follows a normal distribution with

$$\mu_T = \frac{n_+(n_+ - 1) + n_-(n_- - 1)}{n(n-1)} \quad \text{and} \quad \sigma_T^2 = \frac{1}{nn_k} \left(\frac{n_+n_-}{n^2} + 4\frac{n_+^2 n_-^2}{n^4} \right)$$

Table 6.4: Extrapolated signal yields, and statistical precision on indirect CP violation from A_{Γ} .

Sample (\mathcal{L})	Tag	Yield K^+K^-	$\sigma(A_\Gamma)$	Yield $\pi^+\pi^-$	$\sigma(A_\Gamma)$
Run 1–2 (9 fb ^{-1})	Prompt	$60\mathrm{M}$	0.013%	18M	0.024%
Run 1–3 (23 fb $^{-1}$)	Prompt	310M	0.0056%	92M	0.0104~%
Run 1–4 (50 fb ^{-1})	Prompt	793M	0.0035%	236M	0.0065~%
Run 1–5 (300 fb ⁻¹)	Prompt	$5.3 \mathrm{G}$	0.0014%	1.6G	0.0025~%

Table 6.5: Extrapolated signal yields and statistical precision on direct CP violation observables for the promptly produced samples.

Sample (\mathcal{L})	Tag	Yield	Yield	$\sigma(\Delta A_{CP})$	$\sigma(A_{CP}(hh))$
		$D^0 \rightarrow K^- K^+$	$D^0 ightarrow \pi^- \pi^+$	[%]	[%]
Run 1–2 (9 fb ^{-1})	Prompt	$52\mathrm{M}$	17M	0.03	0.07
Run 1–3 (23 ${ m fb}^{-1}$)	Prompt	280M	94M	0.013	0.03
Run 1–4 (50 ${ m fb}^{-1}$)	Prompt	$1\mathrm{G}$	305M	0.01	0.03
Run 1–5 (300 ${\rm fb}^{-1}$)	Prompt	$4.9 \mathrm{G}$	1.6G	0.003	0.007

LHCB-PUB-2018-009

Table 6.3: Extrapolated signal yields, and statistical precision on the mixing and CP violation parameters, for the analysis of the decay $D^0 \rightarrow K_{\rm S}^0 \pi^+ \pi^-$. Candidates tagged by semileptonic B decay (SL) and those from prompt charm meson production are shown separately.

Sample (lumi \mathcal{L})	Tag	Yield	$\sigma(x)$	$\sigma(y)$	$\sigma(q/p)$	$\sigma(\phi)$
Run 1–2 (9 fb ^{-1})	SL	10M	0.07%	0.05%	0.07	4.6°
	Prompt	36M	0.05%	0.05%	0.04	1.8°
Run 1–3 (23 fb ⁻¹)	SL	33M	0.036%	0.030%	0.036	2.5°
	Prompt	200M	0.020%	0.020%	0.017	0.77°
Run 1–4 (50 fb ⁻¹)	SL	78M	0.024%	0.019%	0.024	1.7°
	Prompt	520M	0.012%	0.013%	0.011	0.48°
Run 1–5 (300 fb ⁻¹)	SL	490M	0.009%	0.008%	0.009	0.69°
	Prompt	$3500\mathrm{M}$	0.005%	0.005%	0.004	0.18°

LHCB-PUB-2018-009