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Significant discrepancies between the different determinations of the Cabibbo angle have been
observed. Here, we point out that this “Cabibbo-angle anomaly” can be explained by lepton
flavour universality (LFU) violating New Physics (NP) in the neutrino sector. However, modified
neutrino couplings to Standard Model gauge bosons also affect many other observables sensitive
to LFU violation, which have to be taken into account in order to assess the viability of this
explanation. Therefore, we perform a model-independent Bayesian global analysis and find
that non-zero modifications of electron and muon neutrino couplings are preferred at more than
99.99% C.L. (corresponding to more than 4σ). Our results show that constructive effects in the
muon sector are necessary, meaning simple models with right-handed neutrinos are discarded and
more sophisticated NP models required.

The Eighth Annual Conference on Large Hadron Collider Physics-LHCP2020
25-30 May, 2020
online

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

ar
X

iv
:2

00
9.

03
87

7v
1 

 [
he

p-
ph

] 
 8

 S
ep

 2
02

0

mailto:claudioandrea.manzari@physik.uzh.ch
mailto:antonio.coutinho@psi.ch
mailto:andreas.crivellin@cern.ch
https://pos.sissa.it/


Modified lepton couplings and the Cabibbo-angle anomaly Claudio Andrea Manzari

1. Introduction

The global electroweak (EW) [1–3] and the CKM [4, 5] fits contributed to establish the Standard
Model (SM) of particle physics with an extraordinary precision in the last decades. However, at
present, there are tensions between the different determinations of the Cabibbo Angle from the
CKM elements Vus and Vud, known as the “Cabibbo Angle Anomaly” (CAA). In detail, the
different determinations of Vus are from:

• Measurements of K → π`ν together with the form factor f+(0) evaluated at zero momentum
transfer result in Vus = 0.2232(11) [6].

• K → `ν/π → `ν where Vus/Vud is determined once the ratio of the decay constants fK±/ fπ±
is known. Using CKM unitarity this results in Vus = 0.22534(44) [6].

• Vud measured in super-allowed nuclear β decay [7], with Vus again determined via CKM
unitarity. Here, the description relies heavily on the evaluation of radiative corrections and
we consider the latest estimates in Ref. [8] (NNC indicate the scenario with the nuclear
corrections discussed for the first time in [9, 10]):

|Vus | = 0.22805(64) |Vus |NNC = 0.2280(14) (1)

• τ → Kν, τ → Kν/τ → πν and inclusive tau decays which provide additional measurements
of Vus and Vus/Vud. Here the HFLAV average is Vus = 0.2221(13) [11].

This situation is graphically depicted in Fig. 1. One can clearly see that these measurements are not
consistent with each other, and Ref. [8] quantifies this inconsistency to be at the level of 3− 5 σ, or
1.7 − 3 σ if NNC are included.

This anomaly was studied in the scenario of first row CKM unitarity violation [12, 13],
however it is challenging to explain it in this context due other flavour bounds, like Kaon or Bd − B̄d

mixing [14]. In this work, driven by the observation that all the processes discussed above involve
electron and muon neutrinos, we study this anomaly as an evidence of Lepton Flavour Universality
Violation (LFUV), opening the possibility for connections with the hints for NP in semi-leptonic B
decays and the anomalous magnetic moments of the muon and electron [15–25].

2. Setup

In this work we consider a scenario which can lead to modifications in the processes discussed
so far: modified neutrino couplings to gauge bosons. We study this scenario in an EFT approach
assuming that the NP scale is above the EW scale as suggested by LHC[26, 27] and LEP [28]
searches. At the dimension-6 level, there is just one operator which modifies only the couplings of

neutrinos to gauge bosons [29, 30], L̄iγ
µτI LjH†i

↔
D

I

µH, with τI = (1,−σ1,−σ2,−σ3) where σi are
the Pauli matrices (it is the difference of the operators Q(1)

φ`
and Q(3)

φ`
in the basis of Ref. [30]). In

the following, we conveniently parametrize the effect of the Wilson coefficient of this operator in
such a way that the Feynman rules for the W and Z couplings with neutrinos become, respectively

−ig2√
2

¯̀
iγ
µPLνjWµ

(
δi j +

1
2
εi j

)
,

−ig2

2cW
ν̄iγ

µPLνjZµ
(
δi j + εi j

)
. (2)
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Figure 1: Measurements of Vus from τ decays, K → π`ν, K → µν/π → µν, and 0+ − 0+ transition using
CKM unitarity to convert Vud to Vus . The grey band shows the 68% CL posterior within the SM while
the orange band corresponds to the NP fit with non-zero values of εii . Accidentally, the posterior of Vus is
the same, independently of the theory input used for beta decays (to the numerical accuracy at which we
are working). The effect of εii on Vus within the NP fit is quite small except for the determination from
super-allowed beta decay.

As already outlined in the previous sections, we want to study whether modified neutrino cou-
plings could provide a valid explanation for the CAA anomaly. However, they directly and indirectly
modify other two important classes of physical observables: the EW observables measured with
high precision at LEP, Tevatron and LHC, and the low energy observables testing LFU. Correlated
effects may arise, and a global fit to all data is necessary to assess consistently the full impact of
our scenario. For a complete and detailed discussion on our global fit we refer the interested reader
to [31], while here we give a concise overview. Note that the non-diagonal elements of εi j in Eq. 2
will be safely neglected in what follows because of the very stringent constraints from radiative
lepton decays [32, 33] and since they enter only quadratically in flavour conserving processes.

We include the usual set of EW observables measured with high precision at LEP [34, 35].
The EW sector of the SM can be completely parametrized by 3 Lagrangian parameters and we
choose the set with the smallest experimental error: α, MZ and GF . Among these parameters,
only the determination of the latter [36] (which is determined with a very high precision from the
muon lifetime) is affected by the modification of the neutrino couplings in Eq. 2. Denoting GLF the
parameter appearing in the lagrangian, we find for the measured quantity

GF = GLF

(
1 +

1
2
εee +

1
2
εµµ

)
. (3)

As a consequence, in addition to the direct modifications of W and Z decay observables, most of
the observables in the EW sector are indirectly modified from the shift in GF .

In case the modified neutrino couplings violate lepton flavour universality (LFU), the low
energy observables testing LFU provide stringent constraints. Here, we have ratios ofW decays [37]
(W → `iνi/W → `jνj) wherewe included the latest ATLAS results [38], as well as of Kaon [39, 40],
pion [41] and tau decays (see Ref. [42] for a recent overview).
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For the determinations of Vus we consider semi-leptonic Kaon decays, VKµ3
us , the ratio between

Kaon and pion leptonic decays, VK/π
us , inclusive τ decays, Vτ

us, and superallowed beta decays, Vβ
us.

VK/π
us andVτ

us are not affected by modified neutrino couplings while one find the following relations
between the Lagrangian value, VLus, and the measured VKµ3

us and Vβ
us (including GF indirect effects)

|VKµ3
us | ' |VLus |

(
1 − 1

2
εee

)
, |Vβ

us | '
√

1 − |VL
ud
|2(1 − 1

2
εµµ)2 . (4)

3. Results and Conclusions

Our analysis is performed in a Bayesian framework using the HEPfit package [43]. Concerning
the parameters of the fit, for GF, α, αs, MZ, mt and mH we assume Gaussian priors, corresponding
to the current direct measurements or evaluations, whereas VLus and εii have flat priors. In Fig. 2 we
show the result of the fit for the two dimensional εii − εj j planes. The 68% and 95% C.L. contours
for the two scenarios for Vβ

us discussed above are shown. It is clear from the εee − εµµ plane, where
the largest deviation from SM can be found, that these regions do not overlap with the SM point
εii = 0, and that εee and εµµ possess an anti-correlation and an opposite sign. For a more direct
model comparison between the NP hypothesis and the SM we look at values of the Information
Criterion (IC) [44, 45], a quantity characterized by an estimate of the predictive accuracy of the
fitted model [46] and a penalty factor for its number of free parameters. Here we obtain: for the
SM, ICSM ' 93, compared to ICNP ' ICNP−NNC ' 76 for the two NP scenarios. In the vein of
Refs. [47, 48], this constitutes "very strong" evidence against the SM. In Fig. 1 we also show the
posterior for Vus and the value extracted from super-allowed beta decay using the parameters fitted.
This result shows that current data clearly favours the NP hypothesis, exclude conventional models
with right-handed neutrinos leading to necessary destructive interference [49–57] and promote the
search for NP models as the ones presented in Refs. [58, 59].

��

0 1. × 10-3 3. × 10-3
-5. × 10-3

0

5. × 10-3

��

-4. × 10-3 -2. × 10-3 0

0

1. × 10-3

2. × 10-3

3. × 10-3

� SM

68% C.L

95% C.L

NNC 68% C.L

NNC 95% C.L

��

-4. × 10-3-2. × 10-3 0

-5. × 10-3

0

5. × 10-3

Figure 2: Result of the Global Fit using the estimates for Vβ
us with and without NNC. The 2-D fit (68% and

95% C.L) for εii − εj j are shown.
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