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1 Introduction

The Standard Model of particle physics (SM) [1, 2] is a remarkably effective theory, able to describe
the experimental observations made thus far in high energy physics with unprecedented precision
and completeness. Despite its success however, this model fails to explain several observations like
the baryon asymmetry and the presence of dark matter, which inspires searches for extensions to the
SM. The study of the recently discovered [3–5] Higgs boson [6–11], and the search for extensions
of the electroweak sector are two of the most active research sectors in the field.

Because of the flavour asymmetry associated to production and decay processes in each case,
the ability to classify jets originating from heavy-flavour (bottom and charm) quarks is important.
Heavy-flavour (HF) jets contain an open-bottom or open-charm hadron as a result of the fragmenta-
tion process. This hadron carries a large fraction of the initial parton momentum. HF hadrons also
have a sizeable lifetime, with a 𝑐𝜏 of ∼ 0.5 mm and ∼ 0.3 mm for bottom and charm, respectively.
Most of the HF hadrons produced in the fragmentation process undergo a decay process far enough
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from the primary interaction vertex (PV) to result in displaced tracks and their decay products can
be clustered in resolved secondary vertices (SV).

Traditionally, jet flavour classification has leveraged both fragmentation and lifetime properties
of HF hadrons. The discrimination power provided by single features is not adequate for a both
efficient and pure classification, but the collective behaviour of the tracks in the jet, as well as the
presence of a reconstructed secondary vertex, allows for a good performance of a combined algo-
rithm. For this reason, machine learning has long been used in the field of jet flavour classification,
starting from simple naive bayes classifiers [12, 13], to more complex and modern models like
shallow neural networks [14, 15], or tree ensembles [14].

More recently, simple dense deep neural networks [16] have been successfully employed for this
classification task alongside recurrent neural networks (LSTM) [17], outperforming previous clas-
sifiers. The ATLAS RNN algorithm [18], which is based on a recurrent neural network, processes
as a sequence a small number of selected high purity charged particle tracks associated with the jet,
sorted by their impact parameter. It exceeds the performance of the IP3D algorithm [15], which
considers the same inputs, but does not fully take into account the correlations between the tracks.

Within CMS, the DNN based b-tagger DeepCSV [19] has been used as the baseline reference for
b-tagging performance for quite a while. DeepCSV is a fully connected neural network consisting
of 5 layers with 100 nodes each using high level features of selected tracks and vertices as input.
In contrast with the ATLAS RNN tagger, DeepCSV combines properties from selected tracks and
secondary vertices directly, but does not employ sequence processing.

The common feature between these two approaches, however, is that both models use only a
small subset of the charged jet constituents that pass stringent quality criteria in order to provide
the cleanest and simplest environment possible for the classifier to perform its task.

A stringent selection comes with information loss and therefore potential performance degra-
dation. It has recently been shown that architectures compressing and converting individual track
features to a latent space can overcome these limitations. The ATLAS Deep Sets b-tagging algo-
rithm [20] relying on the idea of Deep Sets [21], where the features of the input tracks are transformed
into a latent space representation before being combined by a simple per-feature sum, has been shown
to have similar performance as the RNN approach with reduced training and inference time given
the same inputs. Studies on relaxing the input selection criteria on the tracks show a significant gain.

In this paper, we describe DeepJet, a new network architecture that does not rely on a selection
of the jet constituents and thus overcomes the previous limitations on the purity and number of
inputs. In addition, DeepJet considers the full information of all jet constituents, charged and neutral
particles, secondary vertices, and global event variables simultaneously.

2 Setup

2.1 Training Samples

The DeepJet model is trained and tested using a sample of simulated anti k𝑇 [22] jets (with 𝑅 = 0.4)
drawn from a mix of QCD multĳet events and fully hadronic top-quark pair (𝑡𝑡) events, generated
with PYTHIA8 [23] and POWHEGv2 [24–27], respectively. In both samples the hadronization and
showering are performed using PYTHIA8. In order to apply the approach to a realistic reconstruction
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problem, GEANT4 [28] is used to simulate the response of the CMS Phase 1 detector [29, 30]
to the generated particles. The jet constituents are reconstructed using the Particle Flow (PF)
algorithm [31] within the CMS Phase 1 detector reconstruction algorithms [32]. The entire training
sample consists of roughly 130 million jets in total. This is then split into a training, a validation
and a testing sample in the ratio 0.765 : 0.135 : 0.1.

2.2 Labeling

The jets are labelled by ghost association [19]. In this approach the last instance of each generated
b and c hadron before the decay have their momentum scaled to a very small value, in order to carry
only directional information. These “ghosts” are then included among the particles to be clustered
by the jet algorithm. If a jet contains at least one b hadron, it is labeled a b jet. If the jet contains at
least one c hadron, and no b hadrons, it is labelled a c jet. Everything else is then labelled as a light
jet. The jets labelled as b jets are further sub-labelled into three categories: 𝑏𝑏 for jets containing
two b hadrons, 𝑏lept for jets containing b hadrons decaying leptonically, and 𝑏 for jets with b hadrons
decaying hadronically. The light jets are also sub-labelled into quark and gluon jets using the CMS
definition [33].

2.3 Input features

DeepJet uses approximately 650 input variables, divided into four categories: global variables,
charged PF candidate features, neutral PF candidate features, and SV features associated with the
jet. The global variables include jet-level information such as the jet kinematics, the number of
tracks in the jet, as well as the number of secondary vertices in the jets. Additionally, the global
variables also include the number of reconstructed primary vertices in the event, in order to help the
network learn the effect of multiple interactions per bunch crossing (pileup). The information related
to the charged PF candidates is summarised in 16 features of the first 25 candidates with respect to
their displacement significance. These features contain information on the track kinematics, track
fit quality, displacement, and displacement uncertainty with respect to the PV. Similarly, 6 features
of the leading 25 neutral candidates are provided to the network. Finally, up to 4 secondary vertices
are considered, each with 12 variables, such as the flight distance significance. A full list of the
variables used can be found in the appendix.

2.4 Preprocessing of features

Since the b-tagger is meant to generalise beyond the specific kinematic domain used for the training, it
is important to remove any flavour dependence on transverse momentum (pT), or pseudorapidity (𝜂)
to avoid the classifier leveraging those differences. During the data pre-processing, we downsample
each of the flavour classes in pT and 𝜂 such that they have the same shape as the 𝑏 jet class. Several
variables are also bounded within a physically well defined range. In case features of an object are
either not available or infinite, they are replaced with an appropriately chosen value for the specific
feature. The particle objects are ordered based on their assumed importance. Charged particle
candidates are ordered by impact parameter significance, while neutral candidates are ordered by
the shortest angular distance to a secondary vertex. If there is no secondary vertex in the jet, pT

ordering is used instead. Secondary vertices are sorted by flight distance significance.
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3 DeepJet

3.1 Architecture

The concept of DeepJet is to use low-level features from as many jet constituents as possible as
opposed to selecting a few that are well identified and reconstructed and exploiting higher level
features. The exact number of features and constituents can vary with experiment and use case, but
the all-inclusive concept remains the same. To process this large input space, a suitable architecture
is needed. An illustration of the DeepJet architecture can be seen in figure 1. In the first step,
an automatic feature engineering is performed for each constituent using convolutional branches
comprising 1x1 convolutional layers [34]. The filter size of 1x1 is chosen as inherently all candidates
should undergo the same feature transformation without taking into account the other constituents
in the jets, and a priori a specific class of physics objects should be treated in a consistent manner
independent of input ordering.1 Separate convolutional branches are used for vertices, charged
PF candidates and neutral PF candidates. The convolutional branches use a sequences of layers
with a decreasing number of filters, as this projects and compresses the features of each constituent
into a lower dimensional space. Each of the outputs are then fed into a dedicated recurrent layer
of the LSTM type. This treats the constituents as a sequence, following the order described in
section 2.4. In particular the LSTM nodes are well suited for dealing with the variable length
sequences of inputs, which occurs in jet physics. The charged candidate LSTM uses 150 nodes,
whereas the neutral LSTM and the secondary vertex LSTM each use 50 nodes. The three LSTM
outputs are concatenated with the global features of the jet and then fed into a fully connected layer
with 200 nodes, followed by 7 fully connected layers with 100 nodes each. Finally 6 outputs nodes
are integrated into the multi-classifier, allowing it to perform b-tagging, c-tagging and quark/gluon
tagging. Throughout the network ReLU [35] activation functions are used, except for the output
layer, where the softmax activation function is applied.

At the beginning of the network, and in between each layer, batch normalization [36] is
performed, and dropout [37] with a rate of 0.1 is applied for regularisation.

3.2 Training procedure

The neural network is trained using the Adam optimizer [38] with a learning rate of 3 · 10−4 for 65
epochs and a categorical cross entropy loss. The learning rate is also halved if the validation sample
loss stagnates for more than 10 epochs. After the first training epoch, the input batch normalization
layer is frozen. Possible over-training is monitored through the validation loss, which is mostly
dominated by medium pT jets, and additionally through ROC curves in different pT ranges. The
training is performed on an Nvidia GEFORCE GTX 1080 Ti GPU. With a training sample size of
roughly 130 million examples, the training convergence time is around 3 days.

4 Performance

4.1 Comparison with other b-tagging algorithms

The overall performance of DeepJet is compared to the CMS b-tagger DeepCSV, which is a multi-
classifier embedded in the CMS reconstruction framework, and which uses similar, but strongly

1This concept is closely related to the idea of Deep Sets [21].
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Figure 1. An illustration of the DeepJet architecture. Three seperate branches are used to process charged
candidates, neutral candidates and secondary vertices. The algorithm makes use of 1x1 convolutional layers
to perform automatic feature engineering for each class of jet constituents. The three RNN (LSTM) layers
combine the information for each sequence of constituents. Finally the full jet information is combined using
fully connected layers.
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Figure 2. Performance of the DeepJet and DeepCSV b-tagging algorithms on 𝑡𝑡 events with both top quarks
decaying hadronically. The jets are required to have pT > 30 GeV (left) and pT > 90 GeV (right). The
performance is shown for both b vs. c classification (dashed lines), and b vs. light (solid lines).

preselected, inputs along with additional high-level variables. The comparison is made on a fully
hadronic 𝑡𝑡 sample, as shown in figure 2. DeepJet performs significantly better than DeepCSV
with an efficiency2 increase of almost 20% at 10−3 misidentification probability3 for jets with pT

> 90 GeV.
The performance of the classifiers can also be compared on a set of multi-jet QCD events, which

allow accessing higher jet momenta. The inclusive results are shown in figure 3. A comparison for
different jet pT can be found in figure 4 for fixed light jet misidentification probabilities. In both
cases DeepJet shows an increasing performance gain, in particular for higher jet pT, presumably
exploiting the information contained in all constituents.

The multi-classifier nature of DeepJet and DeepCSV allows the models to also efficiently
perform c jet identification. Figure 5 shows that DeepJet outperforms DeepCSV also in this task.
In this case, both DeepCSV and DeepJet use a binary discriminator defined as 𝑃 (c)

𝑃 (c)+𝑃 (uds)+𝑃 (g) ,
where 𝑃(c), 𝑃(uds), and 𝑃(g) describe the classifier output for c, light quark (u, d and s quark),
and gluon jets, respectively.

2True Positive Rate.
3False Positive Rate.
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Figure 3. The performance of DeepJet and DeepCSV in three different jet pT ranges in QCD multĳet events.
The performance is shown for both b vs. c (dashed lines), and b vs. light (solid lines).

0 100 200 300 400 500 600 700 800
 [GeV]
t

p
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

b-
je

t e
ffi

ci
en

cy

QCD multijet events 

0.001 mistag
0.01 mistag
0.1 mistag

DeepJet

DeepCSV

Figure 4. Performance of DeepJet and DeepCSV as a function of jet pT. The efficiency for b jets is shown
for three different fixed light jet misidentification probabilities (mistag rates) using QCD multĳet events.
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Figure 5. Light vs. c jet classification performance of DeepJet and DeepCSV in fully hadronic 𝑡𝑡 events.

Finally, DeepJet can be used for quark/gluon discrimination. DeepJet is compared to the
“quark/gluon likelihood” [33], a binary quark/gluon classifier included in the CMS reconstruction
framework. For this purpose, the DeepJet output is also projected to a binary classifier, 𝑃 (uds)

𝑃 (uds)+𝑃 (g) .
Also here, a performance increase can be observed when employing the DeepJet model on a sample
consisting purely of light quark and gluon jets, as shown in figure 6. Moreover, given that a standard
quark/gluon classifier uses a binary approach, we expect a larger performance gain in scenarios
where gluon jets and light quark jets also need to be separated from heavy flavour jets.

The effects of multiple interactions per bunch crossing (pileup) can further degrade the b-
tagging performance. In figure 7 the b-tagging performance is shown as a function of number of
reconstructed primary vertices for both DeepJet and DeepCSV. Despite the use of more low purity
input in DeepJet, a similar level of performance degradation is observed in both algorithms when
increasing pileup.

4.2 Qualitative assessment of the performance gain source

Given that the architecture and the network inputs are changed simultaneously between DeepCSV
and DeepJet, two new network configurations are trained to assess the relative impact of these
changes to the performance. The first model, referred to as DeepCSV RNN, contains the same
inputs as DeepCSV, but its architecture is changed to mimic that of DeepJet, with a series of convo-
lutional layers feeding into a LSTM processing the list of inputs belonging to different tracks. The
second model uses the architecture of DeepCSV but uses the full input of DeepJet. The performance
of these models are compared with DeepCSV and DeepJet in figure 8 for inclusive 𝑡𝑡 events. Increas-
ing the number of inputs does not help much, when it is not complemented by a network structure
that allows efficient processing of the larger and less pure track set. However adopting the new archi-
tecture without increasing the input and removing the track selection also has limited gain. Similar
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Figure 6. Quark gluon discrimination performance of DeepJet compared to the CMS “quark-gluon likeli-
hood” method in a sample of pure light quark (uds) and gluon jets.
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using QCD multĳet events.
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improvements coming with similar preprocessing of unselected jet constituent inputs could be ob-
served in the Deep Set based tagger [20]. This qualitative statement also explains the additional gain
observed in DeepJet at high jet pT as the track selection was historically optimised for mild jet boosts.
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Figure 8. An interpolation between the DeepCSV tagger [19] and DeepJet.

The default DeepJet architecture is also compared to an adapted architecture employing the
Deep Set idea. In the DeepSet approach it is required to project the single objects into a high
dimensional feature space, whereas the DeepJet model compresses the features. To mimic DeepSet,
the DeepJet architecture is adapted as follows: the 1 × 1 convolutional branches are extended to
contain 100 filters, each, increasing the number of free parameters. The final layer of each branch is
enlarged further, with the charged branch being set to 256 filters, whereas the vertex and the neutral
branch are set to 128 filters. At the same time, the LSTM layers are replaced by a simple sum that
is evaluated independently for each convolutional branch, after which these sums are concatenated
and fed to a series of fully connected layers. Another comparison model is added that shows a
DeepJet model with the same enlarged convolutional structure as the DeepSet model, but keeping
the LSTM for aggregating the tracks.

As shown in figure 9, the performance of the Deep Set based architecture shows a slight
gain for b to c jet identification, but shows no significant difference with respect to the b to light
jet identification or the quark/gluon discrimination performance compared to the default DeepJet
architecture. The DeepJet model using enlarged convectional filters performs slightly better than
DeepSet, but like DeepSet, it projects the input objects into large features spaces, leading to increased
resource requirements for the subsequent LSTMs.
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Figure 9. Comparison of the DeepJet architecture, an adapted DeepJet architecture based on the Deep
Sets approach, and a DeepJet model with enlarged number of convolutional filters. Left: b jet identification
performance. Right: quark/gluon jet separation performance.

5 Conclusion

A multiclass flavour tagging algorithm, DeepJet, has been developed to exploit the full information
in a jet. The model was tested using CMS simulation. The model relies on low-level variables and
loose selection of the inputs, and it uses an architecture that can process these inputs in an efficient
manner. When compared with fully connected models using a smaller set of engineered features
a gain in performance is observed in all topologies of flavour tagging, in some cases exceeding a
two-fold efficiency gain for the same misidentification rate. The model goes beyond heavy flavour
tagging and performs quark-gluon discrimination as well. The applicability of the DeepJet approach
has been successfully extended in different directions, such as the construction of tagging algorithms
for exotic long lived particles [39].

DeepJet has been trained using the homonymous github package [40, 41], with a streamlined
training process and multi-threaded data access. The training set has been scraped from the
simulation data using [42], which contains an algorithmic description of all the variables used in
the training.
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A Appendices: Inputs

A.1 List of global variables

• Jet 𝑝𝑡

• Jet 𝜂
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• The number of charged particle flow candidates in the jet

• The number of neutral particle flow candidates in the jet

• The number of secondary vertices in the jet

• The number of primary vertices in the event

A.2 List of charged candidate variables

• Charged track 𝜂 relative to the jet axis

• Charged track 𝑝𝑡 relative to the jet axis

• Dot product of the jet and track momentum

• Dot product of the jet and track momentum divided by the magnitude of the jet momentum

• Δ𝑅 between the jet axis and the track

• The track 2D impact parameter value

• The track 2D impact parameter significance

• The track 3D impact parameter value

• The track 3D impact parameter significance

• The track distance to the jet axis

• Fraction of the jet momentum carried by the track.

• Δ𝑅 between the track and the closest secondary vertex

• An integer flag that indicate whether the track was used in the primary vertex fit.

• The charged candidates PUPPI weight

• 𝜒2 of the charged track fit.

• A integer flag which indicate the quality of the fitted track, based on number of detector hits
used for the reconstruction as well as the overall 𝜒2 of the charged track fit.

A.3 List of neutral candidate variables

• Fraction of the jet momentum carried by the neutral candidate

• Δ𝑅 between the jet axis and the neutral candidate

• A integer flag indicating whether the neutral candidate is a photon.

• Fraction of the neutral candidate energy deposited in the hadronic calorimeter.

• Δ𝑅 between the neutral candidate and the closest secondary vertex

• The neutral candidates PUPPI weight
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A.4 List of secondary vertex variables

• Secondary vertex 𝑝𝑡

• Δ𝑅 between the jet axis and the secondary vertex

• Secondary vertex mass

• Number of tracks in the secondary vertex

• 𝜒2 of the secondary vertex fit

• Reduced 𝜒2 of the secondary vertex fit

• The secondary vertex 2D impact parameter value

• The secondary vertex 2D impact parameter significance

• The secondary vertex 3D impact parameter value

• The secondary vertex 3D impact parameter significance

• Cosine of the angle between the secondary vertex flight direction and the direction of the
secondary vertex momentum.

• Ratio of the secondary vertex energy to the jet energy
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