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Abstract
The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experi-

ment that aims to measure CP -violation in the neutrino sector as part of a wider physics program.

A deep learning approach based on a convolutional neural network has been developed to provide

highly efficient and pure selections of electron neutrino and muon neutrino charged-current inter-

actions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds

85% (90%) for reconstructed neutrino energies between 2-5GeV. The muon neutrino (antineutrino)

event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) effi-

ciency for reconstructed neutrino energies above 2GeV. When considering all electron neutrino and

antineutrino interactions as signal, a selection purity of 90% is achieved. These event selections are

critical to maximize the sensitivity of the experiment to CP -violating effects.

I. INTRODUCTION TO DUNE

Over the last twenty years neutrino oscillations [1, 2] have become well-established [3–

10] and the field is moving into the precision measurement era. The PMNS [1, 2] neutrino

oscillation formalism describes observed data with six fundamental parameters. These are

three angles describing the rotation between the neutrino mass and flavor eigenstates, two

mass splittings (differences between the squared masses of the neutrino mass states), and

CP -violating phase, δCP . If sin (δCP ) is non-zero then the vacuum oscillation probabilities

of neutrinos and antineutrinos will be different. DUNE [11] is a next-generation neutrino

oscillation experiment with a primary scientific goal of making precise measurements of

the parameters governing long-baseline neutrino oscillation. A particular priority is the

observation of CP -violation in the neutrino sector. In DUNE, a muon neutrino (νµ)- or

muon antineutrino (ν̄µ)-dominated beam will be produced by the Long-Baseline Neutrino

Facility (LBNF) beamline and characterized by a near detector (ND) at Fermilab before

the neutrinos travel 1285 km to the Sanford Underground Research Facility (SURF). The

far detector (FD) will consist of four 10 kt (fiducial) liquid argon time projection chamber

(LArTPC) detectors. Oscillation probabilities are inferred from comparison of the observed

∗ E-Mail: saul.alonso.monsalve@cern.ch
† E-Mail leigh.howard.whitehead@cern.ch
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neutrino spectra at the near and far detectors which are used to constrain values of the

neutrino oscillation parameters.

A. CP -violation measurement

Symmetries under charge conjugation and parity inversion are both maximally violated

by the weak interaction. Their combined operation has been shown to be violated, to a small

degree, by quark mixing processes [12, 13]. The neutrino oscillation formalism allows for an

analogous process in lepton flavor mixing which can be measured with neutrino oscillations.

DUNE is sensitive to four neutrino oscillation parameters, namely ∆m2
31, θ23, θ13 and δCP ,

which can be measured using four data samples: two for neutrinos and two for antineutrinos.

Two beam configurations with opposite polarities of the magnetic focusing horns are used

to produce these samples: “forward horn current” (FHC) mode produces a predominantly

νµ beam while a primarily ν̄µ beam is produced in “reverse horn current” (RHC) mode. The

FD data used in the oscillation analysis measure the “disappearance” channels (i.e. νµ → νµ

and ν̄µ → ν̄µ), which are primarily sensitive to |∆m2
31| and sin2 2θ23, and the “appearance”

channels (i.e. νµ → νe and ν̄µ → ν̄e), which are sensitive to all four parameters, including the

sign of ∆m2
31. In all of these samples, interactions where the neutrinos scatter via charged-

current (CC) exchange off the nuclei in the far detector are selected. In a CC interaction, the

final state includes a charged lepton with the same flavor as the incoming neutrino and one

or more hadrons, depending on the details of the interaction. Therefore, a critical aspect of

event selection is the ability to identify the flavor of the final-state lepton. Thus it is key to

be able to efficiently identify the signal (i.e. CC νµ, CC ν̄µ, CC νe and CC ν̄e) interactions

and have a powerful rejection of background events. At the energies relevant to the DUNE

oscillation analysis, a final-state muon produces a long, straight track in the detector, while

a final-state electron produces an electromagnetic (EM) shower. Examples of signal CC νe

and CC νµ interactions are shown in Figs. 2 and 3a, respectively.

The main background to the CC νµ and CC ν̄µ event selections are neutral current (NC)

interactions with charged pions (π±) in the final state that can mimic the µ±, an example

of which is shown in Fig. 3b. Neutral current interactions with a final-state π0 meson, such

as the one shown in Fig. 3c, where the photons from π0 decay may mimic the EM shower

from an electron, form the primary reducible background to the CC νe and CC ν̄e event
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selections. A small fraction of electron neutrinos are intrinsic to the beam (and thus are

not the result of neutrino oscillations). These events form a background for the oscillation

analysis as they are indistinguishable from CC νe appearance events. Once the four samples

have been selected and the neutrino energy has been reconstructed, a fit is performed to

the reconstructed neutrino energy distributions in the four samples to extract the neutrino

oscillation parameters θ13, θ23, ∆m2
31, and δCP . This fit accounts for the effects of systematic

uncertainties, including the constraints on those uncertainties from fits to ND data. Figure 1

shows the appearance samples and how they are expected to vary with the true value of

δCP , for a data collection period of 3.5 years staged running in both FHC and RHC beam

modes. Details of the DUNE staging plan, assumed oscillation parameters and the oscillation

analysis are provided in [14].
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FIG. 1: Reconstructed energy distribution of νe and ν̄e CC-like events selected by the

convolutional neural network algorithm (CVN) assuming 3.5 years (staged) running in the

neutrino-beam mode (a) and antineutrino-beam mode (b), for a total of seven years

(staged) exposure. The plots assume normal mass ordering and include curves for δCP =

-π/2, 0, and π/2. Background from νµ-CC, ντ -CC, intrinsic νe-CC, and NC interactions

are shown as stacked, filled histograms. Figure reproduced from Ref. [14].

16



B. DUNE Far Detector

Neutrinos are detected via their interaction products i.e. observation of the leptons and

hadrons that are produced when the neutrinos interact in the detector. In the single-phase

LArTPC design that will be used for the first DUNE FD module, three wire readout planes

collect the ionization charge that is generated when charged particles traverse the liquid

argon volume. The ionization charge drifts in a constant electric field to the readout planes

and the drift time provides a third dimension of position information, giving rise to the name

“time projection chamber.” The position of the charge observed in each of the three planes

is combined with the drift time to create three views of each neutrino interaction. The wires

that form the planes are separated by approximately 5mm giving the FD a fine-grained

sampling of the neutrino interaction products. The electronic signals from the wires are

sampled at a rate of 2MHz, giving a similar effective spatial resolution in the time direction.

Two of the wire planes are induction planes, biased to be transparent to the drifting electrons,

such that they induce net-zero fluctuation in the wire current as they pass the wire plane.

The third view is called the collection plane as it actually collects the drifting electrons.

The four DUNE FD modules may not all have identical designs, but they will all produce

similar images of the neutrino interactions, so the performance of the single-phase design is

used throughout this article. Other potential designs must have at least the same sampling

capabilities as the single-phase design, if not better, to be considered.

C. DUNE Simulation and Reconstruction

Neutrino interactions in the far detector are simulated within the LArSoft [15] framework,

using the neutrino flux from a GEANT4-based [16] simulation of the LBNF beamline, the

GENIE [17] neutrino interaction generator (version 2.12.10), and a GEANT4-based (version

10.3.01) detector simulation. Detector response to, and readout of, the ionization charge

is also simulated in LArSoft. Raw detector waveforms are processed to remove the impact

of the electric field and electronics response; this process is referred to as “deconvolution”

and the resulting deconvolved waveforms contain calibrated charge information. Current

fluctuations in the wires above threshold, or “hits”, are parameterized by Gaussian functions

fit to deconvolved waveforms around local maxima. A reconstruction algorithm is used
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to cluster hits linked in space and time into groups associated with a particular physical

object, such as a track or shower. More details of the DUNE simulation and reconstruction

are available in Ref. [11].

The energy of the incoming neutrino in CC events is estimated by a dedicated algorithm

that adds the reconstructed lepton and hadronic energies, using particles reconstructed by

Pandora [18, 19]. Pandora uses a multi-algorithm approach to reconstruct all the visible

particles produced in neutrino interactions. It provides a hierarchy of reconstructed particles,

representing particles produced at the interaction vertex and their decays or subsequent

interactions. If the event is selected as CC νµ, the neutrino energy is estimated as the sum

of the energy of the longest reconstructed track and the hadronic energy, where the energy

of the longest reconstructed track is estimated from its range if the track is contained in the

detector and from multiple Coulomb scattering if the track exits the detector. The hadronic

energy is estimated from the energy associated with reconstructed hits that are not in the

longest track. If the event is selected as CC νe, the energy of the neutrino is estimated as

the sum of the energy of the reconstructed shower with the highest energy and the hadronic

energy. In all cases, simulation-based corrections for missing energy (due to undetected

particles, reconstruction errors, etc) are applied.

II. CVN NEUTRINO INTERACTION CLASSIFIER

The DUNE Convolutional Visual Network (CVN) classifies neutrino interactions in the

DUNE FD through image recognition techniques. In general terms it is a convolutional

neural network (CNN) [20]. The main feature of CNNs is that they apply a series of filters

(using convolutions, hence the name of the CNN) to the images to extract features that allow

the CNN to classify the images [21]. Each of the filters - also known as kernels - consists of

a set of values that are learnt by the CNN through the training process. CNNs are typically

deep neural networks that consist of many convolutional layers, with the output from one

convolutional layer forming the input to the next. Similar techniques have been demon-

strated to outperform traditional event reconstruction-based methods to classify neutrino

interactions [22, 23].

Convolutional neural networks make use of learned kernel operations, usually followed by

spatial pooling, applied in sequence to extract increasingly powerful and abstract features.
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In domains such as natural image analysis where important features of the data are locally

spatially correlated they now greatly outperform previous state-of-the-art techniques that

relied on manual feature extraction and simpler Machine Learning methods [24–27]. Re-

cently they have proven to also be appropriate for the analysis of signals in particle physics

detectors [28–30]. They have found particular success in neutrino experiments where signals

can arrive at any location in large uniform detector volumes [22, 23, 31], and the char-

acteristic translational invariance of CNN methods represents an advantage rather than a

challenge.

A. Inputs to the CVN

Figure 4 shows that there are three inputs to the CVN. The three inputs are 500×500

pixel images of simulated neutrino interactions with one image produced for each of the

three readout views of the LArTPC. The images are produced at the hit-level stage of the

reconstruction algorithms and are hence independent of any potential errors in high-level

reconstruction such as clustering, track-finding and shower reconstruction. The images are

produced in (wire number, time) coordinates, where the wire number is simply the wire

on which the reconstructed hit was detected, and the time is the interval from when the

interaction happened to when the hit was detected on that wire (given by the peak time

of the hit). The color of the pixel gives the hit charge where white shows that no hit was

recorded for that pixel. Each pixel represents approximately 5mm in the wire coordinate

due to the spatial separation of the wires in the readout plane, and the time coordinate is

down-sampled to approximately correspond to the same 5mm size after consideration of the

electron drift velocity within the LArTPC.

Convolutional neural networks operate on fixed-size images, hence the neutrino interac-

tion images must all be of a fixed size. To facilitate this, interactions that span more than

500 wires in a given view are cropped to fit in 500× 500 pixel images. The steps below are

used to find the 500 pixels in the wire coordinate:

1. Integrate the charge on each wire.

2. Scan from low wire number, where low wire number corresponds to the upstream end

of the detector, to high wire number and check the following 20 wires for recorded
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signals. If fewer than five of the 20 subsequent wires have no signals then this wire is

chosen as the first column of the image.

3. If no wire satisfies 2., choose the continuous 500 wire range that contains the most

deposited charge.

For the time axis, a window of 3200µs centred on the mean time of the hits is formed and

divided into 500 bins that fill the 500 pixels. As such, no analogous region-of-interest search

is performed.

In order to ensure high quality images of the interactions, images were only produced for

events that have their true neutrino interaction vertex within the detector fiducial volume

described in Ref. [14]. Once the images have been produced, any events that contain any

view with fewer than 10 non-zero pixels are removed in order to discount empty and almost

empty images from the training and testing datasets. Figure 2 shows a signal CC νe event

as seen in the three detector readout views. Figure 3a shows a signal CC νµ interaction, and

example NC background images containing a long π± track and a π0 are given in Figs. 3b

and 3c, respectively.

The number of pixels in the images was chosen to maximize the size of the image whilst

ensuring that the memory usage during training and inference of the network was manage-

able. The spatial dimension of the images covers 2.5m, meaning any tracks with projected

lengths in the readout planes above 2.5m will not be fully contained within the image, as

is the case for the majority of muon tracks, including the one shown in Fig. 3a. However,

the key details for the neutrino interaction classification come from the region surround-

ing the vertex, so this choice of image size does not significantly impact the classification

performance.

B. Network architecture

A simple overview of the architecture is shown in Fig. 4. The detailed architecture of

the CVN is based on the 34-layer version of the SE-ResNet architecture, which consists of

a standard ResNet (Residual neural network) architecture [32, 33] along with Squeeze-and-

Excitation blocks [34]. Residual neural networks allow the nth layer access to the output

of both the (n − 1)th layer and the (n − k)th layer via a residual connection, where k is a
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(a) View 0: Induction Plane. (b) View 1: Induction Plane. (c) View 2: Collection Plane.

FIG. 2: A 2.2GeV CC νe interaction shown in the three readout views of the DUNE

LArTPCs showing the characteristic electromagnetic shower topology. The horizontal axis

shows the wire number of the readout plane and the vertical axis shows time. The color

scale shows the charge of the energy deposits on the wires.

Wi r e

T
i

m
e

Char ge

DUNE Simulation

(a) 1.6GeV CC νµ. (b) 2.2GeV NC 1π+. (c) 2.4GeV NC 1π0.

FIG. 3: Three interactions shown in the collection view: a) a signal CC νµ interaction, b)

an NC interaction with a long π+ track and c) an NC interaction with one π0. The NC

interactions shown in b) and c) form the primary backgrounds to CC νµ and CC νe event

identification, respectively.

positive integer ≥ 2. This is an important feature for the DUNE CVN as it allows the fine-

grained detail of a LArTPC encoded in the input images to be propagated further into the

CVN than would be possible using a traditional CNN such as the GoogLeNet (also called

Inception v1) [35] inspired network used by NOvA [22].

The DUNE CVN differs from the architectures of other residual networks discussed in
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the literature [32, 33] in the following ways:

• The input and the shallower layers of the CVN are forked into three branches - one

for each view - to let the model learn parameters from each individual view (see

section IIA for more details). The outputs of the three branches are merged together

by using a concatenation layer that works as input for the deeper layers of the model,

as shown in Fig. 4.

• The CVN returns scores for each event through seven individual outputs (see sec-

tion IIC and Fig. 4 for more details). Since the deeper layers of the CVN contain

the model parameters1 that are simultaneously in charge of the classification for the

different outputs of the network, some outputs might take advantage of the learning

process of other outputs to improve their performance. Also, a multi-output network

lets us weight the outputs in order to make the network pay more attention to some

specific outputs (see section IID for more details).

• Each of the three branches (blocks 1-2, the shallower layers of the architecture shown

in Fig. 4) consists of 7 convolutional layers, while the deeper layers (blocks 3-N in

Fig. 4) consist of 29 convolutional layers, making a total of 50 convolutional layers for

the entire network.

C. Outputs from the CVN

There are seven outputs from the CVN, each consisting of a number of neurons with

values vi for i = 1 → n where n is the number of neurons. The sum of neuron values

for each output (except for the last output since it consists of a single neuron) is given by∑n
i=1 vi = 1 such that each value of a neuron within a single output gives a fractional score

that can be used to classify images.

The first output below, which classifies the flavor of the neutrino interaction, is the

primary output and it is the only one used in the analysis presented in the DUNE TDR [11,

14]. The other outputs are included in the architecture for potential use in future analyses.

1 Model parameters: coefficients of the model learnt during the training stage, also known as weights.
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FIG. 4: Simplified diagram of the DUNE CVN architecture.

1. The 1st output (4 neurons) returns scores for each event to be one of the following

flavors: CC νµ, CC νe, CC ντ and NC. This is the primary output of the network used

for the main goal of neutrino interaction flavor classification.

2. The 2nd output2 (4 neurons) returns scores for each event to be one of the following

interaction types: CC quasi-elastic (CC QE), CC resonant (CC Res), CC deep inelastic

(CC DIS) and CC other.

3. The 3rd output (4 neurons), returns scores for each event to contain the following

number of protons: 0, 1, 2, >2.

4. The 4th output (4 neurons), returns scores for each event to contain the following

number of charged pions: 0, 1, 2, >2.

2 Outputs to ‘sub-classify’ CC events. NC events are not considered for the training of this output.
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5. The 5th output (4 neurons), returns scores for each event to contain the following

number of neutral pions: 0, 1, 2, >2.

6. The 6th output (4 neurons), returns scores for each event to contain the following

number of neutrons: 0, 1, 2, >2.

7. The 7th output2 (1 neuron) returns the score for each event to be a neutrino as opposed

to an antineutrino.

Outputs 2, 6 and 7 are not considered in the analyses presented here and are hence not

further discussed, but they are included in the training and the overall loss calculations.

The prediction of an event as a given underlying (anti)neutrino interaction is highly model-

dependent and not as important as the number of final-state particles that can be observed in

the detector, hence output 2 is not used. The neutron counting is very difficult since it is hard

to define whether a neutron interaction would be visible and identifiable in the detector, so

this output will not be used until it has been shown to work reliably. Finally, the antineutrino

vs neutrino output is not likely to provide highly efficient or pure event selections since there

is only a weak dependence on the event observables to try to differentiate neutrinos and

antineutrinos.

D. Training the CVN

The CVN3 was trained using Python 3.5.2 and Keras 2.2.4 [36] on top of Tensorflow

1.12.0 [37], on eight NVIDIA Tesla V100 GPUs. Stochastic Gradient Descent (SGD) is

used as the optimizer, with a mini-batch size of 64 events (192 views), a learning rate of 0.1

(divided by 10 when the error plateaus, as suggested in [32]), a weight decay of 0.0001, and a

momentum of 0.9. The network was trained/validated/tested on 3,212,351 events (9,637,053

images/views), consisting of 27% CC νµ, 27% CC νe, 6% CC ντ and 40% NC, from a single

Monte Carlo sample as follows: training (∼ 98%), validation (∼ 1%) and test (∼ 1%). The

sample of events is an MC prediction for the DUNE unoscillated FD neutrino event rate

(flux times cross section) distribution in FHC beam mode as described in Ref. [11]. Samples

where the input fluxes to the MC are “fully oscillated” (i.e. all νµ are replaced with νe, or

3 A small data release of the code is available at https://github.com/DUNE/dune-cvn.
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all νµ are replaced with ντ ) are also used (these samples are usually weighted by oscillation

probabilities and combined to produce oscillated FD event rate predictions). Analogous

versions of each input sample are used for the RHC beam mode. For training purposes all

CC νe events were considered signal since the intrinsic beam νe are indistinguishable from

signal (appearance) νe at any given energy. The results presented in the following sections

use a statistically independent Monte Carlo sample.

The individual loss functions for the different outputs that were used for training the

model, as well as the overall loss function, are given below4:

• Neutrino flavor ID, interaction type5, proton count, charged pion count, neutral pion

count, neutron count loss functions (J1, J2, J3, J4, J5, and J6, respectively): categorical

cross-entropy, the loss function needed for multi-class classification.

J1 = J2 = J3 = J4 = J5 = J6 = − 1

m

m∑
i=1

c∑
j=1

y
(i)
j log ŷ

(i)
j (1)

• Neutrino/antineutrino ID loss function5 (J7): binary cross-entropy, the loss function

needed for binary classification.

J7 = − 1

m

m∑
i=1

y(i) log(ŷ(i)) + (1− y(i)) log(1− ŷ(i)) (2)

• Overall loss function:

J =
o∑
i=1

wiJi = w1J1 + w2J2 + w3J3 + w4J4 + w5J5 + w6J6 + w7J7 (3)

• Where:

– y(k): true values of a specific output corresponding to the k-th training example.

– ŷ(k): predicted values of a specific output corresponding to the k-th training

example.

– m: number of training examples {X(1), y(1)}, {X(2), y(2)}, ..., {X(m), y(m)}, where

X(k) means the input readout views corresponding to the kth training example.

4 Generally, ak represents the kth element of some vector a.
5 A mask is applied to only consider CC events during the loss computation.
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– c: number of classes/neurons corresponding to a specific output y1, y2, ... , yc.

– o: number of outputs of the network; the CVN has seven different outputs.

– w: output weights; vector of length o.

The CVN was trained for 15 epochs6 for ∼4.5 days (7 hours per epoch), and similar

classification performance was obtained for the training and test samples. Figure 5 shows

the loss and accuracy training and validation results for the four main CVN outputs, where

accuracy is defined as the fraction of events correctly classified for a given output. The

red vertical lines show the epoch at which the CVN weights were taken for the model used

in the presented analysis. After that epoch, the validation accuracy remains constant and

small signs of overtraining begin to emerge (a small divergence of the training and validation

accuracy curves). However, at epoch 10 the difference between training and validation is

still negligible.

E. Feature maps

To study how the CVN is classifying the interactions it is advisable to look at feature

maps at different points in the network architecture. An example is shown in Fig. 6 for

a CC ν̄e interaction, demonstrating the position from which two sets of feature maps are

viewed within the network. The set of images in the top right shows the response of the

filters in the first convolutional layer to the input electromagnetic shower image, where

red shows a high response to a given filter, and yellow shows a low response. Across the

different particle types and event topologies, the filters respond to different components in

the images. The 512 feature maps from the final convolutional layer, shown at the bottom

of Fig. 6 for the aforementioned CC ν̄e interaction, are much more abstract in appearance

since the input images have passed through many convolutions and have hence effectively

been down-sampled to a size of 16×16 pixels from their original 500×500 pixel size.

6 Epoch: one forward pass and one backward pass of all the training examples. In other words, an epoch

is one pass over the entire dataset.
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III. NEUTRINO FLAVOR IDENTIFICATION PERFORMANCE

The primary goal of the CVN is to accurately identify CC νe, CC ν̄e, CC νµ and CC ν̄µ

interactions for the selection of the samples required for the neutrino oscillation analysis.

The values of the neurons in the flavor output give the score for each neutrino interaction to

be one of the neutrino flavors. The CVN CC νe score distribution, P (νe), is shown for the

FHC beam mode (left) and RHC (right) in Fig. 7 for all interactions with a reconstructed

event vertex within the FD fiducial volume, as described in Ref. [14]. The contributions

from neutrino and antineutrino components for each flavor are combined since the detector

can not easily distinguish between them. Very clear separation is seen between the signal

(CC νe and CC ν̄e) interactions and the background interactions including those from NC

ν and NC ν̄ events. The beam CC νe background is seen to peak in the same way as the
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FIG. 5: Loss and accuracy results for training (dashed lines) and validation (solid lines),

given for the four main CVN outputs. The red vertical lines guide the eye to the network

results at epoch 10, after which flavor classification performance of the validation sample

does not improve.
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interaction. The top box shows the output from the first convolutional layer of the first

branch of the network: 64 convolution kernels of size 7x7 each are applied to the image,

resulting in 64 different feature maps. The bottom box shows the 512 feature maps

produced by the final convolutional layer.
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FIG. 7: The number of events as a function of the CVN CC νe classification score shown

for FHC (left) and RHC (right) beam modes. For simplicity, neutrino and antineutrino

interactions have been combined within each histogram category. A log scale is used on the

y-axis, normalized to 3.5 years of staged running, and the arrows denote the cut values

applied for the DUNE TDR analyses [11].

CC νe signal, which is expected since both arise from the same type of neutrino interaction.

Figure 8 shows the corresponding plots for P (νµ) for FHC and RHC beam modes for the

same set of interactions. In all four histograms the signal interactions are peaked closely

near score values of unity and the backgrounds lie close to zero score, as expected.

The CC νe event selection criteria are chosen to maximize the oscillation analysis sensi-

tivity to CP -violation; i.e.: significance of the determination that sin (δCP ) 6= 0 [14]. The

optimization was performed using a simple scan of cuts on P (νe) for a single true value of

δCP . CP -violation sensitivity does not strongly depend on the selection criterion for P (νµ)

so this cut was chosen by inspection of Fig. 8. The resulting requirements are P (νe) > 0.85

for an interaction to be selected as a CC νe candidate and P (νµ) > 0.5 for an interaction

to be selected as a CC νµ candidate. These cut values are represented by the red arrows in

Figs. 7 and 8. Since all of the flavor classification scores must sum to one, these two samples

are mutually exclusive. The same CVN and selection criteria are used for both FHC and

RHC event selections.

Figure 9 shows the efficiency as a function of reconstructed energy (under the electron
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FIG. 8: The number of events as a function of the CVN CC νµ classification score shown

for FHC (left) and RHC (right) beam modes. For simplicity, neutrino and antineutrino

interactions have been combined within each histogram category. Backgrounds from CC νe

interactions are negligible and not shown. A log scale is used on the y-axis, normalized to

3.5 years of staged running, and the arrows denote the cut values applied for the DUNE

TDR analyses [11].

neutrino hypothesis, as discussed in Section IC) for the CC νe and CC ν̄e event selections.

The efficiency for the CVN is shown compared to the predicted efficiency used in the DUNE

Conceptual Design Report (CDR) [38], demonstrating that, across the most important part

of the flux distribution (less than 5GeV), the performance can exceed the CDR assump-

tion. The efficiency in FHC (RHC) mode peaks at 90% (94%) and exceeds 85% (90%)

for reconstructed neutrino energies between 2-5GeV. The CDR analysis was based on a

fast simulation that employed a parameterized detector response based on GEANT4 single

particle simulations, and a classification scheme that classified events based on the longest

muon/charged pion track, or the largest EM shower if no qualifying track was present. The

efficiencies at low energy were tuned to hand scan results as a function of lepton energy and

event inelasticity. Figure 10 shows the corresponding selection efficiency for the CC νµ event

selection. The efficiency has a maximum efficiency of 96% (97%) and exceeds 90% (95%)

efficiency for reconstructed neutrino energies above 2GeV for the FHC (RHC) beam mode.

The optimized cut values permit a larger background component than the CDR analysis
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FIG. 9: The CC νe selection efficiency for FHC-mode (left) and RHC-mode (right)

simulation with the criterion P (νe) > 0.85. The solid (dashed) lines show results from the

CVN (CDR) for signal CC νe and CC ν̄e events in black and NC background interactions

in red. The cyan shaded region shows the oscillated flux to illustrate the most important

regions of the energy distribution.

but the overall performance of the selection is increased due to the significantly improved

signal efficiency. Considering all electron neutrino interactions (both appeared and beam

background CC νe and CC ν̄e events) as signal interactions, the CVN has a selection purity

of 91% (89%) for the FHC (RHC) beam mode, assuming the normal neutrino mass ordering

and δCP = 0 [14].

IV. EXCLUSIVE FINAL STATE RESULTS

The CVN has three outputs that count the number of final-state particles for the following

species: protons, charged pions, and neutral pions. Neutrino interactions with different final-

state particles can have different energy resolutions and systematic uncertainties depending

on the complexity and particle multiplicity of the interaction. It may be possible to improve

the oscillation sensitivity of the analysis by identifying subsamples of events with specific

interaction topologies and very good energy resolution.
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FIG. 10: The CC νµ selection efficiency for FHC-mode (left) and RHC-mode (right)

simulation with the criterion P (νµ) > 0.5. The solid (dashed) lines show results from the

CVN (CDR) for signal CC νµ and CC ν̄µ events in black and NC background interactions

in red. The cyan shaded region shows the oscillated flux to illustrate the most important

regions of the energy distribution.

The individual output scores from the CVN can be multiplied together to give compound

scores for exclusive selections. For example, the left plot in Fig. 11 shows the combined

score for an event to be CC νµ with only a single proton in the final-state hadronic system,

formed by the product

P (CCνµ 1p) = P (νµ)P (1 p)P
(
0π±

)
P
(
0π0
)
. (4)

Similarly, the right plot of Fig. 11 shows NC1π0 score, which contains only a single visible

π0 meson in the final state, defined as:

P
(
NC 1π0

)
= P (NC)P (0p)P

(
0π±

)
P
(
1π0
)
. (5)

The background and signal distributions, closely peaked toward 0 and 1 respectively, demon-

strate that the efficient selection of exclusive final states will be possible with the DUNE

CVN technique. However, it is possible that the CVN is keying in on features of the model

that are not well-supported by data (e.g. kinematic distributions of particles in the hadronic

shower) rather than well-supported features, like the individual particle energy deposition
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FIG. 11: The CC νµ 1 proton (left) and NC 1π0 (right) combined score distributions from

the CVN. In both cases the number of other particles is required to be zero. All events

that do not fit the signal description comprise the all backgrounds histograms. The

histograms are shown in the expected relative fractions but the overall scale is arbitrary.

patterns. Studies of potential bias from selections based on these classifiers are required

before they can be used to generate analysis samples. Provided that the particle counting

outputs can be shown to work in a robust manner for simulations and experimental data,

these detailed selections have the potential to significantly improve the scientific output of

DUNE FD data.

V. ROBUSTNESS

A common concern about the applications of deep learning in high energy physics is

the difference in performance between data and simulation. A straightforward check of the

CVN robustness is to inspect plots of the CVN efficiency as a function of various kinematic

quantities. More advanced studies could be imagined where the underlying input physics

model is changed to produce alternate input samples for training and testing purposes.

Studies of this nature are beyond the scope of this paper, but should be part of the validation

scheme for any deep learning discriminant used in eventual analyses of DUNE data.

To be considered well-behaved, the CVN flavor identification should be sensitive to the
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presence of a visible charged lepton and not highly dependent on the details of the hadronic

system, which could be poorly modeled. A visible charged lepton requires that the track or

shower that it produces has clearly distinguishable features that are not masked by the pres-

ence of many overlapping energy depositions from particles from the hadronic shower. Fur-

thermore, background interactions selected by the CVN should be those containing charged

pions (for CC νµ) or neutral pions (for CC νe) that mimic the charged leptons in the signal

interactions. Plots of selection efficiency for signal and background interactions were gen-

erated as a function of a variety of true and reconstructed quantities, several of which are

highlighted here.

Figure 12 shows the variation of the signal selection efficiency as a function of the charged

lepton energy for three ranges of hadronic energy for the CC νe (left) and CC νµ (right) se-

lections. There is a threshold around 0.1GeV below which no events are correctly identified,

and a region at higher lepton energy where the efficiency reaches a maximum and remains

relatively flat. As the hadronic energy increases the maximum efficiency decreases, and this

effect is more pronounced for the CC νe selection since EM showers are more easily masked

by hadronic shower energy depositions, as compared with long, straight muon tracks. The

CC νµ efficiency as a function of the true muon energy also demonstrates that the perfor-

mance is not affected by the lack of confinement of higher energy muons (& 1GeV) within

the 500× 500 pixel images, as was discussed in Section IIA.

The plot on the left of Fig. 13 shows the efficiency in the CC νe selection for background

interactions containing a π0 meson as a function of the reconstructed νe energy distribution

for three ranges of π0 energy, Eπ0 . As expected, the selection efficiency is larger for the

background interactions with higher energy π0 mesons. Similarly, the selection efficiency for

background interactions containing a π+ meson in the CC νµ selection is shown on the right

of Fig. 13 to be larger for higher energy mesons.

Figure 14 shows the selection efficiency for CC νµ and CC νe interactions as a function

of the charged lepton angle, defined with respect to the neutrino direction. This angle is

defined in 3D, hence when the angle is 90◦ it corresponds to two cases where the efficiency

is expected to be lower: the lepton is travelling almost perpendicular to the readout planes,

or the lepton is travelling parallel to the collection plane (view 2) wires. In these two cases

the CVN does not have clear images of the charged lepton in one or more readout views.

This angle is also strongly correlated with the charged lepton energy, explaining the lower
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FIG. 12: The variation of the signal selection efficiency as a function of the charged lepton

energy shown for three ranges of hadronic energy, EHad, for the CC νe (left) and CC νµ

(right) selections. In both cases the distribution of the unoscillated signal events before

selection is shown by the filled grey histogram.
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FIG. 13: Left: the background acceptance in the CC νe selection for background

interactions containing a final-state π0 meson. Right: the background acceptance in the

CC νµ selection for background interactions containing a final-state π+ meson. In both

cases the energy distribution of the unoscillated backgrounds before selection is shown by

the filled grey histogram.
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FIG. 14: The signal selection efficiency for CC νµ (green) and CC νe (blue) interactions as

a function of the angle between the outgoing charged lepton and the parent neutrino.

efficiency for events containing backward going, and hence lower energy, charged leptons.

Additional studies, not shown here, help to elucidate other features of these distributions.

For example, a small fraction of events with very low energy leptons are still correctly

identified. For these events it can be shown that they contain high energy pions which are

likely responsible for their strong CVN flavor identification scores. Also of note are studies

of the efficiency for other kinematic variables that showed no dependence other than those

induced by their correlations with the leptonic and hadronic system energies. Finally, studies

of CC ντ events showed that efficiencies were consistent with the tau decay rates to muons

and electrons. Roughly 17% of CC ντ events were classified as CC νµ, and about 17% as CC

νe. The primary τ± decays before leaving a track in the detectors, and though CC ντ event

kinematics are different from CC νe and CC νµ events, these events are classified based on

the visible charged lepton in the event.

The outcome of these studies provides confidence that the CVN classification is strongly

tied to the charged lepton features: EM showers and muon tracks. The lowest performance

is seen for indistinguishable intrinsic backgrounds, such as beam-induced electron neutrinos,

and events with a misidentified hadron and no visible, lepton-induced track or shower.
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VI. CONCLUSION

The DUNE CVN algorithm provides excellent neutrino flavor classification, reaching ef-

ficiencies of 90% for electron neutrinos and 95% for muon neutrinos. These efficiencies have

basic features that are consistent with those presented in the DUNE CDR [38]. The CVN

outperforms the CDR estimates, exceeding the signal selection efficiency over most of the

energy ranges shown, albeit with slightly decreased background rejection capability. The

results presented here form a key part of the neutrino oscillation analysis sensitivities pre-

sented in the DUNE TDR [11]. A proof-of-principle demonstration of final-state particle

counting showed a potential mechanism by which to subdivide the event selections to fur-

ther improve the analysis sensitivity. Future studies of possible systematic biases arising

from physics models are planned to ensure the robustness of the particle counting outputs.
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