
Mark Stockton
Slide 1

Preparing the ATLAS Trigger Software
for Multi-threaded Operation

● ICHEP 2020

● Mark Stockton
● CERN

● On behalf of the ATLAS Collaboration

29 July 2020

Mark
Stockton
Slide 2ATLAS data flow overview

● Overview of the ATLAS data flow
for Run 3:

● Sub-Detectors
● Level-1 Trigger
● High Level Trigger (HLT)
● Data Acquisition (DAQ)

● The HLT farm during Run 2:
● Consisted of ~40k Processor Units
● Had a peak input rate of 100 kHz
● Produced an output rate of 1 kHz

on average per LHC fill

● This talk will cover the software
running on the HLT

● Uses Athena Software framework,
which is also used for
reconstruction, simulation and
physics analysis in ATLAS

Ref: Based on https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2017-020/

Mark
Stockton
Slide 3

Ref: https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

Why Multi-threaded

● Single thread performance has
plateaued in the computing market

● Number of cores is growing, yet
memory is not getting cheaper
→ Maximal throughput is limited by
the memory per process

● Additionally, with multi-threading the
SW could make use of accelerators

● Using a GPU to process a thread

● The required CPU to run ATLAS
reconstruction will increase
dramatically for future LHC data
taking (Run 4 and beyond)

● Given modelling of the expected CPU
budget clearly minimal (baseline) R&D
is not enough to be able to match
these requirements
→ start improvements now

Ref: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults

Mark
Stockton
Slide 4AthenaMT

● Athena used Gaudi, which was not designed for multi-threading
→ Design and implement AthenaMT

● Include HLT requirements from the start
● e.g. partial event data processing

● Includes three types of MT processing
● Inter-event:

● Multiple events are processed in parallel
● Intra-event:

● Multiple algorithms can run in parallel for
an event

● In-algorithm:
● Algorithms can utilize multi-threading

and vectorisation

● Event processing is managed by:
● Each algorithm has input and output data dependancies
● Once inputs are available for an algorithm, GaudiHive Scheduler pushes it into the

Intel Threading Building Blocks queue
● Execution also depends on the configured number of threads and event slots

References:
AthenaMT – ATLAS Collaboration, ATL-SOFT-PROC-2017-019
GaudiHive - http://concurrency.web.cern.ch/GaudiHive
Threading building blocks - https://github.com/oneapi-src/oneTBB
Diagram - R. Bielski, ATLAS Collaboration, ATL-DAQ-PROC-2019-004

Mark
Stockton
Slide 5HLT in AthenaMT

● One Mother process per Processor Unit
● Mother process loads the configuration

using Athena/AthenaMT
● From this fork Child processes

● Mother process handles just the child
processes, no events

● Retain multi-process approach as used
in Run 2

HLT Mother Process

HLT Child
Process

HLT Child
Process

HLT Child
Process

Mark
Stockton
Slide 6HLT in AthenaMT

● One Mother process per Processor Unit
● Mother process loads the configuration

using Athena/AthenaMT
● From this fork Child processes

● Mother process handles just the child
processes, no events

● Retain multi-process approach as used
in Run 2

HLT Mother Process

HLT Child
Process

HLT Child
Process

HLT Child
Process

Event
HLT Child
Process Athena

● Run 2:
● Memory saved by using copy-on-write
● Each child runs single instance of Athena

to process events sequentially
● HLT Child Process drives event loop

requesting event to process

Mark
Stockton
Slide 7HLT in AthenaMT

● One Mother process per Processor Unit
● Mother process loads the configuration

using Athena/AthenaMT
● From this fork Child processes

● Mother process handles just the child
processes, no events

● Retain multi-process approach as used
in Run 2

HLT Mother Process

HLT Child
Process

HLT Child
Process

HLT Child
Process

Event
HLT Child
Process Athena

EventHLT Child
Process

AthenaMT
Event slot

Event slot

Event slot

● Run 2:
● Memory saved by using copy-on-write
● Each child runs single instance of Athena

to process events sequentially
● HLT Child Process drives event loop

requesting event to process
● Run 3:

● Can now share both read and write memory
● AthenaMT on HLT Child process now can contain multiple threads and multiple event slots
● AthenaMT now requests events (via HLT Child process) when it has free processing slots

● Interfaces to Processor Unit are also changed
● The offline emulation of this configuration is improved for better development/testing
● Performance will be optimised by adjusting number of forks, threads and slots

Mark
Stockton
Slide 8Error handling

● Optimised configuration has to take into account stability not just performance
● If there is a crash in Athena or if the process reaches a processing timeout threshold

the event data is “force accepted” to a Debug stream for offline debugging/recovery

● In Run 2 the single event being processed would be written to this Debug stream

● In Run 3 this applies to all events being processed by the same fork at that time
● Too many event slots per fork will increase the number of unrelated (potentially good for

physics) events in the Debug stream
● However, the number of threads does not affect the number of events lost

HLT Child
Process

AthenaMT
Event slot

Event slot

Event slot

Event

Event
HLT Child
Process Athena

Event being
processed

Event being
processed

Event being
processed

Debug
Stream

Debug
Stream

Mark
Stockton
Slide 9

Ref: Based on https://twiki.cern.ch/twiki/pub/AtlasPublic/EventDisplayRun2Collisions/

HLT software
● HLT event selection is based on using Chains

● These are built up of HLT algorithms, which share as much code as possible with offline
versions, and hypothesis to test conditions for acceptance

● Chains are seeded by L1 items
● In Run 2 ~1500 Chains were active

● The HLT takes ~0.5s to process an event, compared
with ~30s for offline reconstruction

● Achieve this by:
● Only reconstruct part of the event (regions of interest)

● Defined as a cone around the collision point and
HLT seeds are provided by the Level 1 trigger

● Early rejection
● Early steps in a chain are fast, later steps take

longer but provide more detailed analysis

● In Run 2 these features were achieved by custom HLT scheduling and data caching
● For Run 3 the HLT software is rewritten and integrated into AthenaMT

● Not just aspects related to moving to multi-threading
● Allows better unification with the offline software and the GaudiHive framework
● Add HLT specific extensions:

● Event views → to provide partial event reconstruction
● Control Flow → for early rejection

Mark
Stockton
Slide 10Processing an event

● Control flow graph is created in
initialisation

● The steps are then executed based
on the data available in an event

Ref: R. Bielski, ATLAS Collaboration, ATL-DAQ-PROC-2019-004

Mark
Stockton
Slide 11

Ref: R. Bielski, ATLAS Collaboration, ATL-DAQ-PROC-2019-004

Processing an event

● Control flow graph is created in
initialisation

● The steps are then executed based
on the data available in an event

● If a filter passes, continue
through the next steps

Mark
Stockton
Slide 12

Ref: R. Bielski, ATLAS Collaboration, ATL-DAQ-PROC-2019-004

Processing an event

● Control flow graph is created in
initialisation

● The steps are then executed based
on the data available in an event

● If a filter passes, continue
through the next steps

● If it fails, stop processing steps

● If reach the last step with a Chain
passing all steps, accept the event

Mark
Stockton
Slide 13

Ref: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/TRIG-2019-04/

Trigger Database Updates
● The chain configuration is stored in

the trigger database (DB) and is
loaded during the HLT initialisation

● In Run 2 this DB structure
represented a table per object ~90
tables (filled by parsing xml files)

● Information accessed by four keys,
i.e. the primary keys of the relevant
parent tables

● In Run 3 this structure is simplified as most
of the DB schema will be replaced by
directly storing JSON files

● Each of these files contains objects holding
the information of the previous tables:

● Makes the DB schema and interaction
simpler O(10) tables

● Easier to extend the files during data taking
period rather than updating DB schema

● Increased data duplication, but reduces
time consuming lookups for every object

● Eliminate another conversion of the data
for offline metadata storage (used when
processing of events without DB access)

NEW

Mark
Stockton
Slide 14Summary

Ref: wikimedia

AthenaMT is being developed to prepare for
future data-taking requirements and

available computing resources

Core functionalities to be able to run the
HLT are in place

Full set of algorithms to deploy Run 3 menu
are being developed

Validation campaigns ongoing both offline and
online (using MC, Run 2 data or

cosmic/random triggers)

Performance studies have started,
but the final configuration of MT usage
will be measured at the start of Run 3

Other related material presented at ICHEP 2020:
● The ATLAS trigger menu:

from Run 2 to Run 3
● Tim Martin (Warwick)

● Triggering in the ATLAS Experiment
● Javier Montejo Berlingen (CERN)

https://commons.wikimedia.org/wiki/File:4_Strand_Braiding.png

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

