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Abstract

We consider an extension of the Standard Model that was proposed recently by one of the current authors 
(PQH), which admits magnetic monopoles with a mass of order of a few TeV. We impose, in addition to 
topological quantization in the SU(2) sector of the model, the Dirac Quantization Condition (DQC) required 
for consistency of the quantum theory of a charged electron in the presence of the monopole. This leads to 
the prediction sin2θW = 1/4, where θW is the weak mixing angle at the energy scale set by the monopole 
mass. A leading-order renormalization-group analysis yields the value of sin2θW � 0.231 at the Z-boson 
mass, as measured by experiment, under suitable conditions on the spectrum of the extra particles in the 
model.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The electroweak mixing angle θW is a free parameter within the Standard Model (SM) of 
particle physics. However, it becomes possible to predict its value within extensions of the SM, 
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e.g., by embedding the SM in a Grand Unified Theory (GUT), where the magnitude of θW is 
controlled by the details of unification [1–3], or in string theory [4]. In SU(5) GUT theories, for 
instance, there is a characteristic tree-level prediction that

sin2θW = 3/8 (1)

at the GUT scale. This is renormalized by quantum loop effects in the SM that yield the prediction 
sin2θW � 0.20 at the Z-boson mass [2], which is close to, but different from, the experimental 
value sin2θW � 0.231 in the MS prescription [5]. The experimental value can be recovered by 
including the quantum corrections due to new particle degrees of freedom in the renomalization 
calculation. For example, including the supersymmetric partners of SM particles in the SU(5) 
GUT calculation reproduces very accurately the experimental value [6].

In this article we make a different prediction for sin2θW in an extension of the SM that is not 
a high-scale GUT, but rather a theory, proposed by one of the current authors (PQH) in [7], that 
includes a topologically non-trivial magnetic monopole with a mass of a few TeV. This magnetic 
monopole is associated with a real scalar triplet of the SU(2) group, in a spirit similar to the 
Georgi-Glashow model [8], and obeys a topological quantization condition that stems from the 
known non-trivial homotopy properties of the SU(2) group.

We show that this condition is not sufficient by itself to guarantee satisfaction of the Dirac 
Quantization Condition (DQC),

gM e = m

2
, m ∈ Z , (2)

with gM the magnetic charge, which is required for consistency of the quantum theory of a 
charged particle such as the electron in the monopole’s magnetic field [9,10]. In the model of [7]
the DQC must be imposed as an extra condition [11], which leads to the prediction

sin2θW = 1/4 (3)

at the monopole mass scale in the model. This value is renormalized by extra particles with 
masses between mZ and the monopole mass that appear in the model, and the experimental value 
sin2θW � 0.231 [5] is recovered under suitable conditions on the spectrum of these particles.

2. Light monopoles in the model of [7]

We now review briefly the main features of the model proposed in [7]. It involves non-sterile
right-handed neutrinos with masses of the order of the electroweak scale, which participate in a 
seesaw mechanism for light neutrinos that is testable in principle at colliders, e.g., by searching 
for like-sign dileptons with displaced vertices. For brevity, in what follows we term this model 
the EW-νR model.

The central reason why the EW-νR model admits monopoles with masses at the electroweak 
scale, �EW , is that its right-handed neutrinos acquire [12] electroweak-scale Majorana masses 
MR ∝ �EW ∼ 246 GeV through their coupling to a complex Higgs triplet χ̃ .

Because the νRs are not sterile, consistency with the measured width of the Z-boson re-
quires MR ≥ 46 GeV, which implies 〈χ̃〉 = vM ∝ �EW . Such non-sterile neutrinos would 
seriously affect the experimentally-verified relationship between the W - and Z-boson masses 
MW = MZ cos θW in the SM, in the absence of an additional real triplet of (Higgs-like) scalar 
fields ξ with 〈ξ 〉 = 〈χ̃〉 = vM [13], which realize a custodial symmetry in the EW-νR model [12]. 
The ξ triplet is hypercharge-neutral and gives rise to a finite-energy electroweak monopole solu-
tion of the classical Euler-Lagrange equations of the model [7], following the pattern of the SO(3) 
2
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monopole in the Georgi-Glashow model [8], discovered by ‘t Hooft [14] and Polyakov [15] (the 
‘tHP monopole). In that model the electromagnetic Uem(1) gauge group is embedded into the 
SO(3) gauge group, whose algebra is isomorphic to that of the SU(2) appearing in the model of 
[7,12]. However, in the model of [7] Uem(1) is a combination of the SU(2) and UY(1) of the SM, 
parametrized by sin2 θW in the usual way.

We now review the topological arguments [7] for the existence of the monopole, clarifying 
the independence of the topological quantization condition from the DQC that we explore subse-
quently. The EW-νR model contains [7,12]. In addition to the real triplet ξ and the complex triplet 
χ̃ , four complex Higgs doublets, φSM

i (which couple to SM fermions only), and φM
i (which cou-

ple to mirror fermions (MF ) [16], each with i = 1, 2 and some Higgs singlets φS that are not 
relevant to the magnetic monopole solution. The vacuum alignment that guarantees the custodial 
electroweak symmetry has 〈χ̃〉 = 〈ξ 〉 = vM [12]. The vacuum manifold of the Higgs sector is

Svac = S2 × S5 ×
∑
i=1,2

S3
SMi

×
∑
i=1,2

S3
Mi

, (4)

where an n-sphere Sn is described by the equation x2
1 + x2

2 + .. + x2
n+1 = constant. Here, the xi

denote the various scalar field values, and the constant radii of the various spheres correspond 
to the vacuum expectation values of the various Higgs field components. The second homotopy 
group of the vacuum manifold of the EW-νR model (4) is therefore [7]

π2(Svac) = π2(S
2) ⊕ π2(S

5) ⊕i=1,2 π2(S
3
SMi,Mi

) (5)

= π2(S
2) = Z ,

which is the standard topological argument for the existence of an ‘tHP monopole [14,15]. 
We see that the EW-νR model has a topologically-stable monopole solution thanks to the real 
SU(2) triplet ξ , corresponding to the sphere S2, for which π2(S

2) = Z. Thus the EW-νR model 
makes an interesting connection between the light neutrino masses and the existence of magnetic 
monopole solutions.

It was noted in [7] that, since S2 is associated with the vacuum manifold of the real triplet 
ξ , topological quantization would involve the SU(2) coupling g, rather than the electromagnetic 
coupling e, leading to the following quantization condition for the magnetic charge g̃ of the 
monopole:

gg̃

h̄ c
= n , n ∈ Z . (6)

From now on we work in units with h̄ = c = 1. The fact that the quantization condition (6) is in 
terms of the monopole charge g̃ and the weak charge g instead of the electric charge e appearing 
in the standard DQC is a characteristic feature of the model of [7]. It distinguishes the monopole 
in the model of [7] from the ‘tHP magnetic monopole or the Cho-Maison monopole [17] and its 
finite energy extensions [18], to which the standard DQC applies.

Including the full SM gauge group structure, SU(2)×UY(1), which is broken down to the 
electromagnetic Uem(1) by the complex Higgs doublets and the triplet χ̃ of the EW-νR model [7], 
one sees that the W 3

μ gauge field of the SU(2) subgroup is a mixture of the Z-boson and photon 
fields, parametrized as usual by the weak mixing angle θW : W 3

μ = cos θWZμ + sin θWAμ, with 

sin θW = g′/
√

g2 + g′2 where g′ is the UY(1) coupling. The corresponding field strengths are

W 3 = cos θWZij + sin θWFij , (7)
ij

3



J. Ellis, P.Q. Hung and N.E. Mavromatos Nuclear Physics B 969 (2021) 115468
where Fij is the usual electromagnetic field-strength tensor and Zij is the Z field-strength ten-
sor. This mixing between the photon and the Z-boson is the reason why the terminology “γ -Z 
magnetic monopole” was used in [7] to describe the magnetic monopole solution. As discussed 
in [7], the magnetic monopole has a mass

MM = 4πvM

g
f (λ/g2) , (8)

where the function f (λ/g2) varies between 1 for λ = 0 (the Prasad-Sommerfield limit [19]) and 
1.78 for λ = ∞.

The phenomenological analysis of Ref. [12] shows that the value of vM is bounded from 
below by the Z width (assuming only three light neutrinos): vM > MZ/2 ∼ 45.5 GeV, and from 
above by the sum of the squared scalar fields VEVs in the model: (

∑
i=1,2 v2

i + v
M,2
i ) + 8v2

M =
(246 GeV)2. The monopole mass range given by (8) is then obtained by saturating the bounds 
on vM :

MM ∼ 890 GeV − 3.0 TeV . (9)

The corresponding magnetic field intensity is defined by

B
γZ

i = 1

2
εijk W 3

jk, (10)

where εijk (i, j, k = 1, 2, 3) is the totally antisymmetric symbol in three Euclidean (spatial) di-
mensions. We then obtain from (7) [7]

B
γZ

i = cos θWBZ
i + sin θWB

γ

i

= 1

gr2 r̂i (cos θWe−MZr + sin θW )

= sin θW

er2 r̂i (cos θWe−MZr + sin θW ) , (11)

where BZ
i = 1

gr2 r̂i exp−MZr and Bγ

i = 1
gr2 r̂i are the short-range Z-magnetic field and the long-

range magnetic field, respectively, and

e = g sin θW (12)

denotes the usual electromagnetic coupling, as in the SM.
We note the exponential damping factor ∝ exp(−MZr) in the expression (11) for the magnetic 

field strength, due to the finite Z-boson mass, MZ 
= 0. The short- and long-range parts of BγZ

i

become comparable in strength at a distance r = 1
MZ

ln(cot θW ) ∼ 0.6/MZ from the centre of 
the monopole, which is well inside its core. At large distances compared to the monopole core 
radius, r � Rc ∼ (gvM)−1, the magnetic field differs in strength from that of a point-like Dirac 
monopole by a factor sin2 θW .

At these large distances, the γ − Z magnetic field is

B
γZ

i ≈ sin2 θW

er2 r̂i . (13)

The true magnetic field, Bi , i = 1, 2, 3, is defined in terms of the electromagnetic tensor Fij , 
which is seen from (7) to be related to BγZ

i by a factor of 1/ sin θW , so that at large distances 
compared to the core monopole Rc ∼ (gvM)−1:
4
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Bi ≈ sin θW

er2 r̂i i = 1,2,3 , r � Rc (14)

Comparing this magnetic field [7] with the conventional definition of the magnetic charge of the 
monopole [9], we see that

gM = sinθW

e
. (15)

Eq. (15) can be understood from the definition of the magnetic charge, gM , which is topological 
in our model, and given by the topological quantization condition, Eq. (6). Taking n = 1 and 
setting g̃ = gM in that relation, one obtains: g̃ = gM = 1/g. Using the standard form of the 
magnetic field of a magnetic monopole, far away from its centre (placed at the origin) [9]

B
γ

i = gM

r2 r̂i = 1

g r2 r̂i , (16)

and using (12)) we find

B
γ

i = sinθW

e r2 r̂i . (17)

We thus recover the expression (14) for the effective magnetic field in our model, defined via (7), 
at distances larger than the monopole core radius. We stress again that the topological magnetic 
charge is not of the form sin2θW/e, which appears as the coefficient of 1/r2 in the expression for 
the γ − Z “SU(2) magnetic” field BγZ

i , but of the form (15), carrying a single power of sin θW , 
when expressed in terms of the electron charge e in the model.

We stress that the above solution for the γ − Z magnetic field respects rotational symmetry, 
and takes the Dirac form at large distances, but vanishes at the centre of the monopole, so that the 
solution has finite energy [7]. In this respect, our solution differs from the (dumbbell) monopole 
of Nambu in the conventional SU(2)×U(1)Y Standard Model [20], which breaks spontaneously 
the rotational (and hence Lorentz) symmetry, due to the presence of a Z-flux string. The lat-
ter is also responsible for the confinement of the Nambu monopole with its antimonopole. As 
demonstrated in [21], the presence of the Z-string in that case leads to the satisfaction of the 
DQC without any restriction on the weak mixing angle, unlike our situation as discussed below. 
Specifically, in the Nambu electroweak monopole, the (non-singular) hypercharge U(1)Y mag-
netic field �BU(1)Y emanating from the monopole is compensated by that entering the monopole 
via the Z-string, leading to a divergence-free component of the field, �∇ · �BU(1)Y = 0. As a con-
sequence the Nambu monopole pertains exclusively to the SU(2) sector of the Standard Model, 
which contains only the coupling g of that sector, and obeys the standard topological quantiza-
tion condition, without any factors of sinθW . This is not the case in the spherically-symmetric 
magnetic γ − Z field (16) in the model of [7] which, we stress again, does not possess any such 
Z-flux string. We stress, though, that, as in the non-singular dumbbell solution of [20], the total 
energy of the monopole solution of [7] is finite, leading to a finite mass for the monopole of order 
a TeV, as discussed in [7] and here.

3. The Dirac quantization condition

As a consequence of (15), the DQC (2) is in general violated by the weak mixing-angle factor 
in gM . Thus the electron wave function would not be single-valued along a loop that surrounds 
the monopole at large distances from the monopole centre [9].
5
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The DQC is often derived by considering the translation of an electron around a Dirac string 
of the type connected to a point-like monopole. However, in the current monopole solution, 
there is no Dirac string, hence the reader might think that the topological quantization (6), which 
stems from the non-trivial homotopy structure (5), is sufficient for the consistency of the model. 
However, the DQC is a general condition, derivable from consistency conditions far away from 
the monopole centre, independent of the details of the monopole solution and whether it has an 
attached string. Hence, for the consistency of a theory, the DQC must always be imposed, if not 
automatically satisfied as is the case of the ‘tHP monopole. Below we outline several arguments 
showing how the DQC emerges, independent of the details of the monopole structure.

First, it can be shown [9,10] that the DQC corresponds to the quantization condition of the 
angular momentum of a classical charged particle, say an electron for concreteness, moving 
in the background of a magnetic pole at rest, a result derived by Thomson [23], twenty seven 
years before Dirac’s theory of magnetic monopoles. The total classical angular momentum of 
the electron in this system is

�L = m�r × d�r
dt

− eg
�r
r

, (18)

where the second term on the right-hand side is the contribution due to the interaction of the elec-
tron with the magnetic monopole field, as derived from the pertinent Poynting vector. The DQC 
(2) follows from (18) as a consequence of the usual quantization rule of the angular momentum, 
which is required to take on integer or half-integer values, in the case where both the electron 
and the monopole are at rest (d�r/dt = 0).

Secondly, in the context of the monopole of the model of [7], the DQC can be understood [10]
by making an analogy between this monopole solution, which crucially involves a Higgs break-
ing SU(2)×UY(1) → UEM(1) (in contrast to the conventional ‘tHP monopole [14,15] that is 
based on a Higgs breaking the simple group SU(2) → U(1) as in the Georgi-Glashow model [8]) 
with an Abelian Wu-Yang (WY) monopole [22], which does not involve a Dirac string.

In such a case, it is well known [10] that the DQC can be derived by covering the 3-space 
surrounding the WY monopole at the origin by two hemispheres (North (N) and South (S)) and 
considering a closed loop � that lies entirely in the “equator region” in which the two hemispheres 
overlap. The loop can be located far away from the centre of the monopole. The wave function 
of an electrically-charged particle circulating the loop, say an electron of charge e, will pick up 
a phase e

∮
�
d� · AS,N, where AN (S)

μ denotes the electromagnetic potential in the North (South) 
hemisphere. Applying Stokes’s theorem in each hemisphere, we may write:

e

∮

�

d� · AN = e

∫

RN

dS · (∇ × AN) = e

∫

RN

dS · B,

e

∮

�

d� · AS = −e

∫

RS

dS · (∇ × AS) = −e

∫

RS

dS · B, (19)

where B is the magnetic field of the monopole, whose asymptotic structure is given by B ∼ gM

r2 r̂, 
with gM the magnetic charge. The action S is therefore defined up to a term


S = e

∫

RN∪RS

dS · B =
∫

V

d3r ∇ · B = 4πegM, (20)

where we used Gauss’s law over the entire space volume V , and the corresponding Maxwell’s 
equations for the monopole magnetic field. The requirement that the action change (20) does 
6
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not affect any physical observables implies the DQC, in a way independent of the topological 
argument (5).1

We stress that the use of a non-compact Abelian U(1) gauge field in the above argument is 
specific to the fact that the model contains the Standard Model group with its usual breaking to 
U(1), which plays the role of the non-compact Abelian group associated with the gauge poten-
tial used above. One cannot apply this argument to the standard ‘tHP monopole, for which the 
topological quantization of the non-Abelian simple group SU(2) replaces the DQC.

This is the central point of this article: in the model of [7], unlike the ‘tHP monopole, the 
topological quantisation rule (6) stemming from the homotopy properties of the SU(2) group is 
not sufficient for the quantum consistency of the electron wave function in the presence of the 
magnetic field induced by the γ − Z monopole.

In a similar spirit to the Kalb-Ramond monopole of [11], one must impose the DQC as an 
additional constraint:

e gM = m

2
, m ∈ Z . (21)

We then obtain from (21) and (15) a consistency condition for the weak mixing angle, and the 
prediction

sinθW = m

2
⇒ sin2θW = m2

4
, m ∈ Z , (22)

where sin2 θW is the quantity that it is usually quoted in experimental measurements [24]. Since 
sinθW ≤ 1, the condition (22) allows only two topological sectors, namely |m| = 1 and |m| = 2. 
The case m = 2 would imply sin θW = 1, which corresponds to the limit g/g′ → 0 and a massless 
W boson. In the allowed case m = 1 we have the prediction

sin2θW = 1

4
, (23)

which is close to the experimental value sin2 θW � 0.231.
At this point we would like to offer further independent support to the restriction (22) by 

considering the coherent-state approach to the composite monopoles proposed in [25], which 
also lead to the arguments on the impossibility of producing composite monopole-antimonopole 
pairs at colliders, as a result of the extreme suppression of the pertinent production cross sections 
of order e−4π/α , with α the electromagnetic fine structure constant.

4. Coherent-state approach

According to the qualitative arguments of [25], a composite monopole state, such as the ‘tHP 
monopole [14,15] or that in the model of [7] that we study here, consists of nquantaVc coherent 
states of Higgs and gauge quanta, where Vc is the volume of a sphere of radius equal to the ra-
dius of the monopole core Rc, and nquanta denotes the density of the Higgs or gauge quanta (these 
number densities are of the same order of magnitude, as argued in [25]). The quanta correspond-
ing to the electrically-charged gauge states (W ) with charge e, couple to the electromagnetic 
photon with a collective coupling

1 A similar result is obtained if one considers, alternatively, the gauge dependence of the electron wave function in a 
monopole field [9].
7
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g
γ

coll ∼ nquanta e. (24)

Following the arguments of [25] for our case, the number density of the extra scalar triplet Higgs 
quanta is

nquanta ∼ m“H”v2
M , (25)

where m“H” is the mass of the appropriate Higgs field in the model of [7], and vM its vacuum 
expectation value, as reviewed above. Thus, the total number of Higgs quanta is

nquanta = (
4

3
πR3

c )m“H”v2
M , (26)

where the monopole core radius is given by Rc ∼ (gvM)−1, m“H” ∼ √
λvM , and λ is the cor-

responding Higgs-self-interaction coupling. Assuming following [25] that 
√

λ/3 ∼ g in order of 
magnitude, so that m“H” ∼ mW ∼ gvM , one then obtains

nquanta ∼ (
4

3
π)

√
λ

g3 ∼ 1

α2
(27)

in order of magnitude, where, α2 ≡ g2/(4π) is the fine structure constant of the SU(2) group.
In the pure SU(2) ‘tHP-monopole case studied in [25], the electric charge of the W states 

is g, since there is no mixing, hence the collective coupling to photons (∼ W 3
μ) would in this 

case be given by (24) but with e replaced by g. In this case, (26) implies the topological charge 
quantization (6), with n = 1, upon identifying gγ

coll ∼ 4π g̃, where g̃ = 1/g.
However, in the model of [7], due to the presence of the Standard-Model group SU(2)×UY(1) 

breaking down to the non-compact electromagnetic group UEM(1), and thus a non-trivial weak 
mixing angle θW 
= 0 modπ , we have g = e/ sin θW , with e the electric charge that would couple 
the charged W states to photons. Hence in that case, we obtain from (27)

nquanta ∼ sin2 θW

α2 , (28)

where α = e2/(4π) is the fine structure constant of electromagnetism. The reader should notice 
the dependence of nquanta on the weak mixing angle, in contrast to the case of [25], based on the 
conventional ‘tHP monopole, for which nquanta ∼ 1

α
. This feature of the monopole is exclusive to 

the model of [7]. Upon recalling [25] that the number (26) is also of the same order of magnitude 
as the number of charged gauge quanta W±, each of which carries a charge e, then we obtain the 
total charge, i.e., the collective coupling (24) of the monopole to photons, in our model:

g
γ

coll = nquanta e ∼ sin2 θW

α
e . (29)

As discussed previously (cf. (13)), the BγZ magnetic field corresponds to a magnetic charge 

QγZ = sin2 θW

e
∼ g

γ

coll, in order of magnitude. However, BγZ = sin θWBγ + cos θWBZ . So the 
true magnetic field Bγ corresponds to a magnetic charge gM = QγZ/ sin θW = sin θW

e
(cf. (14)). 

In this case, the collective coupling (29) is linked to gM via gγ

coll ∼ 4π gM sin θW.
Far from the core, this monopole behaves like a Dirac monopole and the DQC applies: egM =

m/2, m ∈ Z. Upon comparing with the above result (29), we obtain (23), i.e., sin2 θW = 1/4.
8
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From the above discussion it follows that the topological charge g̃ of the ‘tHP or the monopole 
of [7], and in general of non-Abelian composite monopoles characterised by groups with non-
trivial homotopy leading to a topological quantization rule (6), can be identified with the collec-
tive coupling of the constituent coherent-state charged gauge quanta to photons (24) [25].

We speculate that a rigorous proof of this relation might be provided by extending the (1+1)-
dimensional prototype study of [26] to four-dimensional composite monopoles, of finite energy, 
including that of [7] studied here, which are topological solitons. It was recognised in [26], con-
sidering a quantum coherent state of a (1+1)-dimensional topological soliton |soliton〉 as a tensor 
product state of an infinity of constituent coherent states |ακ〉 corresponding to momentum k,

|soliton〉 =
∏
⊗k

|ακ 〉,

that the topological charge arises from the Noether charges of the microscopic constituent coher-
ent states, which thus explains the conservation of the topological charge from basic properties 
of the constituent coherent states. Specifically, the topological charge arises from an infinite 
occupation number of zero momentum quanta, which in the (1+1)-dimensional model flow in 
one direction. In the composite monopole case, the Noether charge is the electric charge, whilst 
the topological (magnetic) charge is the collective coupling (24) of the coherent constituent W
quanta to photons.

5. Absence of confinement

Some important comments are in order at this point, concerning the relation (21), from which 
our main result (22) follows. The implicit assumption underlying such a relation is that free 
monopoles exist after spontaneous symmetry breaking in the model. In fact, one could have 
thought of avoiding the imposition of the DQC by considering monopoles either confined with 
their antimonopoles by magnetic flux strings, in which case there is no constraint between mag-
netic and electric charges, or confined in groups of a certain fixed number, which would lead to 
a much weaker quantisation condition than (21). Such cases are discussed, for instance, in the 
review of [27].

In Section 5.1 of that work, the author discuses magnetic monopoles arising from a 
toy model characterised by the following pattern of spontaneous gauge-symmetry breaking: 
SU(3)

v1−→SU(2)×U(1)
v2−→U(1), via appropriate Higgs vacuum expectation values (VEVs) 

with v2 � v1. As discussed in [27], the monopoles and anti-monopoles of mass v1/e from 
SU(3)/SU(2)×U(1) are bound to each other by flux tubes and do not survive below v1. Only the 
lighter ones of mass v2/e survive in that model.

This is a quite different scenario from the electroweak monopole model of [7] discussed here. 
The VEV of the real triplet vM is comparable in value to the other VEVs (doublets, complex 
triplet), so the hierarchical scenario discussed in [27] does not apply. Moreover, as indicated 
above, in the paragraph following (12), the short-range Z-magnetic field becomes subdominant 
relative to the long-range magnetic field already inside the core of size R ∼ (gvM)−1 and, out-
side the core, only the long-range true magnetic field is present. These considerations imply 
that the monopoles are not confined with their antimonopoles, and hence the condition (21) ap-
plies. There are no long-range magnetic fluxes binding a monopole with an anti-monopole in 
our model, due to the short-range nature of the Z-magnetic field, unlike the example discussed 
above. There, the breaking pattern is H1 =SU(2)×U(1)→ H2 =U(1) at v2, where H2 ∈SU(2) 
9
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and the U(1) magnetic fluxes are confined, binding the heavy monopoles and anti-monopoles of 
mass v1/e.

6. Renormalization effects

The DQC (21) is a discrete consistency condition that should be understood as applying to 
the electric charge in the large-distance (IR) limit and the monopole charge measured at the 
monopole mass (8). There is no renormalization of the monopole charge below this scale, as 
there are no magnetically-charged objects with masses below (8). On the other hand, as sin2 θW

is related to the SU(2) and U(1)Y couplings, it is in general subject to scale-dependent renormal-
ization in the non-magnetic sector where experiments are performed. This is a well-understood 
effect that has been studied in detail in many GUT models such as SU(5) [2,6].

We have made leading-logarithmic one-loop calculations of the renormalization of sin2θW

from the monopole mass scale MM down to the Z-boson mass MZ for different values of MM , 
the numbers of light families F (including both SM and mirror fermions), light Higgs doublets 
nH , real triplets n3 and complex triplets n̄3 with masses below MM that enter the evolution. We 
use the notation xW ≡ sin2θW (M2

Z) and assume that, at MM , sin2θW (M2
M) = g′2/[g2 + g′2] =

1/4 giving α′ = (1/3)α2, and the following one-loop renormalization formula

xW ≈ α′

α′ + α2
[1 + 4πα2

α′ + α2
(−α′b′ + α2b2) ln(M2

Z/M2
M)]

≈ (1/4)[1 + 4πα2(−1

4
b′ + 3

4
b2) ln(M2

Z/M2
M)] , (30)

where

b2 = (1/16π2)[22

3
− 4

3
F − 1

6
nH − 2

3
n3] (31)

and

b′ = −(1/16π2)[20

9
F + 1

6
nH + n̄3] . (32)

The scalar contributions to Eqs. (31), (32) come from −(1/3)TS with TS = 1/2, 2 (doublets 
and triplets) for b2 and (1/3) 

∑
(YS/2)2 with YS/2 = 1/2, 1 (doublet and complex triplet) 

for b′. Tabulated below are some examples of spectra with MM in the range (9) that yield 
0.230 < xW < 0.233, to be compared with the experimental central value xW = 0.23121 in the 
MS prescription [5] (one should allow for higher-order uncertainties in the renormalization cal-
culation).

MM (TeV) F nH n3 n̄3 xW

2.3 3 1 0 0 0.232
3 3 3 0 0 0.2314
3 3 1 1 1 0.2318
3 4 1 0 0 0.2328

We note that cases with F = 5, 6 are disfavoured experimentally, as they yield sin2θW (M2
Z) >

0.233. Also disfavoured are scenarios such as nH = 2, n3 = 1, n̄3 = 1 light Higgs fields below 
MM .
10
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The EW-νR model we have studied here has many interesting properties. In addition to con-
taining a seesaw scenario for neutrino masses that predicts several possibilities for new particles 
that could be detected at the LHC, it also predicts the existence of an electroweak magnetic 
monopole with mass � 3 TeV, light enough to be detected in principle by the MoEDAL experi-
ment [28,29].

Remarkably, as we have shown in this paper, the Dirac Quantization Condition needed for 
the quantum consistency of the EW-νR model imposes a specific value of the weak mixing pa-
rameter sin2 θW = 1/4 at the monopole mass scale. Plausible choices of the monopole mass 
and the numbers of fermions and Higgs bosons with masses below that of the monopole yield 
predictions for the renormalized weak mixing parameter sin2θW (M2

Z) that are consistent with 
experimental measurements, within the theoretical uncertainties. The success of this prediction 
has interesting implications on the Majorana masses of right-handed neutrinos, since both quan-
tities depend on the Higgs triplet VEV vM , as well as the spectra of light new particles. With 
Majorana masses of the EW-νR model being MR = gνR

vM , Eq. (8) gives an interesting relation 
between the monopole and right-handed neutrino Majorana masses MM = 4π

g gνR
f (λ/g2)MR . 

Electroweak-scale non-sterile νR could be discovered via like-sign dilepton events with displaced 
vertices, and give a range for the monopole mass: 19 MR � MM � 34 MR for f (λ/g2) = 1, 1.78, 
with g ∼ 0.65 and assuming gνR

∼ 1. The search for charged mirror quarks and leptons, which 
are long-lived particles in this model, have been discussed in [12]. A detailed analysis of this and 
other aspects of the model are beyond the scope of this article and will be given elsewhere.
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