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Abstract

A search for the K+ → π+X decay, where X is a long-lived feebly interacting particle,
is performed through an interpretation of the K+ → π+νν̄ analysis of data collected in
2017 by the NA62 experiment at CERN. Two ranges of X masses, 0–110 MeV/c2 and 154–
260 MeV/c2, and lifetimes above 100 ps are considered. The limits set on the branching ratio,
BR(K+ → π+X), are competitive with previously reported searches in the first mass range,
and improve on current limits in the second mass range by more than an order of magnitude.
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1 Introduction

Some scenarios Beyond the Standard Model of particle physics (BSM) include a new light feebly
interacting particle X, which can be produced in K+ → π+X decays. In a hidden sector portal
framework the new X particle mediates interactions between standard model (SM) and hidden
sector fields [1]. In the Higgs portal scenario, X is a scalar that mixes with the SM Higgs
boson; this is realised in inflationary [2], scale invariant [3], and relaxion [4] models, which
additionally have cosmological implications. A massless X particle would have the properties
of a neutral boson arising from the spontaneous breaking of a global U(1) symmetry [5]: X
may then acquire mass through explicit symmetry breaking. One example, arising from the
breaking of a Peccei-Quinn (PQ) symmetry, is an axion [6,7], which would be a signature of the
PQ mechanism and credibly solve the strong CP problem [8, 9]. Such an axion could be flavor
non-diagonal [10]. Alternatives, from breaking of the lepton number and flavour symmetries
respectively, are majorons [11] or familons [7,12]. A QCD axion with mass O(10−4 eV) could be
a dark matter candidate, and specific axion models can also solve the SM flavor problem [13].
In a broader class of models, X is considered as an axion-like particle (ALP) that acts as
a pseudoscalar mediator [14]. Alternatively the introduction of a light, feebly-coupled, spin-
1 boson can effectively generate through its axial couplings the phenomenology related to an
invisible spin-0 ALP [15].

Searches for X production in the K+ → π+X decay have the potential to constrain many
BSM models. The K+ → π+X decay is characterised by an incoming K+, an outgoing π+ and
missing energy-momentum, as is the rare K+ → π+νν̄ decay. An interpretation of the NA62
K+ → π+νν̄ studies using 2017 data [16] in terms of a search for the K+ → π+X decay is
presented here. Upper limits are established on BR(K+ → π+X) and interpreted in terms of
two BSM scenarios.

2 Beamline, detector and dataset

The NA62 experiment, beamline and detector are described in detail in [17] and a schematic of
the detector is shown in Fig. 1. A right-handed coordinate system, (x, y, z), is defined with the
target at the origin and the beam travelling towards positive z, the y axis is vertical (positive up)
and the x-axis is horizontal (positive left). A 400 GeV/c proton beam extracted from the CERN
Super Proton Synchrotron (SPS) impinges on a beryllium target creating a 75 GeV/c secondary
hadron beam with a 1% rms momentum spread and a composition of 70% pions, 23% protons
and 6% kaons. Kaons (K+) are positively tagged with 70 ps timing precision by the KTAG
detector, a differential Cherenkov counter filled with nitrogen gas. The momentum and position
of the K+ are measured by the GigaTracker (GTK), a spectrometer formed of three silicon
pixel tracker stations and a set of four dipole magnets. GTK measurements have momentum,
direction and time resolutions of 0.15 GeV/c, 16µrad and 100 ps, respectively. After traversing
the GTK magnets, a magnetized scraper used to sweep away muons, and a bending magnet
(B), the beam at the FV entrance has a rectangular profile of 52× 24 mm2 and a divergence of
0.11 mrad.

The experiment is designed to study K+ decays occurring in the 60 m fiducial volume (FV)
starting 2.6 m downstream of GTK3 and housed inside a 117 m long vacuum tank, containing a
magnetic spectrometer, and ending at the ring imaging Cherenkov counter (RICH). Momentum
and position measurements for charged particles produced in K+ decays in the FV are provided
by the magnetic spectrometer composed of four STRAW tracking stations, two on either side
of a dipole magnet (M). This spectrometer provides a momentum measurement with resolution
σp/p of 0.3–0.4%. The RICH is filled with neon gas at atmospheric pressure and provides particle
identification for charged particles, and a time measurement with a precision better than 100 ps.
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Fig. 1: Schematic top view of the NA62 beamline and detector. The CHOD label indicates both
the CHOD and NA48-CHOD hodoscopes described in the text. Also shown is the trajectory of
a beam particle in vacuum which crosses all the detector apertures, thus avoiding interactions
with material. A dipole magnet between MUV3 and SAC deflects the beam particles out of the
SAC acceptance.

Two adjacent scintillator hodoscopes (CHOD and NA48-CHOD), provide time measurements
for charged particles with a 200 ps resolution.

A system of veto detectors is key to the experiment. Interactions of beam particles in
GTK3 are detected by the charged particle anti-counter (CHANTI), formed of six stations of
scintillator bar counters. Downstream, a photon veto system is used to reject the K+ → π+π0

background. This analysis selects π+ particles with momenta in the range 15–35 GeV/c. This
means that a π0 from the K+ → π+π0 background has momentum of at least 40 GeV/c and the
subsequent π0 → γγ decay, BR = 98.8%, produces two energetic photons which can be detected
with high efficiency. There are twelve large angle veto (LAV) stations positioned to ensure
hermetic coverage for photon emission angles of 8.5–50 mrad. The liquid krypton calorimeter
(LKr) provides coverage for 1–8.5 mrad. The small angle photon veto (SAV) covers angles below
1 mrad using two sampling calorimeters of shashlyk design (IRC and SAC).

Downstream of the LKr are two hadronic sampling calorimeters (MUV1 and MUV2). To-
gether with the LKr, these provide particle identification information through the pattern of
energy deposition. Electrons/positrons produce electromagnetic showers that are well-contained
in the LKr, which has a depth of 27 radiation lengths. Pions may pass through the LKr without
losing all of their energy and can produce a hadronic shower in MUV1 and MUV2. In con-
trast, muons are minimum ionising particles in the calorimetric system. The MUV3 detector is
positioned downstream of a 0.8 m iron absorber and consists of a plane of scintillator tiles. It
provides measurements of muons with 400 ps time resolution.

A two-level trigger system is employed with a hardware level 0 (L0) selection followed by a
level 1 (L1) decision made by software algorithms. The primary trigger stream of the experiment
is dedicated to collection of K+ → π+νν̄ events and uses information from the CHOD, RICH,
LKr, MUV3 at L0 [18] and KTAG, LAV, STRAW at L1 [16]. The NA48-CHOD also provides
a 99% efficient minimum bias trigger, used for collection of K+ → π+π0 events that are used
for normalisation. The data sample collected in 2017 for the study of the K+ → π+νν̄ decay is
used for this analysis.
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3 Signal selection

The observable for the K+ → π+X search is the reconstructed squared missing mass

m2
miss = (PK − Pπ)2 ,

where PK and Pπ are the K+ and π+ 4-momenta, derived from the measured 3-momenta of
the GTK and STRAW tracks under the K+ and π+ mass hypotheses, respectively. The event
selection is identical to that used for the K+ → π+νν̄ measurement [16] and is summarised
below.

Candidate events must have fewer than three reconstructed STRAW tracks with no nega-
tively charged tracks. Only one track can fulfil additional criteria to become a π+ candidate
but, for example, an additional out-of-time halo muon track may exist. The time assigned to
the π+ candidate is calculated using the mean times measured in the STRAW, NA48-CHOD
and RICH weighted by their respective measured resolutions. A π+ candidate track must have
momentum in the range 15–35 GeV/c and be within the sensitive regions of the downstream de-
tectors (RICH, CHODs, LKr and MUV1,2,3) with geometrically and time-coincident associated
signals recorded in the CHODs, LKr and RICH.

The candidate track must be consistent with the π+ hypothesis for the RICH reconstructed
mass and likelihood. The candidate must also satisfy a multivariate classifier based on calorimet-
ric information. On average, for 15–35 GeV/c tracks, the two methods achieve π+ identification
efficiencies of 82% and 78%, with probabilities of misidentification of µ+ as π+ of 2.3 × 10−3

and 6.3 × 10−6, respectively. A MUV3 veto condition rejects events with signals geometrically
associated with the track within a time window of 7 ns. No signals are allowed in any LAV
station (or SAV) within 3 (7) ns of the π+ time. No LKr clusters are allowed beyond a dis-
tance of 100 mm from the π+ impact point within cluster-energy dependent time windows of
10 to 100 ns. The STRAW, CHODs and LKr are used to veto events with additional activity,
including tracks produced by photon interactions upstream of the calorimeters and partially
reconstructed multi-track decays. Overall rejection of π0 → γγ decays is achieved with an
inefficiency of 1.3× 10−8.

A K+ is tagged upstream by the KTAG if Cherenkov photons are detected within 2 ns of the
π+ track time in at least five out of its total of eight sectors. A GTK track is associated with the
K+ if its time is within 0.6 ns of the KTAG time and the closest distance of approach (CDA)
to the π+ track is less than 4 mm. The K+/π+ matching is based on time coincidence and
spatial information and has an efficiency of 75%. The average probability for wrong (accidental)
association with pileup GTK tracks is 1.3% (3.5%) when the K+ track is (is not) correctly
reconstructed.

Upstream backgrounds arise from a combination of early K+ decays (upstream of the FV),
beam particle interactions in the GTK stations, additional GTK tracks, and large-angle π+

scattering in the first STRAW station. To minimise such backgrounds, the vertex formed be-
tween the selected K+ and π+ tracks must be inside the FV with no additional activity in the
CHANTI within 3 ns of the π+ candidate time. Additionally, a ‘box cut’ is applied requiring
that the projection of the π+ candidate track back to the final collimator (COL) is outside the
area defined by |x| < 100 mm and |y| < 500 mm.

The m2
miss observable is used to discriminate between a peaking two-body K+ → π+X signal

and backgrounds. Two signal regions are defined, called region 1 and region 2, to minimise large
backgrounds from K+ → π+π0, K+ → µ+νµ and K+ → π+π+π− decays. The reconstructed
m2

miss for region 1 must be between 0 and 0.01 GeV2/c4 and that for region 2 between 0.026
and 0.068 GeV2/c4. Additional momentum-dependent constraints supplement the definition
of the signal regions using alternative squared missing mass variables, constructed either by
replacing the GTK measurement of the beam 3-momentum with the average beam momentum
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and direction, or the STRAW 3-momentum measurement with one measured by the RICH under
the π+ mass hypothesis. These requirements reject events with incorrect reconstruction of m2

miss

due to momenta mismeasurements and improve background rejection, but decrease acceptance
at the boundaries of the signal regions.

4 Signal and background models

Geant4-based [19] Monte Carlo simulations of K+ → π+X decays are performed with the
assumption that X is stable, for X masses covering the search range at 1.4 MeV/c2 intervals.
This value corresponds to intervals of the squared missing mass that are always smaller than
its resolution. These simulations include decay kinematics, interactions in material, and the
responses of the detectors. In this study, a scan is performed searching for K+ → π+X signals
with X mass, mX , in the ranges 0–110 MeV/c2 and 154–260 MeV/c2. These mX ranges extend
beyond the K+ → π+νν̄ signal regions because of the resolution of the reconstructed m2

miss

observable. The resolution of m2
miss, σm2

miss
, as a function of simulated mX is shown in Fig. 2

(left). The reconstructed m2
miss resolution for a control sample of selected K+ → π+π0 events

is found to be 4% better in simulations than in data. The resolution derived from simulations
is therefore corrected by increasing it by 4% and a systematic uncertainty of 10% is assigned
to the m2

miss resolution. The acceptance for the selection described in section 3, as obtained
using simulations, is displayed in Fig. 2 (centre). The single event sensitivity, BRSES , defined
as the branching ratio corresponding to the observation of one signal event, is calculated by
following the procedure adopted for the K+ → π+νν̄ analysis using the K+ → π+π0 decay for
normalisation [16]; the resulting values are shown in Fig. 2 (right). The uncertainty of BRSES
is 10% and is mainly systematic. The largest contributions to this uncertainty are associated
with the trigger efficiency, signal and normalisation reconstruction and selection efficiencies [16],
and differences between K+ → π+νν̄ and K+ → π+X kinematics.
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Fig. 2: Resolution of the m2
miss observable (left), acceptance (centre) and single event sensitivity,

BRSES , (right) for K+ → π+X, as functions of mass hypothesis mX .

The sensitivity for low X masses is limited by the K+ → π+νν̄ signal region definition
m2

miss > 0, which is necessary to suppress the background from K+ → µ+νµ decays. This effect
reduces the acceptance by half for mX = 0, and equivalently at each signal region boundary
(Fig. 2 centre).

The acceptance for X with finite lifetime, τX and mX 6= 0, is computed under the following
assumptions: X decays only to visible SM particles; decays upstream of MUV3 are detected
with 100% efficiency. The efficiency is 99.9%, and the uncertainty in this quantity is included
in the systematic uncertainty. The acceptance for a set of τX values is calculated by weighting
simulated events by the probability that X does not decay upstream of MUV3. The acceptance
increases as a function of lifetime reaching a plateau for τX > 10 ns. For mX < 20 MeV/c2,
losses of acceptance at lower lifetimes are compensated by the increase in the Lorentz factor.
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Fig. 3: Distributions of the expected reconstructed squared missing mass, m2
miss, for back-

ground processes, obtained from simulations and data-driven procedures, displayed as stacked
histograms with bin width 0.00067 GeV2/c4. In each signal region, the polynomial function used
to describe the total background is shown.

The background contributions for the K+ → π+X search are the same as for the K+ →
π+νν̄ analysis with the addition of the K+ → π+νν̄ decay itself, which becomes the dominant
background. The SM description of the K+ → π+νν̄ decay is assumed. The total expected
background and the reconstructed m2

miss distributions for each component are obtained from
auxiliary measurements, as described in [16]. The resulting numbers of background events in
the signal regions are summarised in Table 1. The contributions from kaon decays other than
K+ → π+νν̄ are grouped in the row other K+ decays, and their distribution in m2

miss is known
with good accuracy. For the upstream background, an additional systematic uncertainty of
30% is included, to account for the uncertainty in the estimation of its distribution in m2

miss

resulting from the limited size of the control sample used for the auxiliary measurements. The
total background is described, as a function of the reconstructed m2

miss, by fitting polynomial
functions to the expectations in signal regions 1 and 2, as shown in Fig. 3.

Table 1: Summary of the predicted numbers of background events in the signal regions and the
observed events. The statistical uncertainty for SM K+ → π+νν̄ is negligible and the external
uncertainty arises from the uncertainty of the SM K+ → π+νν̄ branching ratio.

Region 1 Region 2

K+ → π+νν̄ (SM) 0.55 ± 0.07syst ± 0.13ext 1.61 ± 0.11syst ± 0.22ext
Upstream background 0.21± 0.12stat ± 0.12syst 0.68± 0.21stat ± 0.26syst
Other K+ decays 0.26± 0.04stat ± 0.05syst 0.31± 0.04stat ± 0.06syst
Total background 1.02± 0.13stat ± 0.15syst ± 0.13ext 2.60± 0.21stat ± 0.28syst ± 0.22ext
Observed events 0 2

5 Statistical analysis

The search procedure involves a fully frequentist hypothesis-test using a shape analysis with
observable m2

miss and an unbinned profile likelihood ratio test statistic. Each X mass hypothesis
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is treated independently. The parameter of interest, BR(K+ → π+X), is related to the expected
number of signal events, nS , by BR(K+ → π+X) = nS × BRSES .

The likelihood function has the form:

L =
(ntot)

ne−ntot

n!
×

n∏
j

[
nB
ntot

fB

(
m2

miss,j

)
+

nS
ntot

fS

(
m2

miss,j |µX , σX
)]
×
Nnuis∏
i

Ci(pimeas|pinuis)

where n is the observed number of events, ntot = nB + nS and nB is the expected number of
background events; fB(m2

miss) is a polynomial function of m2
miss normalised to unity which de-

scribes the total background in the signal region relevant for a certain mass hypothesis mX ; and
fS(m2

miss|µX , σX) is the Gaussian function, normalised to unity, with parameters µX and σX
obtained from a fit to the distribution of the reconstructed simulated events. Index j runs over
the n observed events and their reconstructed m2

miss are denoted m2
miss,j . The Nnuis nuisance

parameters considered, pinuis, are nB, BRSES , µX , σX , and are estimated by auxiliary measure-
ments. These estimations, pimeas = n̂B, B̂RSES , µ̂X , σ̂X , are treated as global observables [20].
The constraint terms, Ci(pimeas|pinuis), are the probability density functions describing the distri-
bution of each nuisance parameter. The constraint term for nB is a Poisson distribution with
mean value (n̂B/σB)2 where n̂B and σB are the central value and uncertainty of the background
expectation [21]. The constraint term for BRSES is a log-normal function with parameters cor-
responding to a relative uncertainty of 10%. A Gaussian constraint term is used for µX , with
relative uncertainty depending on the mass hypothesis mX . A log-normal constraint term is
used for σX , with the mean corresponding to the estimated value after the 4% correction (de-
scribed in Section 4), and relative uncertainty of 10%. The normalised polynomial functions,
describing the background distribution in m2

miss, are considered to be known exactly.
For each mass hypothesis the fully frequentist test is performed according to the CLs

method [22] to exclude the presence of a signal with 90% confidence level (CL) for the observed
data. A cross-check was performed, using single bin counting experiments in windows of width
equal to four times σm2

miss
around each mass hypothesis, with a hybrid frequentist treatment

using a log-likelihood ratio test statistic. A comparable expected sensitivity was obtained.

6 Results and discussion

Two candidate K+ → π+X events are observed [16] at reconstructed mmiss values of 196 and
252 MeV/c2. Upper limits are established on BR(K+ → π+X) at 90% CL for each X mass
hypothesis: expected and observed upper limits, assuming stable or invisibly decaying X, are
displayed in Fig. 4 (left). The observed upper limits are compared to the previous results from
the E787/E949 experiments [23] in Fig. 4 (right), as a function of mX and for different values of
τX , assuming X decays to visible SM particles. The strongest limits of 5 × 10−11 are obtained
at large X masses (160–250 MeV/c2) and long X lifetimes (> 5 ns). Under the assumption of
stable or invisibly decaying X these upper limits improve by a factor of O(10) in signal region 2,
and are competitive in region 1. For unstable X, assuming decays only to visible SM particles,
the same pattern holds in general. However, in region 1 the limits obtained improve across an
increasingly large range of mass hypotheses as the assumed lifetime becomes shorter. Despite
differences in experimental set-up between E787/E949 (stopped K+ decay-at-rest) and NA62
(highly boosted K+ decay-in-flight), the two results exhibit similar dependence on τX . This is
because the ratios of the Lorentz factor for the X particle to the decay length are similar in the
two experiments.

In a Higgs portal model with a dark sector scalar mixing with the Higgs boson, X production
and decay are driven by the mixing parameter sin2 θ (model BC4 [1, 24]). This gives rise to
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model-independent observed upper limits as functions of the mass and lifetime assumed for X
for NA62 (this work, solid lines) and E787/E949 [23] (dashed lines).

K+ → π+X decays with branching ratio proportional to sin2 θ. The constraints derived on
sin2 θ from this search, alongside results from other studies, are shown in Fig. 5.

In a scenario where X is an ALP with couplings proportional to SM Yukawa couplings (model
BC10 [1,14]) the K+ → π+X decay occurs with a branching ratio proportional to the square of
the coupling constant gY . The constraints on gY derived from this and other searches are shown
in Fig. 6.

If X decays only to invisible particles, such as dark matter, bounds on the coupling pa-
rameter (sin2 θ or gY for the scalar and ALP models, respectively) are directly derived from
its relationship with the branching ratio, with results shown in the right-hand panels of Figs. 5
and 6. If X decays only to visible SM particles, τX is inversely proportional to the coupling
parameters [14, 24], limiting the reach of this analysis for large coupling because of lower ac-
ceptance for shorter lifetimes. The X → e+e− decays dominate the visible decay width up to
the di-muon threshold beyond which an additional channel opens and τX decreases, limiting the
sensitivity of this search. The model-dependent relationship between the lifetime and coupling
therefore determines the shape of the exclusion regions shown in the left-hand panels of Figs. 5
and 6.

7 Conclusions

A search for the K+ → π+X decay, where X is a long-lived feebly interacting particle, is
performed through an interpretation of the K+ → π+νν̄ analysis of data collected in 2017 by
the NA62 experiment at CERN. Two candidate K+ → π+X events are observed, in agreement
with the expected background. Upper limits on BR(K+ → π+X) are established at 90% CL,
with the strongest limits of 5× 10−11 at large X masses (160–250 MeV/c2) and long X lifetimes
(> 5 ns), improving on current results by up to a factor of O(10). An interpretation of these
results to constrain BSM models is presented in scenarios where X is a dark scalar mixing with
the Higgs boson or is an ALP with couplings to fermions.
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The exclusion bound from the present search for the decay K+ → π+S is labelled as “K+ →
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