

Triggering in the ATLAS Experiment

making sure the needle ends up in the haystack

from ATLAS import trigger if coolPhysics == True: trigger.doStoreEvent() else: pass

- The **Trigger** system of an experiment at a hadron collider has a critical role, unfeasible to reconstruct and/or store every collision
- Need to reject orders of magnitude of soft QCD before reaching the interesting electroweak / high- p_T / BSM regime
- Two-level system to reduce 40 MHz collisions \rightarrow 100 kHz L1 \rightarrow 1 kHz HLT \rightarrow storage
- To put rates in context @13 TeV and 2e34 $cm^{-2}s^{-1}$ we expect ~600 Hz of $W(\rightarrow$ lep), and ~0.01 Hz of **ttH**
- The trigger needs to decide in < 2.5μs (at L1) and < 500 ms average (at HLT) which events to store and which to reject. Compared with up to 30 sec for full offline reconstruction

Introduction

Rate [Hz]

- L1 hardware-based trigger (40 MHz \rightarrow 100 kHz)
	- Output rate limited by detector readout
	- Use coarse information from calorimeter (L1Calo) and muon (L1Muon) systems to define (η × φ) Region-of-interest (RoI) for feature extraction
	- Simple selection on different signatures: muon, (isolated) calorimeter energy deposits consistent with electron/photon, tau, jet, MET
	- Several improvements in Run 2
		- Muon endcap calorimeter coincidence
		- Updated filters and noise cuts of L1Calo hardware logic
- **L1Topo** provides more sophisticated selections (angle, mass, …)
	- Critical for triggers such as di-tau and b-physics

Level-1 trigger

- HLT software-based trigger (100 kHz → 1 kHz average) • Full-granularity data available in a region-of-intereset (RoI) or full
- event event
- Selection very close to offline, including also multivariate selections, e.g. for b-tagging and tau identification ● SCP/SFTP access to user (home) and detector (shared) data. • Selection very clos ● Network Address Translation (NAT) for restricted set of TCP/IP connections from GPN to
- Latency O(s), max average processing time ~500 ms ● Intrusion monitoring and prevention system.
- Up to ~1500 HLT selection chains defined, out of which 300 physics *i* primaries
- Managed to keep the same kinematic selection on trigger particle candidates throughout Run 2 with help of improved identification, pile-up rejection methods, etc Before this upgrade, each host system setup was based on one physical host using $\bullet\;$ Managed to keep the same kinematic selection on tr iptables of the physical host provided a NAT for packets transfers from these internal

High-level trigger grading access control between CERN General Public Network (GPN) and ATCN. From 2013 until 10 and ATCN. From 20 the end of 2014 the LAN \sim 1014 the experiments are in the first Long Shutdown (LS1) states; this gave \sim us a perfect opportunity to upgrade control software and configuration on the Gateway service.

taking, including the ATLAS TDAQ (Trigger and Data Aquisition) and DCS (Detector Control

- Trigger decision is based on a set of conditions (object p_T , identification, isolation, multiplicity), that define the **Trigger menu**
	- documented in [ATL-DAQ-PUB-2019-001](https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-DAQ-PUB-2019-001/)
	- Highest rates at HLT for single muon/electron, ditau, MET
	- Same p_T threshold for electron/muon at HLT
- Also documented dedicated menus for heavy-ion, low-μ dataset (μ≈2), special runs

ATLAS Trigger menu @2e34

JAVIER MONTEJO BERLINGEN (CERN) ICHEP 2020 <u>CINGEN (GERN) IGHEP 2020 Geven and the second with the second</u>

Trigger menu design

- Main **limitation** for:
- Ditau, multijet, b-physics
- Single jet, single photon
- Multi-bjet, low- p_T electrons
- MET, multijets

- Designing the menu is a **balance** between analysis requests (store all the physics!) and system constraints
	- Peak L1 rate below 100 kHz (detector readout)
	- Average HLT rate ~1 kHz (storage and prompt reconstruction constraints)
	- Decide within 500 ms in average (available CPU in the HLT farm)
- Want to store only events that are actually going to be used, want online and offline reconstruction algorithms to be as close as possible
- Rate and CPU can be predicted for triggers in development making use of [Enhanced Bias](https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-DAQ-PUB-2016-002/) (EB) data
	- EB data: a dataset with O(1M) events, enhanced in highp_T objects, selected using only L1 triggers
	- By knowing the L1 prescales the selection bias can be removed with **event weights**
	- Provides an **unbiased** sample with sufficient statistical precision in the high- p_T/h igh-multiplicity regime
- Reprocessing enhanced bias data with a new trigger menu allows to predict rates and CPU for triggers in development

Predicting trigger rates and CPU

7

- Offline **MET** threshold kept at ~200 GeV across all Run 2 thanks to constant improvements to MET reconstruction
	- 2015 cell: E_T ^{miss} from calorimeter cells above noise threshold
	- 2016 mht: E_T ^{miss} from calibrated jets
	- 2017 pufit: E_Tmiss from hard-scatter clusters, sorted out from pileup based on a threshold based on total event energy
	- 2018 pufit+cell

• Improved **tau identification**

- Feed tracks to a recurrent neural network (**RNN**)
- Includes a 0-track mode to recover inefficiencies from track finding in the first pass of HLT tracking
- Better performance allowed to improve the efficiency while keeping the same rate

Performance highlights

Performance highlights

- Dedicated **B→K*ee triggers**, targeting resolved and also merged dielectron final states
- **L1**
	- Resolved: require two separated electrons with E_T > 7/5 GeV and $m(e,e) < 9 GeV$
	- Merged: require one electron with E_T > 7 GeV close to a jet with E_T > 15 GeV
	- Both would have too high rate, and require additionally 1 muon with $p_T > 6$ GeV or 2 muons with $p_T > 4$ GeV
	- **Unseeded**, run HLT algorithm on every L1-accepted event

• **HLT**

- select two 5 GeV electrons, originating from a common vertex and $0.1 < m(e,e) < 6 GeV$
	- additional muons at HLT if the L1 seed requires muons
- \bullet extremely CPU-demanding, requires to run low-p τ electron reconstruction on every EM RoI

- Several upgrades will improve the trigger performance towards Run 3
- The two upgrades with most impact on the trigger:
- **L1Calo** upgrade: new readout allows for improved granularity in the trigger: 1 old tower $= 10$ new super cells
	- Largest gain from reduction in isolated electron rates, and improved turn-on
- **L1Muon**: upgraded endcap can reduce by ~40% the muon rate. Allows for spatial and angular coincidence

Run 3, trigger phase-I upgrades

- Excellent performance of the trigger system allowed very stable data-taking by the ATLAS detector during Run 2
- Constant evolution and improvements of triggers ensured a nearly-constant offline threshold despite the large increase in instantaneous luminosity and pileup
- The triggers system (both hardware and software) is being upgraded to improve its capabilities towards Run 3
- Many great physics results made possible thanks to creative and custom triggers!

Conclusions

12

Run 3 electron turn-on

 L1 Electron Trigger Efficiency Electron Trigger Efficiency $\overline{}$

ATLAS Trigger menus (pp, HI)

Trigger menu design

- Continuous effort to port offline improvements to the trigger
- Need to find a compromise between performance and CPU requirements
- Maximize synergy between different trigger signatures
	- E.g. jet calibration uses tracks if available from b-tagging, but has also a calorimeteronly version if tracking has not run
- Most of the **bandwidth** is devoted to the main physics stream (>80%) and a dedicated b-physics stream (~15%)
- Most of the **rate** goes to [trigger-level analysis](https://arxiv.org/abs/1804.03496) (stores only jet 4-vectors reconstructed by HLT) and calibration streams, which store only a subset of the detector/objects
- Support and lower priority physics triggers are prescaled, and their prescale can be reduced towards the end of the LHC fill, once the limiting resources (L1 rate, CPU) are available

Streams and prescales

Run 3, multi-thread

- ATLAS is redesigning its core framework for native, efficient and user-friendly multi-threading $support \rightarrow AthenaMT$
- HLT trigger is not limited by memory, but will profit from the redesign in order to integrate more tightly with offline reconstruction
- HLT requirements (partial event reconstruction in Regions of Interest and early rejection) considered during design of AthenaMT from the beginning
- Replacing own scheduling and caching by native Gaudi Scheduler, which is also used for offline reconstruction
- AthenaMT offers three kinds of parallelism
	- Inter-event: multiple events are processed in parallel • Intra-event: multiple algorithms can run in parallel for an event • In-algorithm: algorithms can utilize multi-threading and vectorisation
	-
	-