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Abstract. We derive a model for the time evolution of beam losses due to macro
particles falling into the LHC proton beam. The macro-particle initial longitudinal
and transverse location, as well as its size are stochastic variables. By Monte-Carlo
methods we determine the likelihood that beam-losses due to macro-particle/proton-
beam interactions cause beam-dump triggers and/or quenches in beam-loss monitors
and superconducting magnets, respectively.
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1. Introduction

2. Beam-Charge Distribution

2.1. 2-D Gaussian Transverse Distribution. As in [1, 2] we assume that the proton
beam is continuous, i.e., we neglect the bunching of the beam, and we assume a Gaussian
transverse beam profile. Note that in the rest frame of the protons, the distances between
charges appear stretched by the Lorentz factor w.r.t. the same distance in the laboratory
frame1. With C = 26, 659 m, the LHC circumference in the laboratory frame, Np =
2808·1.3·1011 the total number of protons in the beam, e = 1.60·10−19 C the elementary
charge, and σx,y the horizontal and vertical standard deviations, the charge density in
the rest frame of the protons is

τ ′(x, y) =
Npe

γC2πσxσy
e
− x2

2σ2x
− y2

2σ2y .(1)

The Lorentz factor is computed from the proton kinetic energy Ep by

γ = 1 +
Ep

mpc2
,(2)

with mp = 1.67 · 10−27 kg the proton mass. For Ep = 6.5 TeV=e · 6.5 · 1012 J we find
γ = 6930.19, whereas for 450 GeV we find γ = 480.71. The charge distribution in the
laboratory frame is obtained by τ = γτ ′,

τ(x, y) =
Npe

C2πσxσy
e
− x2

2σ2x
− y2

2σ2y ,(3)

and the laboratory-frame current density ~J = J(x, y)~es is given by

J(x, y) =
Npfe

2πσxσy
e
− x2

2σ2x
− y2

2σ2y ,(4)

where, with vp the proton velocity, f = Cvp ≈ Cc = 11.25 kHz.

2.2. Beam parameters. To determine the horizontal and vertical beam size, we ob-
tain the beta function in the arc half-cell from the graphs in Fig. 1 and Eqs. (11.98)
and (11.108) in [5]. The maximum of the beta function is given

βmax =
2L

sinψ

(
1 + sin

ψ

2

)
,(5)

1[3] uses the Lorentz transformation between standard inertial observers to derive the relation. That
the same relations hold also for circular motion, where Lorentz transformation cannot be applied, is
demonstrated in [4, Sec. 20].
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Figure 1. Beta functions and dispersion computed with MAD-X [7].
Picture reproduced from [5, Fig. 11.6].

where ψ ≈ π
2 is the phase advance per cell in the LHC and L = 53.45 m is the half-cell

length. With b = 1
2

√
2Lβmax − L2 − L we find a parabolic fit

(6)

(7)

βx(s) =

{
L
2 + 2(s+b)2

L , if s < L,
L
2 + 2(s−(b+2L))2

L , if s > L,

βy(s) =

{
L
2 + 2(s−(b+L))2

L , if s < L,
L
2 + 2(s+(b−L))2

L , if s > L,

where s = 0 m corresponds to the beginning of the half-cell, i.e., 1026 m in Fig. 1. The
normalized emittance εn for Run 2 will be either 1.3 µm for BMCS beams, or 2.4 µm for
nominal beams [6]. The final baseline has not been decided upon. An emittance blow-up
of 20% and 5%, respectively, is to be expected at collisions. The geometric emittance is
computed from the normalized emittance via

(8) ε =
εn
γβR

∼ εn
γ
,

with c = 299.79 · 106 m s−1 the vacuum speed of light and βR =
vp
c . The horizontal and

vertical beam sizes are given by

(9)

(10)

σx(s) =

√
βx(s)ε+

(
D(s)

∆p

p0

)2

,

σy(s) =
√
βy(s)ε.
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3. Electric Field

3.1. Beam Field. To compute the electric field due to the proton beam, we map the

electrostatic field ~E′b in the rest frame of the protons to the laboratory frame by Lorentz

transformation2

~Eb = γ ~E′b(11)

~Bb =
γ

c2
~vp × ~E′b.(12)

The Lorentz factor in the charge density τ ′ is balanced by the same factor in the Lorentz
transformation of the fields. We may, therefore, compute the transverse electric field in
the laboratory frame as if the laboratory-frame charge distribution τ = γτ ′ was at rest,
and we can compute the transverse magnetic field as if there was a stationary current

density ~J . The effect of the magnetic field on the transverse particle motion, however,
is a second order effect and will be neglected.

The electric field of a 2-dimensional Gaussian charge distribution is described by the
Bassetti-Erskine formula [9]. For σx > σy we set

σ0 =
√

2(σ2x − σ2y),(13)

z1 =
1

σ0

(
x
σy
σx

+ iy
σx
σy

)
,(14)

z2 =
1

σ0
(x+ iy)(15)

so that

z21 − z22 = − x2

2σ2x
− y2

2σ2y
,(16)

and with ε0 = 8.85 · 10−12 F m−1 the formula reads

(17)

(18)

Ex =
Npe

2ε0C
√
πσ0

Im
(
w(z2)− e(z

2
1−z22)w(z1)

)
,

Ey =
Npe

2ε0C
√
πσ0

Re
(
w(z2)− e(z

2
1−z22)w(z1)

)
,

where w : C→ C is the complex generalization of the error function3

w(z) = e−z
2

(
1 +

2i√
π

∫ z

0
eζ

2
dζ

)
.(19)

See [10] for a detailed derivation. For symmetrically Gaussian beams, σx = σy = σ
the denominator in the leading factor and in the complex error function becomes zero,

2Note, there is no Lorentz transformation between a rotating fame as that of the rotating protons,
and a standard-inertial frame as the laboratory frame. We neglect the rotation of the protons, which
can be done on large enough scales, as explained in [8].

3In Mathematica, w(z) can be computed by means of the Erf(z) function by w(z) = e−z
2(

1 −
Erf(−iz)

)
, using the numerical tricks shown in [11] and the function Erfi(z) which provides a stable

implementation of (1 − Erf(z)). For a stable Matlab implementation see [12].
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leading to numerical instability in the implementation of the solution. We can use that,
for large arguments, the complex error function has an asymptotic expansion [11]

w(z) ∼ i√
πz

(20)

so that we find the expression for round beams

(21)

(22)

Ex = − Npe

2πε0C
Im
( 1

ix− y

)(
1− e−

x2+y2

2σ2

)
,

Ey = − Npe

2πε0C
Re
( 1

ix− y

)(
1− e−

x2+y2

2σ2

)
,

which gives4 the familiar expression in polar coordinates

Er =
Npe

2πε0rC

(
1− e−

r2

2σ2

)
.(23)

Finally, for σy < σx we may use a simple coordinate transformation y 7→ x and x 7→ −y
to find

σ0 =
√

2(σ2y − σ2x),(24)

z1 =
1

σ0

(
y
σx
σy

+ ix
σy
σx

)
,(25)

z2 =
1

σ0
(y + ix)(26)

so that

z21 − z22 = − x2

2σ2x
− y2

2σ2y
(27)

and

(28)

(29)

Ex =
Npe

2ε0C
√
πσ0

Re
(
w(z2)− e(z

2
1−z22)w(z1)

)
,

Ey =
Npe

2ε0C
√
πσ0

Im
(
w(z2)− e(z

2
1−z22)w(z1)

)
.

3.2. Mirror Charge Field. We must also consider mirror charges of the macro-particle
charge due to the beam-screen’s highly-conductive copper liner. We consider that for
macro-particles falling into the beam, the relevant contribution of mirror charges comes
from the horizontal top and bottom surfaces of the beam screen. The electric field due
to the mirror charge of the ionized macro particle is given by

(30) ~Em =
Qe

16πε0d21
~en1 +

Qe

16πε0d22
~en2

where d1 and d2 denote the vertical distance of the particle from the upper and lower
horizontal surfaces of the beam screen, i.e., d1 = h − y and d2 = 2h − d1 with h =

4To see this use 1
ix−y = −ix−y

(ix−y)(−ix−y) = −ix−y
r2

= −ircos(ϕ)−rsin(ϕ)
r2

.
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Figure 2. Electric field of the proton beam at three locations s = 0, L2 , L.
The density plot represents the transverse charge density distribution
Eq. (3). Axis coordinates are in meters.

18.45·10−3 m the half-height of the beam screen. ~en1 and ~en2 are the respective outward-
pointing normal vectors. Mirror charges are mostly relevant when the particle is close
to the beam-screen surface. The initial-position of the macro-particle is at y = h−R for
the top surface, and y = −(h−R) for the bottom surface, where R is the macro-particle
radius. Above, we included also the distant surface so that the equation is valid for
both, particles falling into the beam, and particles lifted up from the bottom surface.
Note that in [1] a round beam tube was assumed for the calculation of mirror fields. We
neglect mirror charges of the beam charge distribution, as well as screening currents in
the beam screen.

4. Equation of Motion

The equation of motion of the macro particle is given by

~̈r =

(
Qe

m

(
~E + ~̇r × ~B

)
+ ~g

)
,(31)

where ~̈r = ~a is the acceleration, m is the macro-particle’s mass, ~̇r = ~v is the macro-
particle velocity, and ~g = −g~ey, with ~ey the vertical direction and g = 9.81 ms−2 the
gravitational constant. With the above results, the equation of motion of the particle,
relevant for the simulation of UFO events, is given by

(32) ~a =

(
3Qe

4πR3ρ

(
~Eb + ~Em

)
+ ~g

)
,

where ρ is its density. Q denotes the macro-particle charge expressed in numbers of
electron charges e, and m denotes the particle mass.

5. Charging Rate of the Macro Particle

5.1. Knock-On Electron Probability. [13, Sec. III.14, p. 71] gives the charging

rate Q̇ of the macro particle that moves into the proton beam. The starting point for
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the charging rate is the distribution of secondary electrons, related to the Bethe-Bloch
formula [13] and expressed in SI units following [14]

∂2N

∂T∂s
= 2πr2emec

2z2n
1

β2R

F (T )

T 2
(33)

with the electron density in the macro particle

n =
NAZρ

AMu
,(34)

and the classical electron radius

re = e2/(4πε0mec
2),(35)

re = 2.82 · 10−15 m. N is the number of secondary electrons at a kinetic energy T , s
is the distance into the macro particle, NA = 6.02 · 1023 mol−1 the Avogadro number,
me = 9.11 ·10−31 kg the electron mass, ze the charge of the incident particle (z = −1 for
protons), Z the atomic number, A the relative atomic mass, Mu = 10−3 kg mol−1 the
molar mass constant, and, finally, F (T ) is a spin-dependent factor [15, p. 14–16] that
reads for protons

F (T ) = 1− β2R
T

Tmax
+

1

2

(
T

Ep +mpc2

)2

.(36)

Tmax is the maximum energy that can be transferred to the electron

Tmax =
2mec

2β2Rγ
2

1 + 2γme
mp

+
(
me
mp

)2 ,(37)

which results for βR → 1 and γ = 7500 (LHC protons at 7 TeV) in Tmax = 6.25 TeV ≈
Ep. We find

∂2N

∂T∂s
≈ πNAr

2
emec

2ρ

MuT 2

(
1− T

Tmax
+

1

2

T 2

E2
p

)
,(38)

where we used Z/A ≈ 1/2 and Ep +mpc
2 = Ep(1 + 1

γ ) ≈ Ep and βR ≈ 1.

5.2. Minimum Energy Transfer for Ionization. We can write the charging rate of
the macro particle as

Q̇ =

∫
A

∫
S

∫ Tmax

Tmin

J(x, y)
∂2N

∂T∂s
dT ds da,(39)

i.e., Q̇ is the number of elementary charges per unit time that the macro particle accu-
mulates. A is the cross-sectional area of the macro-particle, facing the proton beam.
Note that the location of A w.r.t. to the beam center is a function of time as the particle
moves into the beam. S is the path that an incident proton takes through the macro
particle.
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The minimum energy Tmin for the ionization of an atom is given in [13] by the ioniza-
tion constant5

I = 16 eV · Z0.9(40)

For the electron to leave the macro-particle, however, it has to traverse the macro par-
ticle, and overcome the Coulomb potential φ

φ(Q) =
Qe2

4πε0R
.(41)

Electrons that just make it out of the macro particle are emitted almost perpendicular
to the proton track [16, p. 7]. The practical range r is given by the empirical relation

r(T ) =
AT

ρ

(
1− B

1 + CT

)
,(42)

where A = 5.37·10−6

e kg m−2 J−1, B = 0.9815, and C = 3.123·10−6

e J−1. To determine the
minimum energy to escape from the macro particle, we need to determine the average
path length L that an electron, emanating from any location inside the macro-particle
sphere, has to traverse in the transverse plane to the proton track. Let the electron be
kicked at a longitudinal coordinate y defined w.r.t. to the sphere’s central transverse

plane. The transverse section of the sphere at y is a circle of radius R̄(R, y) =
√
R2 − y2.

For a given radial offset d of the incident proton from the central longitudinal axis of
the macro particle, an electron path, averaged over the all azimuthal angles θ, has the
length L′′

L′′(R, d, y) =
1

2π

∫ 2π

0
d cos θ +

√
d2 cos2 θ + R̄2(R, y)− d2 dθ.(43)

The full length of the proton path through the macro particle is g(R, d) = 2
√
R2 − d2

and the average of electron path lengths over the proton path is given by

L′(R, d) =
1

g(R, d)

∫ g
2

− g
2

L′′(R, d, y) dy.(44)

Finally, the average over all transverse locations (d, ϕ) of the proton path yields the
average electron path length

L(R) =
1

R2π

∫ R

0

∫ 2π

0
L′(R, d)ddddϕ.(45)

Numerical integration yields L(R) = 0.7358R. The above range equation can be inverted,
and we obtain the minimum energy for a range equal to the average path length L(R)
of

T (R) =
A(B − 1) + CL(R)ρ+

√
4ACL(R)ρ+ (A(B − 1) + CL(R)ρ)2

2AC
.(46)

Finally, the minimum energy that needs to be, on average, transferred to an electron to
leave the macro particle is

Tmin(Q,R) = ϕ(Q) + T (R).(47)

5In [14] we find I = 10 eV · Z.
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5.3. Charging Rate. For macro-particles that are small w.r.t. the beam size, R� σ,
the integral Eq. (39) can be rewritten in three factors

Q̇ =

∫
A
J(x, y) da

∫
S

ds

∫ Tmax

Tmin

∂2N

∂T∂s
dT.(48)

We find ∫
A
J(x, y) da = R2πJ(x, y) =

NpfR
2

2σxσy
e
− x2

2σ2x
− y2

2σ2y ,(49)

where (x, y) are the coordinates of the center of the macro particle w.r.t. the beam
center. The average length S of a path through the macro particle is given by

S =
1

R2π

∫ 2π

0

∫ R

0
2
√
R2 − r2 r drdϕ

=
4R

3
,(50)

so that ∫
S

ds ≈ S =
4R

3
.(51)

Tmin is of the order of several tens of keV, so that Tmax � Tmin and the upper integrand
may be set to∞. Moreover, the impact of F (T ) on this integral is negligible, so that we
can set F (T ) ≈ 1. It follows that∫ Tmax

Tmin

∂2N

∂T∂s
dT ≈

∫ ∞
Tmin

∂2N

∂T∂s
dT

=
πNAr

2
emec

2ρ

TminMu
.(52)

The product finally reads

(53) Q̇ =
2NpfR

3πNAr
2
emec

2ρ

3σxσyTmin(Q,R)Mu
e
− x2

2σ2x
− y2

2σ2y .

Note that this differs from the formula given in [1] where Tmin equals the Coulomb
potential.

As a cross-check, we simulate the ionization of a spherical Si particle by incident
high-energy protons with the Garfield++ software [17]. In the simulation the sphere is
bombarded by 105 protons, evenly distributed over the cross-sectional area of the sphere.
The average charge produced per proton Qpp is compared to the formula

(54) Qpp(R) =
Q̇∫

A J(x, y) da
=

4πRNAr
2
emec

2ρ

3Tmin(Q,R)Mu
,

where the initial macro-particle charge Q is set to zero. Results are shown in Fig. 3.
Analytical model and numerical simulation agree to within 30-40% w.r.t. the simulated
curve.



10 B. AUCHMANN, ET AL.

20 40 60 80 100
R [μm]

0.005

0.010

0.015

0.020

0.025

0.030

Qpp [1]

Garfield 4 TeV

Garfield 6.5 TeV

Analytic

Figure 3. Average ionization charge Qpp (in units of electron charge)
produced by an incident high-energy proton in an initially electrically
neutral Si sphere of radius R. Garfield++ [17] simulations are compared
to Eq. (54).

6. Rate of Inelastic Interactions

We can estimate the rate of inelastic interactions between the atomic nulcei in the
macro particle and the proton beam. For this, we give the interaction cross-sections,
which can be estimated by [18]

σiel = πr20A
2
3 ,(55)

where r0 = 1.2− 1.5 fm is an empirical constant [19]. The cross-section is typically ex-
pressed in mbarn, where 1 barn = 1.0 ·10−28 m2. More accurate cross-sections computed
with FLUKA [20, 21] are given in Tab. 2

The macroscopic section is given by

Σiel = σielρA,(56)

where

ρA =
NAρ

AMu
,(57)

is the atom density. The negative rate of inelastic interactions equals the proton loss
rate Ṅp, which is given by

(58) Ṅp = −
∫

A

∫
S
J(x, y)Σiel ds da = −2NpfσielR

3NAρ

3σxσyAMu
e
− x2

2σ2x
− y2

2σ2y .

The beam life-time can be estimated as

τb = −Np

Ṅp

.(59)

This treatment neglects that protons may be lost into collimators due to single-diffractive
or elastic interactions, as well as other effects.



PROTON-BEAM MACRO-PARTICLE INTERACTIONS: BEAM DUMPS AND QUENCHES 11

Figure 4. Peak energy deposition in MB coil per proton-C-atom inter-
action for different beam energies. The characteristic peak downstream
towards the end of the magnet is due to neutral particles hitting the
down-stream beam pipe because of the slight curvature of the MB mag-
nets.

Figure 5. BLM signal in Gy per proton-C-atom interaction in the in the
four BLM locations in an arc cell. The signals are plotted as a function
of UFO location.

7. BLM Signals and Thresholds

A FLUKA model [22] predicts the energy deposition in the superconducting coils
per inelastic proton-atom interaction in the beam center (see Fig. 4) as a function of
beam energy. Moreover, the FLUKA model provides the respective BLM response as a
function of longitudinal loss location and energy (see Fig. 5).

The data recorded in the different runnings sums (RS) of a BLM is calculated for
a respective integration time tint, at an energy-level Ep, and for an interaction at the
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longitudinal location s by

(60) BLMSignal(t, s) = −Ṅp(~r(t)) · BLMResponse(Ep, s),

(61) RS(tint, t, s) =

∫ t

t−tint
BLMSignal(t, s) dt,

where Ṅp(t) is the rate of inelastic interactions between the macro-particle and the beam
derived above.

Electro-thermal models allow to estimate whether a given energy deposition in a
superconducting coil as a function of space and time would generate a quench. The
so-called RS-at-quench is computed by

(62) RS@Quench(Ep, tint, s) =
BLMResponse(Ep, s) ·QuenchLevel(Ep, tint)

EnergyDeposit(Ep)
.

For the electro-thermal estimate of QuenchLevel(Ep, tint) a constant power pulse in time
with the spatial distribution from FLUKA is assumed. Note that this may not corre-
spond precisely to the quench level due to the rising flank of a roughly Gaussian-shaped
UFO beam loss. The error due to this effect is estimated to be within 20%.

When setting the BLM thresholds in the arcs, the longitudinal loss-location is not
known. The threshold is, therefore, computed using the minimal BLM response within
the longitudinal range where the respective BLM shows a larger signal than all others.6

We call this value MinBLMResponse(Ep). The BLM threshold is computed by

(63) BLMThreshold(Ep, tint) =
MinBLMResponse(Ep) ·QuenchLevel(Ep, tint)

EnergyDeposit(Ep)
.

The BLMThreshold(Ep, tint) is computed for 12 time ranges between 40 µs to 82 s, and
for 32 energy levels to produce the full thresholds table. A BLM-induced beam dump
will occur whenever

RS(tint, t, s) > BLMThreshold(Ep, tint) for any tint.(64)

8. Monte Carlo Model

We want to estimate the likelihood for a UFO event to cause a beam dump. The model
stretches over the basic repetitive element of the arc that is the cell. We implement a
UFO generator based on three distributions. The longitudinal distribution is constant

Ds(s) =
1 m

2L
(65)

6It follows that the orange BLM response in Fig. 5 is not used to protect rom UFO-induced quenches.
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with L = 53.45 m the half-cell length. The transverse distribution is equally constant
for x ∈ [0, xmax

7

Dx(x) =
1 m

xmax
(66)

with xmax < 14.15 · 10−3 m the half-width of the beam-screen upper and lower planes.
To make the model efficient, we should narrow down xmax to the stretch of the beam
screen that produces measurable peaks8 in the BLM signals. Due to symmetry, we need
not consider negative x-values.

The third distribution needed to start a Monte-Carlo simulation is the volume of the
macro particle. Based on dust observations in CERN buildings SMI2 and 113 cited in
[23, Fig. 5.4(b)] dust particle volumes range from 0.5 µm3 to 3 ·104 µm3] (corresponding,
for spherical macro particles to a range of radis R between 0.5 µm and 25 µm) with a

distribution ∝
(
1 m3

V

)2
. We, therefore, propose a normalized distribution function for

V ∈ [Vmin, Vmax]

DV (V ) =
VmaxVmin

Vmax − Vmin

1 m3

V 2
,(67)

where, as in the case of the x-distribution above, the upper and lower limits should be
chosen such that only relevant UFO events are considered.

Algorithm 1 illustrates how a series of UFO events can be simulated with stochastic
input data for initial macro-particle location and size. The functionality of the code
is further increased by mimicking the UFO Buster application’s analysis features, as
shown in Algorithm 2. The implementation of the algorithms should make use of parallel
computing.

9. Results

9.1. Pre-LS1.

9.2. Post-LS1.

9.3. Large-Emittance Bunches. [23] cites the idea to inject a few bunches with in-
creased emittance that, while not appreciably reducing luminosity, fend off falling macro-
particles before they could reach the high-power core of the beam. The above algorithm
is well suited to simulate this type of setup, requiring, in a first approximation, only a
superposition of two beams, one with Np1 = (Nb −N`) · Ib and normal emittance, and
one with Np2 = N` · Ib and large emittance, N` denoting the number of large-emittance
bunches and Ib the bunch intensity.

7Maybe it would be worth to study accumulations of UFOs under the pumping slots of the beam
screen?

8According to [23, Sec. 5.1.1] a UFO is detectable by the UFO Buster application if it leads to a
signal larger or equal to 10−4 Gy in the 640 µs running sum of at least two BLMs within 40 m.
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Algorithm 1 Monte Carlo algorithm to study UFO events in the LHC

1: Select Ep, εn, top or bottom location, macro-particle material, NMC, ∆t
2: Initialize Nu, Nd, Nf , Nq = 0
3: for i = 1 . . . NMC do
4: Generate s, x0, and V from Ds, Dx, and DV , respectively (65),(66),(67)

5: Compute σx(s), σy(s), R =
(
3V
4π

) 1
3 , and y0 = ±(h−R) (6),(8),(9)

6: Initialize j = 0, t0 = 0, ~r0 = x0~ex + y0 ~ey, ~v0 = ~0, Q0 = 0, Np0 = 0
7: repeat
8: j = j + 1
9: tj = tj−1 + ∆t

10: ~rj = ~rj−1 + ∆t ~vj−1
11: ~vj = ~vj−1 + ∆t ~a(~rj−1, Qj−1) (17),(21),(28),(30),(32)

12: Qj = Qj−1 + ∆t Q̇(~rj−1, Npj−1) (53)

13: Npj = Npj−1 + ∆t Ṅp(~rj−1, Npj−1) (58)
14: until |~rj | > |~rj−1| and ∀BLMs : BLMSignal(tj , s) < 0.1 Gy/s (60)

15: Call UFOBuster(Ṅiel(t), Nu, Nd, Nf , Nq) Alg. 2
16: end for

10. Summary

Appendix A. Constants and Parameters

Constants and LHC parameters are summarized in Tab. 1. Relevant material param-
eters for the macro particle are given in Tab. 2.

Table 1. Constants used throughout this note.

Symbol Value Name
Np 2808 · 1.3 · 1011 Post-LS1 nominal number of protons
e 1.60 · 10−19 C Electron charge
C 26, 659 m LHC circumference
mp 1.67 · 10−27 kg Proton rest mass
c 299.79 · 106 m s−1 Vacuum speed of light
f 11.25 kHz LHC revolution frequency
L 53.45 m Half-cell length
εn 1.3 µm Normalized emittance BMCS beam
εn 2.4 µm Normalized emittance nominal beam
ε0 8.85 · 10−12 F m−1 Vacuum electrical permittivity
h 18.45 · 10−3 m Beam screen height
g 9.81 m s−2 Gravitational constant
re 2.82 · 10−15 m Classical electron radius
me 9.11 · 10−31 kg Proton rest mass
NA 6.02 · 1023 mol−1 Avogadro Number
Mu 1.0 · 10−3 kg mol−1 Molar mass constant
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Algorithm 2 UFO Buster analysis

Initialize Bu = 0, Bd = 0, Bf = 0, Bq=0Booleans for detection of various UFO types
for All BLMs k = 1 . . . 6 do
if max (RS(640 µs, t, s)) /640 µs > 0.1 Gy/s then
Bu = 1 Registered as UFO
for all RS ` = 1 . . . 12 do
if max (RS(tint, t, s)) > BLMThreshold(Ep, tint) then
Bd = 1 (61)(63) Beam-dumping UFO
if max (RS(tint, t, s)) < RS@Quench(Ep, tint, s) then
Bf = 1 (62) Avoidable beam-dump

else
if tint + TimeToDump < MPSResponseTime then
Bq = 1 Quench despite beam dump

end if
end if

end if
end for

end if
end for
Nu = Nu +Bu Number of UFOs
Nd = Nd +Bd Number of beam dumps
Nf = Nf +Bf Number of avoidable beam dumps
Nq = Nq +Bq Number of unavoidable quenches
Fit Gaussians to rising and falling edge of BLMSignal
Record σrise and σfall

Table 2. FLUKA cross-sections for inelastic collisions of 6.5 TeV-
protons with the macro-particle, as well as the elements’ atomic numbers,
atomic masses, and mass densities.

Material σiel [mbarn] Z A ρ [kg m−3]

Carbon 2669 6 12.01 2250
Copper 850 29 63.55 8960

Aluminum 470 13 26.98 2700
Silicon 53010 14 2809 2328

Appendix B. Post-LS1 Thresholds

B.1. BLM Response. Tables 3-5 give numerical values of the BLMResponse function
at 7 TeV. To obtain data at 4 TeV, it is suggested to scale the results linearly with
energy [24].

10To check the energy-dependence of the cross-sections a FLUKA calculation at 450 GeV gave
245 mbarn.

11From Eq. (55).
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Table 3. BLMResponse at 7 TeV in the
BLMBI.xxRz.B0C10 MBA MBB, the BLM vertically above MB.A-
MB.B interconnect and the red line in Fig. 5.

Position [m] Value [Gy/s] Statistical
Error [%]

-11.654 3.2695 · 1013 10.7
-8.65472 6.0905 · 1013 6.9
-7.153 1.4525 · 1012 4.9

-1.68889 1.5393 · 1012 4.2
0.496244 1.5218 · 1012 4.1
7.77869 2.3873 · 1012 2.9
11.7781 3.3090 · 1012 2.4
13.4778 2.4828 · 1012 3.8
14.6776 1.0163 · 1012 5.9
14.9797 6.1615 · 1013 5.6
16.5391 1.5323 · 1013 15.5

Table 4. BLMResponse at 7 TeV in the
BLMBI.xxRz.B0C20 MBA MBB, the BLM vertically above MB.B-
MB.C interconnect and the green line in Fig. 5.

Position [m] Value [Gy/s] Statistical
Error [%]

7.77869 2.2428 · 1013 10.5
11.7781 5.4843 · 1013 6.4
13.4778 8.3447 · 1013 5.6
14.0777 1.3343 · 1012 4.3
14.6776 1.3439 · 1012 5.0
14.9797 1.5428 · 1012 3.2
16.5391 1.8319 · 1012 4.6
23.538 2.3873 · 1012 2.9
27.2373 3.3090 · 1012 2.4
28.937 2.4653 · 1012 4.6
30.0367 1.3246 · 1012 3.3
30.6387 6.3963 · 1013 6.1
32.0982 1.3369 · 1013 18.2

B.2. Energy Deposit. The peak energy deposit in an MB coil due to a proton-Carbon-
atom collision is 1.35 · 10−7 mJ cm−3 at 4 TeV, and 3.29 · 10−7 mJ cm−3 at 6.5 TeV;
compare with Fig. 4.

B.3. Quench Level. In Tab. 6, quench levels are given in mJ cm−3. for two beam-
energy levels. 3.93 TeV is the setting used in BLMs at 4 TeV beam energy, and the
6.39 TeV setting is used at 6.5 TeV.
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Table 5. BLMResponse at 7 TeV in the BLMQI.xxRz.B1I10 MQ, the
BLM vertically above MB.C-MQ interconnect and the blue line in Fig. 5.

Position [m] Value [Gy/s] Statistical
Error [%]

0.496244 1.2405 · 1013 19.6
7.77869 1.2230 · 1013 17.5
11.7781 1.5778 · 1013 18.3
13.4778 1.8958 · 1013 19.1
14.0777 2.5100 · 1013 14.7
14.6776 2.8236 · 1013 15.3
14.9797 2.7947 · 1013 16.8
16.5391 2.3435 · 1013 22.7
23.538 5.9284 · 1013 9.9
27.2373 1.4152 · 1012 7.2
28.937 2.2690 · 1012 5.2
30.0367 3.7636 · 1012 2.9
30.6387 5.1820 · 1012 2.6
32.0982 5.3818 · 1012 2.5
37.797 8.4270 · 1012 5.2
39.2966 8.6977 · 1012 2.1
40.2964 9.6018 · 1012 3.1
41.796 1.1556 · 1011 2.3
44.7953 1.0706 · 1011 1.6
46.297 1.9615 · 1012 5.6
49.4613 4.8903 · 1014 28.4

Table 6. Minimum energy-density to quench (quench level) in MB coils
on the inner-layer midplane turn for twelve running sums and two energy
levels. Energy levels are given in TeV, integration times in seconds, and
quench levels in mJ cm−3.

Ep / tint 40 · 10−6 80 · 10−6 320 · 10−6 640 · 10−6 2.56 · 10−3 10.24 · 10−3

3.93 14.55 14.94 18.38 21.61 29.1 46.93
6.39 4.58 4.75 5.93 7.97 12.81 21.11

Ep / tint 81.92 · 10−3 0.66 1.31 5.24 20.97 83.89
3.93 127.22 381.43 505.43 1,003.10 3,161.89 12,478.59
6.39 57.81 153.54 210.96 509.76 1,866.32 7,437.21

Appendix C. Pre-LS1 BLM Thresholds

In Tab. 7 we give the BLM thresholds in the three pre-LS1 BLM locations on the
MQ magnets. Note that the thresholds were set a factor three lower than the assumed
quench level.
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Table 7. Pre-LS1 thresholds at Ep = 3.93 TeV (settings used for 4 TeV
operation) for three BLM positions and twelve integration times. Thresh-
olds are given in mGy and integration times are given in seconds.

Pos. / tint 40 · 10−6 80 · 10−6 320 · 10−6 640 · 10−6 2.56 · 10−3 10.24 · 10−3

1 0.07 0.13 0.31 0.31 0.31 0.31
2 0.05 0.09 0.21 0.21 0.21 0.21
3 0.05 0.09 0.21 0.21 0.21 0.21

Pos. / tint 81.92 · 10−3 0.66 1.31 5.24 20.97 83.89
1 0.65 1.84 1.97 2.62 6.29 16.78
2 0.44 2.49 2.75 3.67 8.39 25.17
3 0.44 2.49 2.75 3.67 8.39 25.17
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