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Abstract. Storage has been identified as the main challenge for the future distributed computing 
infrastructures: Particle Physics (HL-LHC, DUNE, Belle-II), Astrophysics and 
Cosmology (SKA, LSST). In particular, the High Luminosity LHC (HL-LHC) will 
begin operations in the year of 2026 with expected data volumes to increase by at least 
an order of magnitude as compared with the present systems. Extrapolating from 
existing trends in disk and tape pricing, and assuming flat infrastructure budgets, the 
implications for data handling for end-user analysis are significant. HENP 
experiments need to manage data across a variety of mediums based on the types of 
data and its uses: from tapes (cold storage) to disks and solid state drives (hot storage) 
to caches (including world wide access data in clouds and “data lakes”). The DataLake 
R&D project aims at exploring an evolution of distributed storage while bearing in 
mind very high demands of the HL-LHC era. Its primary objective is to optimize 
hardware usage and operational costs of a storage system deployed across distributed 
centers connected by fat networks and operated as a single service. Such storage 
would host a large fraction of the data and optimize the cost, eliminating inefficiencies 
due to fragmentation. In this talk we will highlight current status of the project, its 
achievements, interconnection with other research activities in this field like WLCG-
DOMA and ATLAS-Google DataOcean, and future plans. 

1. Introduction 
The High Luminosity LHC (HL-LHC) will be a multi-Exabyte challenge where the envisaged 

Storage and Compute needs are a factor 10/100 above the expected technology evolution and flat 
funding [1] (fig.1). 

WLCG community needs to evolve current computing and data organization, management and 
access models in order to introduce changes in the way the computing infrastructure is currently used, 
mainly focused on optimizations to improve efficiency and performance, not forgetting simplification 
of operations. These are the ingredients that will allow to drive down costs and be able to satisfy the 
HL-LHC requirements. 
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Fig. 1. Rough estimate of a raw data volume of major LHC experiments (in PB per year) [1]. 

  
Technologies that will address the HL-LHC computing challenges may be applicable for other 

communities, such as SKA, DUNE, CTA, LSST, BELLE-II, JUNO, etc. to manage large-scale data 
volumes. One of such technologies that we will discuss in this paper is Data Lake A Data Lake in 
WLCG context is described as a set of sites associated by network or geographical proximity 
providing a common storage layer. The Data Lake holds the big part of the experiments data and 
provide the data access layer to compute hence reducing the overall storage needs. Proximity could be 
defined by geography, connectivity, funding or a shared user community. This requires that their 
combined storage capacity and network bandwidth can meet the demands of the designated task and 
that usage of the different sites is transparent to the users, which, in turn, implies some form of trust 
relationship between the sites and a way to locate data, ranging from a simple file catalogue to a full-
fledged namespace. 

 
Fig. 2. A Data Lake comprising three sites with different compute capabilities [2]. 

 
While access for users is transparent, the population and management of the storages within the 

Data Lake is a planned and managed activity. This includes the transitions between QoS levels (fig. 2). 
These operations are done on the granularity of the Data Lake. Data is moved to or from the Data Lake 
as a whole, not to or from a specific site, for instance internal data movement and files layout are 
managed and handled by the Data Lake internally. Resource management within the Data Lake is the 
responsibility of the Data Lake. 

Based on what has been described we think some of the fundamental requirements for a WLCG 
Data Lake infrastructure are: 
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● Common namespace and interoperability 
● Coexistence of different QoS 
● Geo-awareness 
● File transitioning based on namespace rules 
● File layout flexibility 
● Distributed redundancy 
● Fast access to data, latency compensation via caching 
● Built-in fault tolerance 

It’s worth mentioning that Data Lake is one of the several storage-related R&D projects conducted 
in parallel. Other R&D projects aimed to address proper handling of storages with different QoS 
include: 

● Data Carousel (ATLAS) 
● Data Ocean (ATLAS + Google) 
● Data Streaming 

All of them are in progress as a part of WLCG DOMA [3] or/and IRIS-HEP [4] global R&Ds for 
the HL-LHC. We strongly believe that it is important to develop a coherent solution to address the 
HL-LHC data challenges and to coordinate above and future projects. 

2. EULake prototype 
In order to evaluate existing storage technologies and their applicability in the Data Lake model, as 

well as prototype and test ideas, a Data Lake prototype spanning several WLCG sites with the 
namespace management nodes located at CERN has been built. Several years ago, in 2015, a 
similar prototype based on EOS [5] and dCache [6] storage systems was built on Russian sites during 
the Russian Federated Data Storage project [7]. Existing expertise in building and testing federated 
multi-site storages allowed us to fruitfully join the EULake with some decent resources (see section 3) 
and conduct important functional and performance tests. 

As of 2019, the Data Lake prototype (named EULake) spans seven European/Russian sites: CERN, 
JINR, NIKHEF, PIC, PNPI (part of NRC “KI”), RAL, SARA and three Australian sites (Melbourne, 
Perth and Brisbane). Some of them only provide storage resources, others, including CERN and PNPI, 
also provide accompanying dedicated compute endpoints that allow to conduct real-life HammerCloud 
[8] tests on EULake infrastructure. All sites have also deployed perfSONAR [9] servers to automate 
network monitoring. 

Initially, EOS storage system developed at CERN was the only software component used to build a 
working EULake prototype. One of the reasons was a rich feature set of EOS, which maps nicely into 
the basic requirements defined above: 

● Built-in namespace 
● Storage groups and catalog attributes 
● Geotags and Geo-scheduling 
● Layout types (replica, RAIN) 
● Support of xrootd [10] protocol and related proxy tools (xCache) 
● Support for slave metadata managers (MGMs) 
● EOS already has the machinery to support proposed QoS types (see table 1) 

We are able to measure performance of EULake with HammerCloud[8], leveraging standard full-
chain workflows and data access patterns. Initial focus was on ATLAS workflow with four data access 
(read) scenarios: 

Base. Local access (no EULake) 
A. EULake, data@CERN, compute@CERN 
B. EULake, data NOT@CERN, compute@CERN 
C. EULake, 4+2 stripes, compute@CERN 

Data is copied from the storage to the worker node at the job start. 
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Fig. 3. Stage-in times in seconds for High-I/O and Low-I/O intensity workflows in four 

aforementioned scenarios: Base, A, B and C. 
Lower is better. Black box shows 25%-75% percentile range, orange line marks the median. 

 
Table 1. Mapping between DataLake QoS and EOS usage scenarios. 

DataLake EOS 

Hot custodial file (2 fast copes+archive) 
Warn custodial file (disk copy+archive) 
Cold custodial file (archive) 
Hot ephemeral file (2 fast copy) 
Warm ephemeral file (Rain) 

group.X replica 2 + CTA 
group.Y replica 3 + CTA 
group.Z plain + CTA 
group.W replica 2 
group.U RAIN 

 
For different test scenarios different storage endpoints were defined in HammerCloud with 

prescribed paths to directories with attributes that corresponded to expected QoS characteristics – 
binding to specific pools, number of replicas, type of data redundancy (replication or RAIN). You can 
see sum results of tests in fig. 3. 

3. Russian resources and work in EUlake 
In order to take part in EULake a participating site has to provide some resources. Currently in 

Russia two major scientific centers participate in Data Lake R&D: NRC “Kurchatov Institute” and 
JINR, both using a virtualized environment. 

Unlike at CERN, at PNPI EOS is not installed on bare hardware, but deployed on top of Ceph [11] 
storage. The reason for this is added flexibility. Ceph allows for easy re-allocation of storage space 
between consumers with configurable redundancy for different types of data. 

During the initial allocation of EULake resources at PNPI an interoperation between EOS and 
Ceph had to be verified for any possible incompatibilities and performance bottlenecks. We have 
conducted EOS performance tests in three possible configurations: Ceph block device with replication, 
Ceph block device with Erasure Coding and Ceph filesystem (fig. 4). In our tests we were using the 
latest available at the moment version of Ceph Mimic 13.2.1. 
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Fig. 4. EOS on top of Ceph performance measurements. 

 
As it can be seen from the results, block I/O performance of Ceph replicated (cephrbdREP) and 

Erasure Coded (cephrbdEC) block devices as well as Ceph filesystem (cephfs) with EOS was on par, 
including the CPU utilization, while performance of metadata operations was significantly slower with 
Ceph filesystem. This was expected as Ceph filesystem maintains coherent metadata across all clients 
which adds latency overhead. As a conclusion we have decided not to deploy EOS on top of Ceph 
filesystem, but keep the deployment on top of Replicated and Erasure Coded block devices, which can 
be seen as different QoS types in Data Lake terms. 

After local testing of PNPI disk pools, the authors proceeded to test the Russian part of EULake. 
For this purpose PNPI FSTs with Ceph backend were connected to EULake and marked with geo-tags 
according to the hierarchical scheme: RU::PNPI. Also, before the start of testing, geo-tags of JINR 
FSTs were changed according to the same scheme: RU::JINR. 

This hierarchical scheme allows a sequential binding to the client location starting from the 
rightmost side of the geo-tag. If you search for the closest transfer endpoint, in the beginning the 
match of the complete geo-tag is evaluated, then parts of the geo-tag separated by double colons are 
dropped from the right side until a match is found: RU::PNPI::DISK1� RU::PNPI � RU. 

After geo-tagging, storage endpoints for different parts of EULake namespace were created in 
HammerCloud, corresponding to different layouts (Plain, Replica (2 stripes), RAIN (4 + 2 stripes)) 
and different placement policies (Gathered, Hybrid, Simple (based on client geotag)). Tests were 
started with HammerCloud utilizing two types of ATLAS workflows typically found in the real life: 

● Simul - low I/O intensity workflow running CPU-intensive ATLAS simulation with Geant 4. 
● ProductionDerivation - high I/O intensity workflow running ATLAS reconstruction jobs. 

After the first successful tests from CERN (fig. 5) it was decided to enhance the tests by using 
client geolocation. For this purpose, a Compute Element (CE) with characteristics that satisfy ATLAS 
data processing requirements was deployed at the PNPI resource center and registered with the 
HammerCloud. Unfortunately, HammerCloud configuration for the new CE at PNPI took longer than 
expected and the statistics for the tests were gathering slowly. 

In order to get some basic results faster it was decided to simultaneously run local read/write tests 
for the EULake with exactly the same scenarios that were configured for the HammerCloud, which 
represent combinations of 3 layouts and 3 placement policies: 

● Layouts: Plain, Replica (2 stripes), RAIN (4+2 stripes) 
● Placement policies: RU:Gathered (on all Russian sites), RU:Hybrid (on Russian sites with a 

copy on any pool in EULake), Simple (on the closest data pool). 

 kB/sec (higher is better) 

files/sec (higher is better) 

kB/sec (higher is better) 

cephrbdREP 
cephfs 
cephrbdEC 
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The xrdstress utility, a part of the EOS test package, and a simple copy by the xrdcp command 
were used as a testing tool. The xrdstress utility gives averaged results - the mean value and the 
dispersion of the read/write speed. But in the case of our tests intermediate peaks in transfer 
performance were also interesting, so we had to use both tools side by side to measure transfer 
performance for EULake endpoint mentioned above. A similar testing methodology has already been 
used by the authors when working for the Russian Federated Storage project [7,13,14,15], but for the 
EULake case test scripts were somewhat refined for existing realities and updated software. 

 

 
Fig. 5. Stage-in times in seconds for Simul (Low-I/O) and ProductionDerivation (High-I/O) 

workflows in three scenarios: no EULake, EULake with data@CERN and compute@CERN (test A), 
EULake with data@RU and compute@CERN (test B). Lower is better. Black box shows 25%-75% 

percentile range, black line shows 1%-99% percentile range, orange line marks the median. 
 

The tests were conducted from a client computer – virtual machine with 2 cores, 4GB RAM, 10GB 
Ethernet located inside the local network of the PNPI resource center with RU::PNPI geo-tag. Reading 
was always done from the nearest data pool which had the necessary replica, and in the case of a 
simple placement policy writing was also directed to the nearest data pool. 

Expected results: Availability of geo-local replicas should improve file read (stage-in) speed; An 
ability to tie directories to local storages (FSTs) should improve write speed for files in such 
directories (stage-out). 

The results of (fig. 6, 7) almost coincided with the expectations, with the exception of a few 
subtleties that were well understood. Placement policy defines where to write a file, but does not 
guarantee that a file will say at this location, because a file can be moved by EOS balancers in the 
background. This leads to situations when a file was written to the closest data pool, but at the time of 
reading it’s no longer available there. 

The read/write speed for the RAIN layout drops significantly compared to the replica layout. This 
was not so noticeable during the tests at CERN (fig. 3) where all parts of RAIN were located at pools 
inside CERN network. The reason for this is also clear - the xrootd client does not have a native RAIN 
support, therefore at first all four stripes of the file are gathered on a single pool defined by the geotag, 
and only after that the file is transferred to the client. The same happens during the write - the file is 
copied to a single pool from where its stripes are transferred to other pools by EOS and only after that 
the client is sent a message about successful transfer completion. In our tests network connection 
between RAIN pools was often much worse that it was between the client and the closest pool. 
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Fig. 6. Test results with a single replica (tests 1,3) for plain and RAIN (tests 3,4) layouts while writing 
to the closest data pool (tests 2,4) and all Russian sites(tests 1,3). Numbers in the yellow frames show 

the replica distribution at the end of the tests. The dashed red line shows xrdstress result, the blue 
histogram shows the xrdcp results. Both tests have the similar parameters: 100 repetitions, 100 MB 

file size. 
 

 
Fig. 7. Test results with creation of two replicas with different placement policies: on the closest data 
pool (test 1), on all Russian sites (test 2) and on a Russian site with a copy on a non-Russian site (test 
3). Numbers in the yellow frames show the replica distribution at the end of the tests. The dashed red 

line shows xrdstress result, the blue histogram shows the xrdcp results. Both tests have the similar 
parameters: 100 repetitions, 100 MB file size. 

 
 
 
 

 

Test 1. 
Replica counts 
CERN::HU  1 
RU::Dubna 55 
RU::PNPI 44 

Test 2. 
Replica counts 
RU::PNPI 100 

Test 3. 
Replica counts 
RU::Dubna 300 
RU::PNPI 300 

Test 4. 
Replica counts 
CERN::HU 200 
ES::PIC 100 
RU::Dubna 100 
RU::PNPI 64 

 

Test 1. 
Replica counts 
CERN::HU 28 
ES::PIC 39 
RU::Dubna 16 
RU::PNPI 117 

Test 2. 
RU::Dubna 100 
RU::PNPI 100 

Test 2. 
CERN::HU 22 
ES::PIC 44 
RU::Dubna 64 
RU::PNPI 70 
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4. Conclusions 
In this paper we have shown how Ceph can be used as one of the underlying storage technologies 

for the DataLake. We have exploited and compared various options for provisioning of the Ceph 
storage. 

As the primary results of this work we can show how the Data Lake prototype can be built based 
purely on EOS. On the other hand we discovered some inconsistencies with the proposed schemes.  

First and foremost are placement policies. In the DataLake, when storing data in accordance with a 
certain QoS, it is assumed that the data will stay at the corresponding QoS pools. EOS placement 
policies define the pool where the data is first transferred, but they do not guarantee that the data will 
stay there. The data can migrate to a different pool possibly corresponding to a different QoS 
depending on the balancing settings. This problem can be dealt with by turning off the global 
balancing, but leaving the group balancing on and defining groups as separate QoS. But this solution is 
not universal and in principle artificial - it forces us to abandon some functionality of the system in 
favor of the requirements. And it still does not protect the data from migrating between the regions. 
This will be addressed at software level and need more testing at scale as both the concepts and the 
code are under development.  

The second is somewhat expected inefficiency of the EOS RAIN storage layout. Without client-
side support for multi-striped I/O, this layout is only efficient when all parts of RAIN are in the same 
high-throughput network. As we can see, RAIN loses performance significantly if it spans storage 
servers outside of CERN network. This problem can be mitigated by deploying a caching server on the 
client’s network. There are ongoing R&D activities in WLCG to understand caching mechanisms and 
the ability to efficiently hide latency in different scenarios. 

Of course, EOS is not the only software that can be used for such infrastructure. During the 
Russian Federated Data Storage project it was shown that dCache (version 2 at the time) can also be 
used in such a distributed installation. Moreover, dCache has significantly improved feature-wise in 
the last years with the release of version 3. 

In order to allow sites and communities to have a freedom of choice of the storage system, and 
evaluate a slightly more heterogeneous Data Lake, EULake is currently transitioning from a EOS-only 
system into EOS + Rucio [15]. 
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