
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

ACAT 2019

Journal of Physics: Conference Series 1525 (2020) 012041

IOP Publishing

doi:10.1088/1742-6596/1525/1/012041

1

Faster RooFitting: Automated parallel calculation of

collaborative statistical models

E G Patrick Bos1, Carsten D Burgard2, Vincent A Croft3,
Inti Pelupessy1, Jisk J Attema1 and Wouter Verkerke2

1 Netherlands eScience Center, Amsterdam, Netherlands
2 ATLAS group, Nikhef, Amsterdam, Netherlands
3 Dept. of Physics and Astronomy, New York University, New York, USA

E-mail: p.bos@esciencecenter.nl

Abstract. RooFit [1, 2] is the main statistical modeling and fitting package used to extract
physical parameters from reduced particle collision data, e.g. the Higgs boson experiments at
the LHC [3, 4]. RooFit aims to separate particle physics model building and fitting (the users’
goals) from their technical implementation and optimization in the back-end. In this paper,
we outline our efforts to further optimize this back-end by automatically running parts of user
models in parallel on multi-core machines. A major challenge is that RooFit allows users to
define many different types of models, with different types of computational bottlenecks. Our
automatic parallelization framework must then be flexible, while still reducing run-time by
at least an order of magnitude, preferably more. We have performed extensive benchmarks
and identified at least three bottlenecks that will benefit from parallelization. We designed a
parallelization layer that allows us to parallelize existing classes with minimal effort, but with
high performance and retaining as much of the existing class’s interface as possible. The high-
level parallelization model is a task-stealing approach. Preliminary results show speed-ups of
factor 2 to 20, depending on the exact model and parallelization strategy.

1. Introduction
RooFit is a tool used in large collaborations of hundreds of physicists to fit large statistical
models to data coming from particle accelerator experiments. Streamlining the model fitting
process is crucial for increasing the productivity of such collaborations. When a model takes
only minutes to verify instead of hours, the user can remain focused on the issue at hand instead
of having to switch into and out of context again and again. In addition, faster run-times would
allow fitting models with much more parameters to larger datasets — necessary to investigate
the next generation of particle physics models, like e.g. Effective Field Theory models of the
Higgs boson — leading to more precise results, or even completely new findings, like models of
dark matter or super-symmetry.

2. RooFit performance bottlenecks
To gauge current performance of RooFit and to identify the most promising optimization
targets, we ran a benchmark on both realistic particle physics models and a set of representative



ACAT 2019

Journal of Physics: Conference Series 1525 (2020) 012041

IOP Publishing

doi:10.1088/1742-6596/1525/1/012041

2

toy models1. Apart from two key serial optimization opportunities, namely vectorization and
memory access pattern optimization [5], no obvious further optimization target was identified
without parallelization. In particular, we identified three major bottlenecks that could benefit
greatly from parallelization:

(i) Gradient calculation (parameter partial derivatives) in the Minuit2 Migrad minimizer;

(ii) Likelihood evaluation, which is a sum over PDF components evaluated for events;
parallelization can happen both over events, scaling with data volumes, and over (unequal)
components, scaling with model parameters;

(iii) Integrals (normalization) and other expensive shared components.

Which of these bottlenecks are actually relevant depends very much on the user’s specific model.
In some cases, parallelization of one type of “bottleneck” may lead to slower run-times due to
increased overhead. This calls for the implementation of multiple strategies that can be activated
or deactivated depending on the model at hand.

In this paper, we focus on our implementation of the gradient level parallelization strategy.
This strategy speeds up fits of likelihoods (or other test statistics) with a large number of
parameters, which is the case for the ATLAS and CMS Higgs combination fits. Each fit
parameter corresponds to a numerical partial derivative calculation in Migrad, and these partial
derivatives can be calculated in parallel. In this way, we speed up the most time consuming
part of the Migrad minimization procedure [6], the gradient step. For N parameters, this step
involves 2N test statistic evaluations. The second most expensive item, the line-search step
between gradient steps, takes only a few test statistic evaluations. Note that speeding up the
test statistic would speed up both steps. However, this is much more complicated due the wide
range of possible test statistics. In contrast, given a sufficient number of model parameters
(sufficient being a multiple of the number of available CPU cores), the strategy of parallelizing
the gradient in the minimizer will always yield performance improvements. This is why we chose
to initially focus on this strategy.

3. Parallel design
In order to support multiple strategies for the parallelization of RooFit models, we designed a
generic framework, RooFit::MultiProcess, that we expect to be close to optimal, flexible and
automatic by default. The basis of the framework is a work-stealing approach.2 This approach
performs and scales near optimal in general cases [7, 8]. For each parallelizable task, a number
of sub-tasks or jobs is defined and sent to a queue process that handles bookkeeping of these
tasks. A pool of workers subsequently “steals” the jobs from the queue process. Each worker
only gets one job at a time and returns the result to the queue when it’s done. Then the worker
will request a new job, until the queue runs out of jobs. This system automatically balances
the unequal loads that jobs in the heterogeneous tasks like composite likelihood calculations or
partial derivatives creates. Communication between processes is done by message passing using
ZeroMQ [9].

To make the implementation flexible and easily extensible to possible new future bottlenecks,
we designed the framework in such a way that it is itself independent of existing code, but can
be applied as a thin layer over C++ classes in the existing code. This means that the interface
of the existing RooFit classes can still be used. Our layer provides the low-level toolkit necessary
to easily build a parallelized version of the class.

We aim to provide a smooth transition for users by ensuring that all algorithms implemented
in RooFit::MultiProcess produce the exact bit-wise identical results as the previous

1 The benchmarks can be found in our GitHub repositories at https://github.com/roofit-dev/

parallel-roofit-scripts and https://github.com/roofit-dev/rootbench.
2 Thanks to eScience Center efficient computing expert Jason Maassen.

https://github.com/roofit-dev/parallel-roofit-scripts
https://github.com/roofit-dev/parallel-roofit-scripts
https://github.com/roofit-dev/rootbench


ACAT 2019

Journal of Physics: Conference Series 1525 (2020) 012041

IOP Publishing

doi:10.1088/1742-6596/1525/1/012041

3

algorithms. One example is the transformation to Minuit2 internal parameters, which involves
trigonometric functions that cause rounding differences. For more design details, we refer to [10].

4. Results
We next present the results of benchmarks run using our implementation of a gradient-level
parallelization strategy in the new RooFit::MultiProcess framework. This method was
benchmarked on two realistic models:

(i) Fast model: a gluon fusion Higgs boson production model on an Asimov data set [11]. This
has 13795 likelihood components and 265 parameters. A fit on this model runs in about
20 seconds – our main target is to speed up longer running benchmarks, but we used this
model for getting good statistics on the timing data, which inevitably varies due to external
influences, like operating system or other background activity.

(ii) Big model: ATLAS Higgs combination fit [12]. This model has 126883 likelihood
components and 1487 parameters. In a realistic scenario, where the starting point of the
fitter is not close to the actual minimum, this model fits in a few hours.

We ran the benchmarks on a CentOS 7 node of the Stoomboot cluster at Nikhef. The
node runs on an AMD EPYC 7551P 32-core CPU, with 256 GB RAM, which is plenty for our
purposes. No other users could use the node at the same time, so the impact of concurrently
run programs is minimized to only processes run by the OS.

As per our design (previous section), our fit results using the new parallel framework are
exactly the same as those that come out of using the serial RooFit routines. For further physics
validation of the models we refer to the respective cited references.

4.1. Fast model results
The fast model fit runs in about 17 seconds with the old RooFit::RooMinimizer class that just
runs serially in a single process, indicated by the black horizontal line in figure 1a. As figure 1
further shows, the single worker MultiProcess run is slower, averaging at 23 seconds. This
is in part due to communication (the orange “update” component), which the RooMinimizer

does not have to bother with, but also clearly the gradient calculation itself was slower in
our benchmarks, since it is slower than the entire minimization. We did not measure the
RooMinimizer separately in terms of these components, so we must partly speculate as to the
precise cause of the differences, but we suspect that also the rest term (i.e. mainly the line
search step) runs slightly faster in the old situation compared to the single worker situation.
We found that this is largely due to the fact that RooFit function calls use a highly efficient
memoization mechanism. This mechanism stores calculated parts of the likelihood’s expression
tree and only recalculates those parts when the parameters that that specific subtree depends on
change. However, these cached values are not synchronized between the workers and the master
process. Since the main process does the line-search step and the workers do the gradient
steps, and parameters change in between these steps, the cache is effectively thrown away each
time the work load switches from the master process to the workers and the other way around.
Compared to the old RooMinimizer, this causes a slight delay both in the master process and
in the workers at the start of each step. These effects lead these fast runs to experience a
high degree of “overhead”, i.e. a lack of perfect scaling. In fact, beyond 8 cores, the lack of
further scaling, but growth of the rest term, leads to anti-scaling, i.e. slower wall clock times
with increasing number of workers. This can be seen most clearly in figure 1b, specifically in
the purple line that represents the speed-up for the total run with respect to the single worker
run. Despite this, a speed-up of a factor 2.5 can be achieved with 4 workers on a “fast” run like
this.



ACAT 2019

Journal of Physics: Conference Series 1525 (2020) 012041

IOP Publishing

doi:10.1088/1742-6596/1525/1/012041

4

(a) Wall clock time of runs in seconds. (b) Speed-up of the runs compared to a
single worker run.

Figure 1: Fast model wall clock run times for runs with increasing number of workers on the
horizontal axis. For each number of workers, the fit was repeated 10 times to get both mean
run time — indicated by the height of the bars — and standard deviation — indicated by the
black error bars on each histogram bar. Separately measured components of the run time are
colored as indicated in the legend: gradient calculation time, update time of parameters between
processes, terminate time at the end of a run (shutting down ZeroMQ sockets and context and
the forked processes) and the rest of the run time (in these runs this includes the line-search
phase). For reference, the black horizontal line at about 17 seconds indicates the mean run time
of the old RooFit::RooMinimizer class, while the surrounding two grey lines indicate those
runs’ standard deviation.

4.2. Load balancing

(a) Three iterations of a three worker run. (b) Two iterations of an eight worker run.

Figure 2: Load balancing of our work stealing algorithm. Each panel represents one gradient
calculation. Each gradient calculation consists of 265 partial derivatives, each of which is shown
as a differently colored stacked “sub”-bar. The three or eight main bars each represent work
done on one of the workers used in that run. Vertical axis shows wall clock time in seconds.

One might suspect that waiting time in-between partial derivative calculations on the workers
could be a delaying factor as well, but we confirmed that this was not the case in any significant
way. In addition, we investigated whether a sub-optimal load balancing of the partial derivatives
over the workers could be causing the sub-optimal scaling. This analysis for a single fast model



ACAT 2019

Journal of Physics: Conference Series 1525 (2020) 012041

IOP Publishing

doi:10.1088/1742-6596/1525/1/012041

5

run is illustrated in figure 2. We see that for three workers (panel 2a), the load for each gradient
is, in fact, very well balanced over the workers. In the case of the eight workers (panel 2b), the
idle times of some workers that are waiting for the slowest worker becomes more noticeable. We
measured that on average this costs about 2% of the run time with 8 workers on the big model
run. All in all, we can conclude that the dynamic load balancing of our work stealing approach
is efficient.

4.3. Big model results

(a) Timing (b) Speed-up

Figure 3: Big model benchmark results. In this run, for each number of workers, the fit was
repeated only 3 times and we additionally measured the line-search phase separately. See the
caption of figure 1 for further details.

Figure 4: Big model benchmark
results for performance models of
longer total fitting run times.

Figure 3 shows the main timing results on the
big model. Due to time constraints we ran this
model with initial starting parameters very close to the
actual minimum, leading to only 10 gradient steps per
minimization run. We find in this case that a speed-
up of a factor 4 can be achieved with 7 workers. The
update and termination times seem to have become
insignificant in these longer runs. The rest term, on
the other hand, plays a major role in keeping the model
from scaling. Further analysis revealed, however, that
this component happens only once at the beginning of
a minimization run. It it caused by the high number of
constant terms in this model and the current inefficient
implementation of the synchronization of these terms
between RooFit and Minuit. Apart from this, the line-
search step, which here we do measure independently
of the rest term, turns out not to be insignificant
either, although at least it remains constant, since it
is calculated independently of the workers.

In a typical realistic fit, many more gradient steps
would be performed, since the initial guesses of the parameters will not be close to the true



ACAT 2019

Journal of Physics: Conference Series 1525 (2020) 012041

IOP Publishing

doi:10.1088/1742-6596/1525/1/012041

6

minima. To see how our above results generalize to such a more realistic scenario, we also
ran several times with starting guesses further from the minimum. We found that the rest and
terminate components stay constant within the expected variance. Since these are only one time
costs that do not scale with the number of steps (whereas the gradient, update and line search
components do), we can easily construct a performance model for longer, more realistic runs. In
figure 4 we show these performance model results for three run times: 10 minutes, 1 hour and
2 hours. The latter two are, in fact, the actual realistic range of single core run time using real
Run 2 data [12]. We show that using 16 workers (possibly less, since we did not measure any
amount of workers between 8 and 16) one can achieve an average total run time speed-up of a
factor 6.5.

5. Discussion
Our parallelized gradient method achieves a factor seven speed-up on our main target of
big models. The exact speed-up varies slightly, but not significantly from run to run.
Communication between the processes causes part of this variable overhead, since we currently
synchronize all parameters from and to all nodes after each run, amounting to ∼ 1000 numbers
being transferred between N processes for each gradient call. This is necessary because the
gradient algorithm self-adapts its precision based on the minimizer’s search progress. We could
reduce the required communication by two orders of magnitude by pinning partial derivatives
to specific workers, since the adaptive precision for each derivative component only depends on
that component itself. This trade-off of flexibility in dynamic load balancing (which would be
lost when pinning gradient components to specific workers) versus reduced communication could
be implemented as an alternative strategy. Both strategies may prove useful in different cases.

The framework is currently available in the ROOT fork in the RooFit development GitHub
page at https://github.com/roofit-dev/root/tree/MP_ZeroMQ. We warn that it should not
be considered production-ready. Once ready, it will be included in an upcoming official ROOT
release. The authors are in close contact with the ROOT developers team to coordinate this
effort.

Acknowledgments
This project was funded by the Netherlands eScience Center. The benchmark results were
analyzed and visualized using Python modules NumPy [13], Matplotlib [14], Seaborn [15] and
Pandas [16] in Jupyter notebooks [17].

References
[1] Verkerke W and Kirkby D 2003 ArXiv Physics e-prints (Preprint physics/0306116)
[2] Moneta L, Cranmer K, Schott G and Verkerke W 2010 Proceedings of the 13th International Workshop on

Advanced Computing and Analysis Techniques in Physics Research. February 22-27, 2010, Jaipur, India.
p 57 (Preprint 1009.1003)

[3] ATLAS and CMS Collaborations 2015 Phys. Rev. Lett. 114 191803 (Preprint 1503.07589)
[4] ATLAS and CMS Collaborations 2016 JHEP 08 045 (Preprint 1606.02266)
[5] Hageböck S 2019 J. Phys. Conf. Ser.: ACAT 2019
[6] James F and Roos M 1975 Computer Physics Communications 10 343–367
[7] Blumofe R D and Leiserson C E 1994 Proceedings of the 35th Annual Symposium on Foundations of Computer

Science SFCS ’94 (Washington, DC, USA: IEEE Computer Society) pp 356–368 ISBN 0-8186-6580-7 URL
https://doi.org/10.1109/SFCS.1994.365680

[8] Van Nieuwpoort R V, Wrzesińska G, Jacobs C J H and Bal H E 2010 ACM Trans. Program. Lang. Syst. 32
9:1–9:39 ISSN 0164-0925 URL http://doi.acm.org/10.1145/1709093.1709096

[9] Hintjens P 2013 ZeroMQ: Messaging for Many Applications (O’Reilly Media)
[10] Bos E G P, Pelupessy I, Croft V A, Verkerke W and Burgard C D 2018 2018 IEEE 14th International

Conference on e-Science (e-Science) pp 345–346
[11] Aaboud M et al. 2019 Physics Letters B 789 508 – 529 ISSN 0370-2693 URL http://www.sciencedirect.

com/science/article/pii/S0370269318309936

https://github.com/roofit-dev/root/tree/MP_ZeroMQ
physics/0306116
1009.1003
1503.07589
1606.02266
https://doi.org/10.1109/SFCS.1994.365680
http://doi.acm.org/10.1145/1709093.1709096
http://www.sciencedirect.com/science/article/pii/S0370269318309936
http://www.sciencedirect.com/science/article/pii/S0370269318309936


ACAT 2019

Journal of Physics: Conference Series 1525 (2020) 012041

IOP Publishing

doi:10.1088/1742-6596/1525/1/012041

7

[12] ATLAS Collaboration 2019 Combined measurements of Higgs boson production and decay using up to 80
fb−1 of proton–proton collision data at

√
s = 13 TeV collected with the ATLAS experiment Tech. Rep.

ATLAS-CONF-2019-005 CERN Geneva URL https://cds.cern.ch/record/2668375

[13] van der Walt S, Colbert S C and Varoquaux G 2011 Computing in Science Engineering 13 22–30 ISSN
1521-9615

[14] Hunter J D 2007 Computing in Science Engineering 9 90–95 ISSN 1521-9615
[15] Waskom M, Botvinnik O, O’Kane D, Hobson P, Ostblom J, Lukauskas S, Gemperline D C, Augspurger T,

Halchenko Y, Cole J B, Warmenhoven J, de Ruiter J, Pye C, Hoyer S, Vanderplas J, Villalba S, Kunter
G, Quintero E, Bachant P, Martin M, Meyer K, Miles A, Ram Y, Brunner T, Yarkoni T, Williams
M L, Evans C, Fitzgerald C, Brian and Qalieh A 2018 mwaskom/seaborn: v0.9.0 (july 2018) URL
https://doi.org/10.5281/zenodo.1313201

[16] McKinney W 2010 Proceedings of the 9th Python in Science Conference pp 51–56
[17] Kluyver T, Ragan-Kelley B, Pérez F, Granger B, Bussonnier M, Frederic J, Kelley K, Hamrick J, Grout J,

Corlay S, Ivanov P, Avila D, Abdalla S and Willing C 2016 Positioning and Power in Academic Publishing:
Players, Agents and Agendas ed Loizides F and Schmidt B (IOS Press) pp 87 – 90

https://cds.cern.ch/record/2668375
https://doi.org/10.5281/zenodo.1313201

