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The Large Hadron Collider (LHC) Schottky monitors have been designed to measure various parameters
of relevance to beam quality, namely tune, momentum spread, and chromaticity. In this work, we present
how this instrument can be used to estimate longitudinal bunch characteristics, such as longitudinal bunch
profile or synchrotron frequency distribution. Under the assumption of bunched beams with no intrabunch
coherent motion, we start by deriving the relation between the distribution of synchrotron amplitudes
within the bunch population and the longitudinal bunch profile from probabilistic principles. Subsequently,
we fit the cumulative power density of acquired Schottky spectra with the underlying distribution of
synchrotron amplitudes. Finally, the result of this fit is used to reconstruct the bunch profile using the
derived model. The results obtained with this method are verified by comparison with longitudinal profile
measurements from the LHC wall current monitors.
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I. INTRODUCTION

The Large Hadron Collider (LHC) transverse Schottky
system, whose main objective is to provide the beam
operators with noninvasive bunch-by-bunch tune and chro-
maticity measurements, was commissioned in 2011 [1]. In
the meantime, the system has undergone major upgrades in
order to improve signal quality [2]. Although qualitatively
its chromaticity estimates agree with other measurement
techniques (as verified in dedicated experiments), the small
residual quantitative discrepancies observed need to be
understood [3]. Studies are therefore underway in order
to better understand the obtained spectra. Due to its simpler
physical interpretation, we have focused on the spectral
region in the immediate vicinity of the 427725th revolution
harmonic,where transverse particlemotion plays no role.As
by design the difference signal (rather than the sum signal)
between two opposite slot-coupled waveguides is used,
the inevitable common mode leakage allows us to use this
spectral region for longitudinal studies.
As a result, a new application for the system has

emerged, as a bunched-beam longitudinal profile monitor.
In this work, we derive a relationship between the Schottky
spectrum and the longitudinal bunch profile, under the

assumption of no intra-bunch coherent motion. A similar
result, which uses the distribution function of the radio
frequency (rf) bucket instead of the bunch profile, was
presented in [4]. We also describe an alternative to the [5]
method of obtaining the synchrotron frequency distribu-
tion. Finally, we provide a framework for the fast simu-
lation of Schottky spectra, which can be used for further
studies. The presented theory is supported by examples of
LHC measurements and the obtained bunch profiles are
compared with the wall current monitor (WCM) [6].

II. LONGITUDINAL BUNCH PROFILE

Within a bunch, the rf phase difference, Δϕrf , between a
given particle and the synchronous particle, obeys equation
[7] [Eq. (9.51)]:

d2Δϕrf

dt2
þ Ω2

s0

sin ðΔϕrf þ ϕrfsÞ − sinðϕrfsÞ
cosðϕrfsÞ

¼ 0; ð1Þ

where Ωs0 is the nominal synchrotron frequency and ϕrfs is
the rf phase of the synchronous particle. At constant beam
energy, and for hadron machines such as the LHC where
the energy loss per turn is small when compared to the
maximum rf power, i.e., ϕrfs ≈ 0, this equation reduces to
the pendulum equation

d2Δϕrf

dt2
þΩ2

s0 sin ðΔϕrfÞ ¼ 0: ð2Þ

For rf harmonic h, revolution frequency ω0 and time
amplitude (maximum time difference between a given
particle and the synchronous particle) of synchrotron
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oscillations τ̂, we have that the particle’s synchrotron
frequency is given by:

Ωs ¼
π

2K½sinðhω0 τ̂
2
Þ�Ωs0 ; ð3Þ

where hω0τ̂ ¼ dΔϕrf is the rf phase amplitude of synchro-
tron oscillations and Kð½0; 1�Þ → ½π=2;∞� is the complete
elliptic integral of the first kind [[8] p. 590]. This
comes from the general theory of an arbitrary-amplitude
pendulum [9].
From [10], we know that the time difference τ between a

particle performing synchrotron motion and the synchro-
nous particle can be approximated by a simple harmonic
motion with amplitude-dependent Ωs, i.e.,

τ ¼ τðτ̂;ϕsÞ ¼ τ̂ cos ðΩstþ ϕsÞ; ð4Þ

where Ωs ¼ Ωsðτ̂Þ. The validity of Eq. (4) can be con-
firmed by comparing it to the numerical solution of Eq. (1)
and noting that Δϕrf ¼ hω0τ. In the case of the LHC,
Eq. (4) represents a good approximation for bunch lengths
≲80% the size of the rf bucket, as illustrated in Fig. 1. The
size of LHC rf bucket is 2.5 ns with the nominal 4-sigma
bunch length less than 1.5 ns [11].
The longitudinal bunch profile can be interpreted as the

probability distribution of τ. We shall denote this distri-
bution by BðτÞ. The assumption of no coherent intrabunch
motion implies that the distribution of initial synchrotron
phases, ϕs, is uniform and independent of the distribution
of synchrotron amplitudes τ̂. Furthermore, under stationary
conditions, the longitudinal bunch profile is independent of
time. Therefore, the probability of finding any particle with
time difference τ with respect to the synchronous particle
can be written as a function of its amplitude of oscillation τ̂
only. We can then write:

BðτÞ ¼
Z

∞

0

gτ;τ̂ðτ; τ̂Þdτ̂ ¼
Z

∞

jτj
gτ;τ̂ðτ; τ̂Þdτ̂;

where gτ;τ̂ðτ; τ̂Þ is the joint probability density of a particle
having amplitude τ̂ and time difference τ. The second
equality comes from the fact, that gτ;τ̂ðτ; τ̂Þ ¼ 0 for jτj > τ̂.
The derivation of gτ;τ̂ðτ; τ̂Þ is presented in the Appendix and
yields

BðτÞ ¼
Z

∞

jτj

gτ̂ðτ̂Þ
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ̂2 − τ2

p dτ̂: ð5Þ

This expression can be interpreted in an intuitive way.
Let us first recall that BðτÞ is the probability density of
having particles in the bunch with a time difference τ with
respect to the synchronous particle. If we now think of

ðπ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ̂2 − τ2

p
Þ−1 as the probability density that a single

particle, oscillating with amplitude τ̂, is found at a time
distance τ from the synchronous particle, then all we have
to do is to multiply it by the relative amount of particles,
gτ̂ðτ̂Þ, which oscillate with that same amplitude, and
integrate over all possible amplitudes to finally obtain
the longitudinal bunch profile, BðτÞ. Figure 2 illustrates
precisely the relation between BðτÞ and gτ̂ðτ̂Þ for different
kinds of amplitude distributions. Note that even though
τ ¼ 0 is the minimal point of every amplitude contribution,
it is also the only point where all the amplitudes contribute.
Equation (5) allows us to calculate the longitudinal

bunch profile knowing the distribution of synchrotron
amplitudes. Conversely, if we are given the bunch profile,
we can extract gτ̂ by numerically solving an integral
equation [12]. In addition, as the synchrotron amplitudes
are related to the synchrotron frequencies by Eq. (3),
knowing one of these distributions allows us to determine
the other two, as shown in Fig. 3.

III. SCHOTTKY SPECTRUM

The Schottky spectrum is composed of a series of Bessel
satellites (Jp) of finite width due to the presence of many
particles with different synchrotron frequencies. The inten-
sity signal due to a single-particle i, in the vicinity of the
n-th revolution harmonic, can be written in the following
form [10]

IiðtÞ ∝ ℜ

� X∞
p¼−∞

jpJpðnω0τ̂iÞejðnω0tþpΩsi
tþpϕsi

Þ
�
: ð6Þ

Based on the above equation, we can deduce, that a single-
particle power spectral density (PSD) is deterministic, and
assuming that all macroscopic parameters (n;ω0;Ωs0Þ are
set, it depends only on particle’s synchrotron amplitude τ̂i.
It is so, because synchrotron frequency can be derived from
synchrotron amplitude using Eq. (3). We can see an example
of such a spectrum on the upper plot of Fig. 4. Bessel

FIG. 1. Comparison between exact solution of Eq. (1) and
approximation Eq. (4).
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satellites are evenly and symmetrically spaced, separated by
the distance ofΩsi . The power of the satellite�p is given by
the value of J2pðnω0τ̂iÞ.
If we have many particles with different synchrotron

amplitudes, the instantaneous Schottky spectrum does not
look as simple anymore, see bottom plot of Fig. 4.
Depending on the value of nω0τ̂i, each particle contributes
in its own way and in different frequency ranges (the value
of J2pðnω0τ̂iÞ converges monotonically to zero with p for
p > nω0τ̂i). Different values of Ωsi result in a broadening

(a)

(b)

(c)

(d)

FIG. 2. Overview on possible synchrotron amplitude distribu-
tions and corresponding bunch profiles derived from Eq. (5). On
the left side black dashed line denotes overall bunch shape, color
solid lines are discrete amplitude contributions. On the right side
distributions are given either by color Dirac delta functions or by
solid black lines. For illustrative purposes, examples of discrete
amplitude contributions are shown on the left plots even in the
case of continuous amplitude distributions (a) All particles have
the same synchrotron amplitude. (b) Particles form three ampli-
tude groups. (c) Continuous uniform distribution of amplitudes.
(d) Realistic non-uniform distribution of amplitudes.

(a) Bunch profile

(b) Synchrotron amplitude distribution

(c) Synchrotron frequency distribution

FIG. 3. Top: typical bunch profile at flattop, measured by a wall
current monitor; Middle: synchrotron amplitude distribution
derived from Eq. (5); Bottom: synchrotron frequency distribution
derived from Eq. (3).

(a) Single-particle PSD

(b) Multi-particle PSD

FIG. 4. Simulated longitudinal Schottky spectra of a single
particle (top) and of an ensemble of 1011 particles (bottom). The
zero frequency corresponds to an integer (n ¼ 427725) harmonic
of the revolution frequency.
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and, for high indices of p, even overlapping of Bessel
satellites. Due to the pϕsi phase term in Eq. (6), which
vanishes for p ¼ 0, contributions to the central satellite add
up coherently, thus making its power density proportional to
the square of the number of particles. For all other satellites,
the instantaneous power density is nondeterministic, since it
depends on the random synchrotron phases of all particles,
and is proportional to the number of particles in the bunch.
Let us consider the PSD, PðωÞ (where ω ≠ nω0), of a

pick-up signal IðtÞ ¼ P
N
i IiðtÞ, which is the sum of the

individual contributions of N particles. As IðtÞ is a wide-
sense stationary process, the Wiener-Khinchin theorem
[13] gives us

PðωÞ ¼
Z

∞

−∞
cðτÞe−jωτdτ;

where cðτÞ ¼ hIðtÞI�ðt − τÞi is the autocorrelation function
of IðtÞ, h·i denotes ensemble averaging and I� denotes the
complex conjugate of I. The previous equation can also be
written in the following form

PðωÞ ¼
Z

∞

−∞

��XN
i¼1

IiðtÞ
�
×

�XN
i¼1

I�i ðt − τÞ
��

e−jωτdτ

¼
Z

∞

−∞

�XN
i¼1

XN
j¼1
j≠i

IiðtÞI�jðt − τÞ þ
XN
i¼1

IiðtÞI�i ðt − τÞ
�

× e−jωτdτ:

As IðtÞ is a wide-sense stationary process, we do not
need to specify time t. Since the synchrotron phases are
uniformly and independently distributed, the first sum term
of the expected value vanishes. In the second one the
synchrotron phases cancel out, so we can write:

PðωÞ ¼
Z

∞

−∞

XN
i¼1

IiðtÞI�i ðt − τÞe−jωτdτ

¼
Z

∞

−∞

XN
i¼1

X∞
p¼−∞

J2pðnω0τ̂iÞejðnω0τþpΩsi
τÞe−jωτdτ

¼
XN
i¼1

X∞
p¼−∞

J2pðnω0τ̂iÞδðω − nω0 − pΩsiÞ:

If we now denote the PSD of IiðtÞ as PiðωÞ we can write

PðωÞ ¼
XN
i¼1

PiðωÞ ð7Þ

so the PSD is just the sum of single particle contributions.

IV. MATRIX FORMALISM

From the previous section we know that, in the absence of
intrabunch coherent motion, the time averaged cumulative
power spectrum of N particles is equal to the sum of the
individual particle spectra. From Eq. (6) we know that
differences in the individual particle spectra depend only on
the particle’s synchrotron amplitude, as synchrotron fre-
quency can be expressed as a function of the amplitude
[Eq. (3)]. Synchrotron phase does not influence the single
particle’s PSD. Therefore, the Schottky spectra are explicitly
dependent on the distribution of synchrotron amplitudes.
Let us assume that we know the distribution gðτ̂Þ of

synchrotron amplitudes among the particles. We may then
calculate PðωÞ, the power at a given frequency, as:

PðωÞ ¼
Z

∞

0

gðτ̂ÞPðω; τ̂Þdτ̂;

where Pðω; τ̂Þ is the PSD at frequency ω of a particle with
synchrotron amplitude τ̂. This can be seen as the continu-
ous analogue of Eq. (7).
Experimentally, the power spectral density is estimated

as the squared magnitude of the signal’s discrete Fourier
transform (DFT). We adopt the notation PDFT for such an
estimate. For a given frequency binning ω1;…;ωm, we
shall have then

PDFTðωiÞ ¼
Z

∞

0

gðτ̂ÞPDFTðωi; τ̂Þdτ̂: ð8Þ

If we discretize τ̂ to a finite set of values τ̂j,
1 Eq. (8) takes

the form:

PDFTðωiÞ ¼
X
j

g̃ðτ̂jÞPDFTðωi; τ̂jÞ;

where g̃ðτ̂jÞ is the probability mass function of the discrete
approximation of gðτ̂Þ.

The above equation can be expressed in terms of discrete frequencies, written in matrix form as:2
666664
PDFTðω1; τ̂1Þ � � � PDFTðω1; τ̂nÞ
PDFTðω2; τ̂1Þ � � � PDFTðω2; τ̂nÞ

..

. . .
. ..

.

PDFTðωm; τ̂1Þ � � � PDFTðωm; τ̂nÞ

3
777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
M

·

2
666664
g̃ðτ̂1Þ
g̃ðτ̂2Þ
..
.

g̃ðτ̂nÞ

3
777775

|fflfflfflfflffl{zfflfflfflfflffl}
A

¼

2
666664
PDFTðω1Þ
PDFTðω2Þ

..

.

PDFTðωmÞ

3
777775

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
S

: ð9Þ

1Every continuous distribution may be approximated with an arbitrary precision by a discrete distribution.
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The columns of matrixM correspond to the spectrum of
a single particle with synchrotron amplitude τ̂i. Vector A
represents the discrete approximation of the synchrotron
amplitude density and vector S is the DFT estimate of the
total signal PSD, which can be compared with the exper-
imentally obtained Schottky spectrum. As previously
stated, considered frequencies ωi must not cover frequency
bins corresponding to the p ¼ 0 satellite, as these add up
coherently and Eq. (8) does not hold. One should also note
that matrix M depends on the nominal synchrotron
frequency. Therefore, we shall use the notation MðΩs0Þ.
The expression of Eq. (9) is a very convenient tool for

studying Schottky spectra. It enables us to simulate spectra,
for different beam conditions and bunch shapes, without
the need to perform time consuming Monte Carlo simu-
lations. All we need to do is to calculate n single particle
spectra with τ̂ ranging from τ̂1 to τ̂n.

V. BUNCH SHAPE CALCULATIONS

In order to estimate the longitudinal bunch shape, we gate
our acquisition system on a single selected bunch and
calculate its average discrete experimental spectrum Sexp.
Its length, which corresponds to the spectral resolution,
depends on Schottky Monitor’s sampling rate and desired
sampling duration. As we aim for real-time measurements, a
sampling duration of around 1 s was chosen, which in the
case of LHC Schottky Monitor results in 32768 frequency
bins and a spectral resolution of 0.69 Hz. It is high enough
resolution to observe the inner structure of Bessel satellites,
which is crucial for our further considerations. Extensive
details on the acquisition architecture can be found in [2]. For
all longitudinal studies’ results presented in this paper, we
limited ourselves to 2854 rows (jω − nω0j ∈ ½20; 1000 Hz�).
This frequency range depends on the nominal synchrotron
frequency, has therefore to be different for LHC Injection and
flat-top andwill of course be different for othermachines. As
mentioned before, we need to exclude central bins, as well as
corresponding rows from matrixMðΩs0Þ. Similarly, should
other regions of the experimental spectrum be compromised
by the presence of coherent peaks, they can also be omitted
in the calculation of the MðΩs0Þ matrix. The number of
considered amplitudes τ̂i [number of columns ofMðΩs0Þ] is
a trade-off between the problem complexity and the discre-
tization error of Eq. (9). From experiencewe determined that
n ¼ 50 is satisfactory for our objectives, however the impact
of this parameter was not rigorously investigated.
The core of our approach is to minimize the cost function

CðΩs0 ;AÞ ¼ j log ½MðΩs0Þ ·A� − log½Sexp�j2;

where the log functions are taken point-wise and j·j is the
standard Euclidean norm. We use a logarithmic cost
function here in order to be more sensitive to the low-
magnitude spectral peripheries and more robust to noise, as

it was observed that the noise level in the spectrum is
proportional to the spectrum value. Therefore, a usage of
logarithm results in correct fitting to the measured data.
Having found the optimal Ωs0 and A, we can estimate the
longitudinal bunch shape and synchrotron frequency dis-
tribution using Eqs. (3) and (5) respectively.
It is certain that the experimental spectrum is susceptible

to noise and finite time averaging effects. It may therefore
happen that the pair ðΩs0 ;AÞwhich minimizesCðΩs0 ;AÞ is
different from the true nominal synchrotron frequency
and amplitude density. An example of such a situation is
illustrated in Fig. 5, revealing exotic shapes for the
estimated amplitude distribution and bunch shape, and
where we have labeled this type of fit as “free fit”.
In order to overcome this feature, our proposed solution is

based on the assumption that synchrotron amplitude den-
sities follow aRice distribution [14], which is the distribution
of distances from the origin for samples taken from a circular
2D-normal distribution. It is determined by two parameters,
standard deviation σN 2D

and themodulus ofmean νN 2D
of the

mentioned 2D-normal distribution.2 While a correlation
between the Rice distribution and the distribution of syn-
chrotron amplitudes is plausible at the moment of injection
(the synchrotron amplitude is proportional to the distance
from the origin in the longitudinal phase space), the question
arises why it would remain valid after rf manipulations such
as the ones performed during the energy ramp. Not knowing
the answer to this question, we base our assumption on
observations of bunch shapes measured by the WCM at
different beam phases, and their corresponding synchrotron
amplitude densities [calculated from Eq. (5)], which confirm
this hypothesis. We present typical amplitude densities of
LHC ion beams, together with the corresponding Rice

FIG. 5. WCM bunch profile and results of bunch profile fitting.
Without putting any constraints on the synchrotron amplitude
distribution we end up with an exotic bunch shape.

2Note that σN 2D
and νN 2D

are generally not equal to the standard
deviation and mean of the Rice distribution.
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distribution fits in Fig. 6. Our assumption may be seen as a
regularization, that is, introducing information which helps
to solve an ill-posed problem by preventing solutions from
wrongly compensating the errors. Furthermore, the number
of fitting parameters is also dramatically reduced, from n
parameter entries in vector A (n ¼ 50 in our implementa-
tion), to the 2 parameters: νN 2D

and σN 2D
.

Finding a solution to nonlinear problems is not always
possible analytically. Therefore we decided to apply a differ-
ential evolutionalgorithm[15] implemented in a SCIPY library
[16] in order to find the parameters which minimize the cost
function CðΩs0 ;AÞ. Default algorithm settings were used,
apart from popsize ¼ 60 and mutation ¼ ð0.5; 1.2Þ.
Matrices MðΩs0Þ were pre-calculated in order to reduce

the computation time needed for the evaluation of the cost
function. In order to determine the bunch shape and
synchrotron frequency distribution, we fit 5 parameters in
total. The first three have already been mentioned, these are
μ and σ of the Rice distribution and the nominal synchrotron
frequency. Additionally, we need to fit the scale c1, as the
magnitude of the observed PSDmay change, and finally, we
need to take into consideration that some information may
bemaskedby noise andwemay actually only see the top part
of the spectrum.3 It is worth noting, that the noise level is

substracted from Sexp during preprocessing. The final cost
function including all these parameters takes the form

CðΩs0 ;A; c1; c2Þ
¼ j log ½max fc1MðΩs0Þ ·A − c2;Sming� − log½Sexp�j2;

where Smin is the minimal value of Sexp. It turned out, that in
the analysed spectra the noise parameter c2 was observed to
be negligible.
In order to increase convergence rate, parameters were

bounded within the ranges specified in Table I, which are
broad enough to include all possible physical solutions
according to the machine configuration.
Figure 7 shows an example comparison between the

experimental spectrum (in blue), the spectrumobtained after
the “free fit” (in orange) and the spectrum obtained after the
Rice fit (in green). It can be seen that both obtained spectra
follow very well the overall experimental spectrum, includ-
ing the fine details of the internal structure of the Bessel
satellites. Finally, comparing the calculated profiles with
the ones obtained from WCM measurements, confirms
the accuracy of the proposed method. This is shown in
Fig. 8 where aWCMprofile measurement is compared with
bunch profiles calculated from several spectra acquired from
longitudinal spectra of both horizontal and vertical Schottky
systems.

FIG. 6. Synchrotron amplitude distributions calculated for
different beam modes (ramp, flat-top, injection, adjust) with
comparable Rice distributions. Optimal Rice parameters were
found as a result of curve fitting.

TABLE I. Parameter bounds used for SciPy differential evo-
lution algorithm. Scale and noise bounds are not given, as they
are strictly dependent on spectra processing.

σN 2D
νN 2D

fs0 ¼ Ωs0=2π

0–0.5 ns 0–5σN 2D

20–25 Hz (Flat-Top)
60–70 Hz (Injection)

FIG. 7. Rice and free fit spectra compared with an experimental
Schottky spectrum. There is no fit for the p ¼ 0 satellite, as it
adds up coherently and is therefore not described by Eq. (8).

3The scale parameter c1 should be such, that values of
c1MðΩs0Þ ·A and Sexp are comparable. As columns of
MðΩs0Þ have approximately the same sum and A sums up to
one, the scale parameter should be approximately equal to
sumfSexpg=sumfM·;iðΩs0Þg, where sumfM·;iðΩs0Þg is the
sum of any single column. Due to effects of postprocessing
(such as baseline substraction), and errors of above mentioned
approximations, we scan one order of magnitude range around
the predicted value of c1. The offset parameter c2 should be a
fraction of maxfSexpg. In our implementation the whole range
½0;maxfSexpg� is scanned.
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VI. CONCLUSION

Within the scope of this paper, under the assumption of no
intrabunch coherentmotion,wehave derived the relationship
between three important bunch characteristics: longitudinal
bunch profile, distribution of synchrotron amplitudes and
distribution of synchrotron frequencies. Following, we have
linked these characteristics to the Schottky spectrum in the
form of matrix equation Eq. (9). Finally, we have presented a
method of solving equation Eq. (9), that is estimating
longitudinal bunch profile (as well as other mentioned
characteristics) from the measured Schottky spectrum.
The results obtained have been verified in three stages.

First, the experimental Schottky spectrum was compared to
the one obtained from the optimization procedure showing
that the Rice-based fit compares well with the observed
PSD (and is also similar to the free fit). Secondly, bunch
profiles calculated from vertical and horizontal monitors
were observed to be self-consistent. Finally, comparing the
calculated profiles with those obtained with the WCM
confirms the accuracy of the proposed method.
The aim of this study is not to shift the main purpose of

the LHC Schottky systems into a longitudinal profile
measurement device, for which the WCMs provide a more
direct diagnostic, but as an important step toward improv-
ing Schottky-based estimations in the LHC. The proposed
procedure will now be adapted to transverse signals, which
contain additional information on tune and chromaticity,
and where the estimated bunch profiles are envisaged to be
used also as a quality indicator for the derived quantities.
An additional advantage of the derived matrix formalism

[Eq. (9)] is the fact that the fitting procedure does not
require the use of all the points in the Schottky spectrum.
For example, if certain spectral regions are affected by the
presence of coherent peaks, they can be excluded from the

analysis by simply omitting the corresponding rows of
matrix MðΩs0Þ. This linear formalism can also be used to
predict the spectral response of Schottky diagnostics to
various combinations of beam/machine parameters at
different harmonics.
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APPENDIX: ANALYTICAL DERIVATION OF
THE LONGITUDINAL BUNCH PROFILE

The aim of this Appendix is to derive Eq. (5). We shall
start from

BðτÞ ¼
Z

∞

0

gτ;τ̂ðτ; τ̂Þdτ̂ ¼
Z

∞

jτj
gτ;τ̂ðτ; τ̂Þdτ̂:

Obtaining the explicit form of gτ;τ̂ðτ; τ̂Þ is not straight-
forward, as τ and τ̂ are not independent, but it can be
derived from the joint distribution of initial synchrotron
phases and amplitudes gϕs;τ̂. We can write

gϕs;τ̂ðϕs; τ̂Þ ¼ gϕs
ðϕsÞgτ̂ðτ̂Þ ¼

gτ̂ðτ̂Þ
2π

; ðA1Þ

as these random variables are independent and ϕs is
uniformly distributed. In addition, let us define the
transformation

u ¼ ðu1; u2Þ∶ðϕs; τ̂Þ ↦ ðτ; τ̂Þ;
where u1 comes from Eq. (4) and u2 is the identity function
of τ̂:

u1ðϕs; τ̂Þ ¼ τ̂ cos ðΩstþ ϕsÞ;
u2ðϕs; τ̂Þ ¼ τ̂:

Conversely, having the pair ðτ; τ̂Þ, we can determine ϕs
as one of the following:

ϕsaðτ; τ̂Þ ¼ arccos

�
τ

τ̂

�
;

ϕsbðτ; τ̂Þ ¼ 2π − arccos

�
τ

τ̂

�
:

This gives us two possible inverse transforms

u−1i ¼ ðv1;i; v2Þ∶ðτ; τ̂Þ ↦ ðϕs; τ̂Þ;
where i ¼ a, b and functions v1;i; v2 are given by

v1;iðτ; τ̂Þ ¼ ϕsiðτ; τ̂Þ;
v2ðτ; τ̂Þ ¼ τ̂:

FIG. 8. Mean bunch shapes and 1 − σ error margins, estimated
from the longitudinal spectra of horizontal and vertical LHC
Schottky monitors in a time interval of 100 seconds (10 spectra
per plane) around the WCM measurement.
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The relationship between the joint distributions of
two sets of random variables related by known trans-
formation functions is given in [[17] p. 201]. Using this, we
obtain

gτ;τ̂ðτ; τ̂Þ ¼
X
i¼a;b

gϕs;τ̂ðv1;iðτ; τ̂Þ; v2ðτ; τ̂ÞÞ







∂v1;i
∂τ

∂v2∂τ
∂v1;i
∂τ̂

∂v2∂τ̂






:
where by jj·jj we denote the absolute value of the
determinant of a matrix. We calculate the Jacobian in
the equation above by noting, that ∂v2∂τ ¼ ∂τ̂

∂τ ¼ 0 and
∂v2∂τ̂ ¼ ∂τ̂

∂τ̂ ¼ 1, so

�����
∂v1;i
∂τ

∂v2∂τ
∂v1;i
∂τ̂

∂v2∂τ̂

����� ¼
�����
∂v1;i
∂τ 0

∂v1;i
∂τ̂ 1

����� ¼ ∂v1;i
∂τ ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τ̂2 − τ2
p :

We have then that

gτ;τ̂ðτ; τ̂Þ ¼
X
i¼a;b

gϕs;τ̂ðv1;iðτ; τ̂Þ; v2ðτ; τ̂ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ̂2 − τ2

p

¼
X
i¼a;b

gϕs
ðv1;iðτ; τ̂ÞÞgτ̂ðv2ðτ; τ̂ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τ̂2 − τ2
p

¼
X
i¼a;b

gτ̂ðv2ðτ; τ̂ÞÞ
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ̂2 − τ2

p ¼ gτ̂ðv2ðτ; τ̂ÞÞ
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ̂2 − τ2

p

¼ gτ̂ðτ̂Þ
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ̂2 − τ2

p ;

where we have separated gϕs;τ̂ into the product of two
distributions using Eq. (A1). It enables us to finally write

BðτÞ ¼
Z

∞

jτj

gτ̂ðτ̂Þ
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ̂2 − τ2

p dτ̂:
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