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The observation of fluid-like behavior in nucleus-nucleus (AA), proton-nucleus (pA) and high-multiplicity 
proton-proton (pp) collisions motivates systematic studies of how different measurements approach their 
fluid-dynamic limit. We have developed numerical methods to solve the ultra-relativistic Boltzmann 
equation for systems of arbitrary size and transverse geometry. Here, we apply these techniques for the 
first time to the study of azimuthal flow coefficients vn including non-linear mode-mode coupling and to 
an initial condition with realistic event-by-event fluctuations. We show how both linear and non-linear 
response coefficients extracted from vn develop as a function of opacity from free streaming to perfect 
fluidity. We note in particular that away from the fluid-dynamic limit, the signal strength of linear and 
non-linear response coefficients does not reduce uniformly, but that their hierarchy and relative size 
shows characteristic differences.

© 2020 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Hydrodynamization denotes the transition to hydrodynamics of 
systems that carry fluid- and non-fluid-dynamic degrees of free-
dom and that therefore do not need to behave fluid dynamically at 
all times and under all conditions. The observation of strong signs 
of collectivity in ultra-relativistic nucleus-nucleus (AA), proton-
nucleus (pA) and proton-proton (pp) collisions [1–3] has motivated 
in recent years many studies of hydrodynamization in strongly-
and weakly-coupled models of quark-gluon plasma [4–31]. Their 
ultimate aim is to provide a rigorous underpinning of the fluid-
dynamic interpretation of collective flow in AA, pA and pp colli-
sions, and to delineate the limitations of any such interpretation.

Most studies of hydrodynamization profit from simplified set-
ups that do not reflect all phenomenological complications but that 
exhibit general features in great clarity. In particular, most studies 
of hydrodynamization to date assume exact Bjorken boost invari-
ance, employ conformally symmetric collective dynamics and focus 
on dimensionally reduced 1 + 1D systems [4–7,9–12,14–17,19] (for 
studies extending this framework, see [13,18,20–26,32]). Within 
this setting, one has reached in recent years a thorough under-
standing of the off-equilibrium evolution of simple observables 
in various models. For instance, the asymmetry pT /pL between 
longitudinal and transverse pressure and the higher longitudinal 
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momentum moments of the stress-energy tensor are known to 
approach rapidly their universal attractor solution in kinetic the-
ory [33,26,16]. The mathematical structures behind this behavior
continue to be studied in the context of resurgence [9,10,27,28].

The lessons learnt from these 1 + 1D systems are expected to 
carry over to the phenomenological reality in 3 + 1D. For instance, 
the early-time dynamics of pT /pL in boost-invariant 3 + 1D sys-
tems is known to be governed locally in the transverse plane by 
an effective 1 + 1D evolution, and the 1 + 1D universal attrac-
tor for pT /pL is therefore of relevance for the 3 + 1D dynamics. 
However, very few observables of phenomenological relevance can 
be studied in 1 + 1D systems, and some important questions have 
therefore received little attention so far in the debate of hydro-
dynamization. One of them is whether all bulk observables hy-
drodynamize under conditions comparable to those under which 
pT /pL hydrodynamizes, or whether some classes of observables 
require systems of longer lifetime, larger spatial extent and/or 
higher density to approach the values they attain under conditions 
of almost perfect fluidity. Of particular interest in this context are 
the conditions for hydrodynamization of the azimuthal momen-
tum anisotropies vn of soft multi-particle production, as these are 
amongst the most abundant and most precisely measured signa-
tures of collective behavior in AA, pA and pp collisions. Here, we 
analyze their hydrodynamization in a boost invariant conformally 
symmetric 3 + 1D kinetic transport theory, whose 1 + 1D variants 
have been used repeatedly in studies of hydrodynamization.
 BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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Up until this point, only the linear response coefficients have 
been studied in full kinetic theory because of the technical chal-
lenges related to solving Boltzmann equations for a distribution 
functions in complex geometries [34,25,26], though some results 
exist for perturbative solutions around free-streaming [35,34]. We 
have developed numerical techniques to solve such systems and 
we present here the first non-linear response coefficients, and we 
present the first solution to the Boltzmann equation for an initial 
condition with realistic event-by-event fluctuations.

2. Kinetic theory

We consider massless, boost-invariant kinetic theory in the 
isotropization-time approximation, and we restrict the discussion 
to the first momentum moments F (�x⊥, �, τ ) = ∫ 4π p2dp

(2π)3 pf of the 
distribution function f . Here, p is the modulus of the three-
momentum, the velocity is vμ ≡ pμ/p with pμ pμ = 0 and v0 = 1, 
and � denotes the angular phase space of vμ . F defines the en-
ergy momentum tensor T μν = ∫

d� vμvν F , as well as arbitrary 
higher vμ-moments that lie beyond hydrodynamics. It satisfies the 
equations of motion [26]

∂τ F + �v⊥ · ∂�x⊥ F − vz

τ
(1 − v2

z )∂vz F + 4v2
z

τ
F

= −C[F ] = −γ ε1/4(x)[−vμuμ](F − F iso) , (1)

where ε is the local energy density. Fluid-like and particle-like ex-
citations are known to coexist in this kinetic transport and their 
properties can be calculated analytically. In particular, the coupling 
γ is related to the specific shear viscosity η

sT = 1
5γ ε1/4 , and F re-

laxes locally on a time scale τR = 1
γ ε1/4 to the isotropic distribution 

Fiso(τ , �x⊥; �) = ε(τ ,�x⊥)

(−uμvμ)4 whose functional form is fixed by sym-

metries and by the Landau matching condition, uμT ν
μ = −εuν .

As the dynamics (1) is scaleless, dimensionful characteristics 
of the collision system can enter only via the initial conditions, 
and they can affect results only in dimensionless combinations. 
For a system of transverse r.m.s. size R and energy density ε0
at initial time τ0, it follows that the opacity γ̂ = γ R3/4(ε0τ0)

1/4

is the unique model parameter. Eq. (1) interpolates between free-
streaming in the limit of vanishing opacity γ̂ → 0 and ideal fluid 
dynamics in the limit γ̂ → ∞.

To initialize (1) with “realistic” initial conditions, we deter-
mine F (τ0, �x⊥; φ, vz) from the TRENTo [36] parametrization of 
the initial transverse energy density. This is the current standard 
in phenomenological studies and it includes large event-by-event 
fluctuations. One TRENTo event seeds many linear and non-linear 
response coefficients. Alternatively, to study individual linear and 
non-linear response coefficients, we seed an often used simple 
Gaussian ansatz (see, e.g., [37,34,26]) with one or very few small 
perturbations δn

F (τ0, �x⊥;φ, vz)

= 2ε0 δ(vz) exp

[
− r2

R2

]

×
(

1 +
∑

n

δn

( r

R

)n
cos (nθ − nψn)exp

[
− r2

2R2

])
. (2)

The initial spatial azimuthal asymmetries are proportional to the 
real factors δn , and they are oriented along the azimuthal direc-

tions ψn . The exponential exp
[
− r2

2R2

]
multiplying the cos-term 

ensures that the distribution stays positive everywhere for suffi-
ciently small δn ’s. As our numerical techniques apply to events 
2

with arbitrarily large fluctuations, we can check to what extent the 
lessons learnt from studying (2) carry over to “realistic” events.

For both classes of initial conditions, we quantify azimuthal 
anisotropies in terms of the complex-valued spatial eccentricities 
for n > 1,

εn ≡ −
∫

dθ r dr rn exp [inθ ] F (τ0, �x⊥;�)∫
dθ r dr rn F (τ0, �x⊥;�)

≡ |εn| ei n ψn . (3)

Evolving with eq. (1) the initial conditions (2), we obtain the evo-
lution of the energy-momentum tensor T μν and the transverse 
energy flow dE⊥ at late times

dE⊥
dηsdφ

≡
∫

dp2⊥
p⊥ dN

dp2⊥dηsdφ

= dE⊥
2πdηs

(
1 + 2

∞∑
n=1

vn cos (n φ − n φn)

)
. (4)

This determines the energy flow coefficients Vn = vn ei n φn , where 
φn is the azimuthal orientation of the energy flow. In contrast 
to flow coefficients extracted from particle distributions dN , our 
study focuses on energy-flow coefficients which are not affected 
by hadronization since hadronization conserves energy and mo-
mentum.

The viscous fluid-dynamic limit of eq. (1) is restricted to the 
evolution of seven fluid-dynamic fields which may be identified 
with those seven components of T μν(τ , �x⊥) = ∫

d� vμvν F that do 
not vanish under boost-invariance. We are interested in the appar-
ently simple kinetic theory (1) for F (τ , �x⊥; φ, vz) away from the 
fluid dynamics limit since it provides an explicit realization of fluid 
fields coupled to a tower of arbitrarily many non-fluid-dynamic ex-
citations (that may be parametrized by the higher vμ-moments of 
F ). However, going beyond the fluid-dynamic limit has a price: 
F depends on two additional dimensions φ and vz in momen-
tum space. Discretizing φ in twenty points and discretizing the 
vz-dependence in 50 points implies a 1000-fold increase of the 
numerical complexity compared to viscous fluid dynamics. The nu-
merical method for solving this evolution equation (1) has been 
described in [26], but there it was applied only to the linear re-
sponse of flow coefficients for infinitesimally small εn when the 
coupling between different harmonics can be neglected and the 
numerics simplifies. Here, we overcome this remaining limitations 
and we study the kinetic theory for arbitrary eccentricities, arbi-
trary opacities, and arbitrary coupled non-linear responses.

3. Results for mode-by-mode kinetic theory

The coefficients vn are known to arise from the dynamical re-
sponse to spatial eccentricities εn in the initial nuclear overlap. 
The numerically largest responses are linear (vn ∝ wn;nεn) [38], 
but sizable quadratic (∝ wn;n1,n2εn1εn2 ) and cubic corrections have 
been quantified [39,40] and these can dominate higher harmon-
ics (n ≥ 4). For linear responses to spatial eccentricities, there is 
an intrinsic ambiguity between the initial geometry that specifies 
the values εn , and the collective dynamics that builds up vn from 
these εn . Non-linear response coefficients are of particular interest, 
since they help to disentangle this ambiguity.

As a first example, we consider initial conditions (2) in which 
a single mode δ2 is excited (δn = 0 for n 	= 2). In the course of the 
evolution, the non-linear mode-mode coupling of this initial sec-
ond harmonic with itself excites 4th, 6th, 8th, ... harmonics, but 
also the 0th harmonic. In turn, these higher harmonics affect the 
non-linear response of v2. For this reason, numerical studies of the 
non-linear response to v2 require sufficiently fine discretization in 
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Fig. 1. Elliptic v2 (left panel) and quartic v4 (right panel) energy flow coefficients, divided by the leading power ε2 and ε2
2 of the perturbative expansion (5), respectively. 

Results of the kinetic theory (1), with initial conditions (2) seeded by a single non-vanishing elliptic eccentricity are displayed for different values of the opacity γ̂ and as a 
function of the squared eccentricity (ε2ε

∗
2

)
.

Fig. 2. Left panel: the linear response coefficients wn,n = limεn→0
vn
εn

calculated for the kinetic theory (1), (2) as a function of opacity γ̂ (thick lines). Arrows at the right 
indicate values in the ideal-fluid limit corresponding to γ̂ → ∞. Right panel: Same as in left panel but in semi-logarithmic presentation and overlaid with results from 
viscous fluid dynamics (thin dashed lines).
the momentum angle φ to follow numerically also the higher ex-
cited harmonics. The numerical results shown here were obtained 
for a φ-range discretized with 40 points, and their numerical sta-
bility was checked with finer discretizations. Our first main result 
is to observe that the non-linearities are more important for large 
opacity, as the lines in Fig. 1 develop larger slopes and curvatures. 
While the numerical results for v2 and v4 in Fig. 1 do not involve 
a perturbative expansion in εn or γ̂ , symmetry arguments imply 
that they must agree for sufficiently small ε2 with the perturba-
tive series

V 2 = w2,2ε2 + w2,222
(
ε2ε

∗
2

)
ε2 + O (|ε2|5) ,

V 4 = w4,22ε
2
2 + O (|ε2|4) .

(5)

According to eq. (5), the response coefficient w2,2(γ̂ ) at a given 
opacity γ̂ is the intercept limε2

2 →0
v2
ε2

(ε2
2 ) of the corresponding 

curve in Fig. 1 with the ordinate. The non-linear response co-
efficient w2,222(γ̂ ) is the slope of the same curves in Fig. 1 at 
ε2

2 = 0. Similarly, one finds the non-linear response w4,22(γ̂ ) =
limε2

2 →0
v4
ε2

2
(ε2

2 ). For notational simplicity, we do not denote explic-

itly the phases of the eccentricities in the following as these can 
be inferred easily from symmetry arguments. Fig. 2 shows the γ̂ -
dependence of the linear response coefficient extracted from Fig. 1
in this way.

In close analogy, we determine other linear and non-linear re-
sponse coefficients numerically by seeding the initial conditions 
with suitable choices of eccentricities. To determine the linear re-
sponse coefficients wn,n(γ̂ ), n ≤ 5, shown in Fig. 2, we run simu-
lations seeded with a single n-th harmonic for different values of 
εn , and we extrapolate to lim 2

vn (ε2
n ), see Fig. 2. For the non-
εn →0 εn

3

linear response coefficients wn,m1m2 (n = m1 +m2 or = |m1 −m2|), 
displayed in Fig. 3, we pick initial data with non-vanishing εm1 , 
εm2 and all other eccentricities vanishing. Extrapolating from sim-
ulations for different initial values of εm1 , εm2 , we determine 
wn,m1m2 = limεm1 ,εm2 →0

vn
εm1 εm2

.

We ask next how the linear and non-linear response coeffi-
cients in Figs. 2 and 3 hydrodynamize, i.e., how they approach 
their fluid-dynamic limit with increasing opacity γ̂ . To this end, 
we relate the opacity that characterizes kinetic transport to quan-
tities accessible in viscous fluid dynamics. The definition γ̂ =
γ R3/4 (ε0 τ0)

1/4 assumes that the early-time evolution is given by 
free-streaming which is not the case for viscous fluid dynamics. 
We therefore have to work with an equivalent definition that can 
be expressed in terms of quantities measured at a time at which 
the flow builds up and fluid dynamics may be operational. To this 
end, we write

γ̂ = γ R

(
εR

f0→R(γ̂ )

)1/4

, (6)

where, for the Gaussian background in the initial condition (2), ε0
and εR denote central (r = 0) energy densities at times τ0 and R , 
respectively. The function f0→R(γ̂ ) = εR R

ε0τ0
is defined as the ratio 

of the energy per unit rapidity at time τ = R to the energy which 
the system would have if it were free-streaming [26]. We calculate 
f0→R(γ̂ ) from kinetic theory for γ̂ ≤ 10, and we match for larger 
γ̂ to the known asymptotic large-γ̂ behavior f0→R ∼ γ̂ −4/9.

With f0→R(γ̂ ) known, we relate viscous fluid-dynamic calcula-
tions to γ̂ by specifying εR and η/s from fluid dynamics and solv-
ing eq. (6) for γ̂ . In particular, we use the kinetic relation between 
the interaction strength γ and the shear viscosity η = 1

1/4 . We 
sT 5γ ε
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Fig. 3. Left panel: Quadratic response coefficients calculated from the kinetic theory (1), (2) (thick lines) and their ideal-fluid limits corresponding to γ̂ → ∞ (arrows). Right 
panel: Cubic response coefficients from the same kinetic theory.
then initialize at some initial time τ0 < R the components of T μν

from the same initial conditions (2) as the kinetic theory and we 
evolve them with viscous fluid dynamics for varying η

s and ε0. This 
allows us to determine εR and γ̂ , and to extract from the trans-
verse energy flow (4) at late times the energy-flow coefficients vn . 
In general, these results depend on τ0. That the τ0 → 0-limit of 
vn(γ̂ ) exists is a direct consequence of the fact that viscous fluid 
dynamics, like kinetic theory, has a universal attractor solution at 
arbitrarily early times [12]. While the attractor of kinetic theory 
keeps ετ fixed leading to the scaling of γ̂ = γ R3/4 (ε0 τ0)

1/4, the 
attractor of the viscous (Israel-Stewart) hydrodynamics considered 

here keeps ετ
4

15

(√
5−5

)
constant [13]. Therefore taking the τ0 → 0

limit while keeping γ̂ as defined in eq. (6) fixed corresponds to 

scaling initial energy densities by ε(τ0) ∝ τ
− 4

15

(√
5−5

)
0 . While this 

non-standard procedure differs from the common phenomenolog-
ical practice, it allows for a particularly clean comparison between 
kinetic theory and fluid dynamics by eliminating the unphysical 
model parameter τ0. The difference between the kinetic theory 
and fluid-dynamic results obtained this way do not inform us on 
the validity or the breakdown of the current phenomenological 
practice. Instead it emphasizes the importance of the early-time 
attractor (which differs between kinetic theory and the fluid dy-
namics) for the physical observables measured in experiments and 
it informs us about the extent to which the entire signal vn is 
or is not build up by the degrees of freedom encoded in viscous 
fluid dynamics. For linear response coefficients, this comparison is 
shown in the right panel of Fig. 2.

Technically, we evolve the viscous fluid-dynamic equations as 
described in Ref. [41,42] by splitting all fluid dynamic fields into an 
azimuthally symmetric background and an azimuthally anisotropic 
perturbation and solving for them to first order in initial eccentric-
ities. In the same way, we set up a control calculation for the much 
simpler ideal fluid-dynamic equations to obtain an independent 
determination of linear response coefficients in the limit γ̂ → ∞
(arrows in Fig. 2). Results for w2,2 and w3,3 differ somewhat from 
those reported in [26] since the initial conditions are different. 
(Calculations in [26] are initialized at τ0 = 0.1, while here we take 
the τ0 → 0-limit as described above. Also, the parametrization of 
the radial profile used in Ref. [26] differs from that of eq. (2).)

As expected from general reasoning, the viscous fluid-dynamic 
results for vn(γ̂ )

εn
in the limit τ0 → 0 asymptote for γ̂ → ∞ to the 

ideal fluid-dynamic results in the same τ0 → 0 limit, see Fig. 2. 
Remarkably, the hierarchy between the elliptic and triangular lin-
ear response coefficient gets inverted as a function of γ̂ : kinetic 
theory at low γ̂ shows w2,2 > w3,3 while ideal fluid dynamics 
shows w2,2 < w3,3. Viscous fluid dynamics accounts for this inver-
sion qualitatively: for very small specific shear viscosity η

s , i.e., very 
large opacity γ̂ , it is consistent with ideal fluid dynamics, but the 
hierarchy changes as a function of opacity, see right panel of Fig. 2. 
4

Also the results from kinetic theory hint at such an inversion, as 
the slope of w3,3(γ̂ = 10) is larger than the slope of w2,2(γ̂ = 10).

As seen from Fig. 2, viscous fluid dynamics reproduces the main 
qualitative trends of kinetic theory (hierarchy of response coeffi-
cients) at γ̂ ∼ O (10), but significant quantitative differences per-
sist. On general grounds, we expect that kinetic theory matches 
quantitatively to viscous fluid dynamics at sufficiently large γ̂
when the fluid dynamic gradient expansion becomes quantitatively 
reliable. All data shown here are consistent with this expectation. 
It would clearly be interesting to extend the numerical calculations 
in kinetic theory to larger γ̂ and to determine the γ̂ -scale at which 
a seamless matching to viscous fluid dynamics is found. However, 
with increasing γ̂ , the numerical evaluation becomes more expen-
sive, and within the scope of the present letter, we were not able 
to push to higher γ̂ .

We have extended this analysis to a set of quadratic and cubic 
response coefficients, see Fig. 3. To make some statements about 
their hydrodynamization we determine the quadratic response co-
efficients in the limit γ̂ → ∞ by solving ideal fluid dynamics to 
second order in eccentricities (arrows in Fig. 3). Within the range 
γ̂ < 10, several quadratic response coefficients are seen to cross, 
and at γ̂ = 10, the hierarchy of the numerically large response 
coefficients (w5,23 > w4,22 > w6,24) found in kinetic theory is con-
sistent with that of ideal fluid dynamics. In the range γ̂ > 10, the 
numerically smaller response coefficients w3,25 and w2,53 need to 
cross. These observations give further support to the conclusions 
reached from Fig. 2.

In a remarkable note [35], it was observed already that in 
the dilute limit of kinetic theory far from equilibrium, linear and 
quadratic response coefficients grow linearly in the average num-
ber of rescatterings N̄resc. while cubic ones have a quadratic de-
pendence. In Ref. [35], this scaling was established for elastic two-
to-two collision kernels. The line of arguments of Ref. [35] does 
not apply to the collision kernel (1). However, a perturbative ex-
pansion of (1) in γ̂ can be viewed as an expansion in the average 
number of scattering centers [34], and it is therefore natural to 
test whether our results show this same scaling, too. For linear and 
quadratic coefficients, we know already from the perturbative anal-
ysis in [34] that they do. For cubic response coefficients, however, 
we observe small violations of the scaling. In the neighborhood of 
γ̂ = 0, the cubic coefficients in the right panel of Fig. 3 show a 
small linear component, though the quadratic one can be domi-
nant.

4. Evolving initial conditions with realistic event-by-event 
fluctuations in kinetic theory

We now apply our newly developed numerical machinery to 
the first exploratory study of a realistic initial condition that 
would be one single event in an event sample of an event-by-
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Fig. 4. Energy density in the transverse plane initialized with the TRENTo model at τ0/R = 0.05 and evolved for γ̂ = 2 with the kinetic theory up to times τ/R = 0.05, 0.5, 
2.0 and 4.0, respectively.
event analysis. The initial condition is a typical TRENTo event [36]
in the 5 − 10% centrality class smoothened such that only ini-
tial εn ’s for n ≤ 7 are kept. We have checked that the finesse 
of our discretization allows for the stable propagation of such 
events. A typical time evolution is shown in Fig. 4 with γ̂ = 2. 
It illustrates that the Boltzmann equation can be solved non-
perturbatively for distribution functions representing realistic ini-
tial conditions.

The radial profile of the TRENTo event studied here differs from 
(2) and this can affect the value of linear and non-linear response 
coefficients. To quantify the difference, we compare the w2,2 ex-
tracted for these two profiles and find the following numbers 
w(TRENTo)

2,2 = v2
ε2

|TRENTo ,n=2 = 0.156, 0.239, 0.288 and 0.319, com-
pared to w2,2(γ̂ ) = 0.166, 0.266, 0.327 and 0.372 taken from 
Fig. 2 for γ̂ = 1, 2, 3, 4. Technically, wTRENTo

2,2 is not a linear re-
sponse coefficient, since it was extracted at finite eccentricity, but 
Fig. 1 informs us that the numerical contribution arising from fi-
nite eccentricity is negligible for small opacity. We checked this 
for the TRENTo profile as well (data not shown). We observe that 
the dependence on the radial profile in the linear response co-
efficients ranges from 5% to 15% in this γ̂ -range. The analogous 
study of w3,3 shows a 2% to 10% difference in the same γ̂ -range. 
Therefore, the open circles in Fig. 5 are accounted for within 2% 
- 15% accuracy by the linear response coefficients calculated from 
the simplified profile (2). The remaining difference between open 
circles and full results in Fig. 5 result from mode-mode couplings 
of different harmonics. We see that while the linear response cov-
5

ers the ballpark of the results, non-linearities have to be included 
to go reliably beyond 20%-30% accuracy. The non-linearities gen-
erated by the lowest harmonics n ≤ 3 account for half of all the 
non-linearities.

This paper is motivated by the wealth of studies of hydro-
dynamization and thermalization in simplified settings. We have 
developed the necessary machinery for overcoming many of these 
simplifications and to facilitate studies of hydrodynamization in 
complex realistic geometries, and to thus push the study of hydro-
dynamization from in vitro to in vivo. The ability to solve the Bolz-
mann equation for ultra-relativistic systems with realistic initial 
geometries and including all non-linear mode-mode couplings pro-
vides insight into how the characteristic features of fluid dynamics 
emerge gradually with increasing interaction strength. Away from 
the fluid dynamic limit, signals of collectivity are not simply re-
duced uniformily in size, but their relative strength varies char-
acteristically with opacity, the hierarchy of the dominant linear 
response coefficients is inverted and so is the hierarchy of several 
non-linear ones. This may provide novel possibilities for character-
izing to what extent systems of different size do or do not hydro-
dynamize. In the long run, we hope that the technical advances 
documented here can be developed further to study the evolution 
of event samples, and to study Boltzmann equations with other 
phenomenologically relevant complications, such as the propaga-
tion of massive degrees of freedom, a more realistic equation of 
state, or different collision kernels.
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Fig. 5. The value of the elliptic and triangular flow coefficients evaluated for the same TRENTo event and for different opacities γ̂ . Results for the full event including 
harmonics n ≤ 7 are compared to simplified events in which only specific harmonics are kept. (For γ̂ = 1, the circles for n ≤ 3 and f ull event overlap in the left plot.)
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[29] M. Spaliński, Phys. Lett. B 776 (2018) 468, https://doi .org /10 .1016 /j .physletb .
2017.11.059, arXiv:1708 .01921 [hep -th].

[30] A. Behtash, C.N. Cruz-Camacho, M. Martinez, Phys. Rev. D 97 (4) (2018) 044041, 
https://doi .org /10 .1103 /PhysRevD .97.044041, arXiv:1711.01745 [hep -th].

[31] J. Brewer, L. Yan, Y. Yin, arXiv:1910 .00021 [nucl -th].
[32] L. Keegan, A. Kurkela, A. Mazeliauskas, D. Teaney, J. High Energy Phys. 08 

(2016) 171, https://doi .org /10 .1007 /JHEP08(2016 )171, arXiv:1605 .04287 [hep -
ph].

[33] M. Strickland, J. High Energy Phys. 12 (2018) 128, https://doi .org /10 .1007 /
JHEP12(2018 )128, arXiv:1809 .01200 [nucl -th].

[34] A. Kurkela, U.A. Wiedemann, B. Wu, Phys. Lett. B 783 (2018) 274–279, https://
doi .org /10 .1016 /j .physletb .2018 .06 .064, arXiv:1803 .02072 [hep -ph].

[35] N. Borghini, S. Feld, N. Kersting, Eur. Phys. J. C 78 (10) (2018) 832, https://
doi .org /10 .1140 /epjc /s10052 -018 -6313 -z, arXiv:1804 .05729 [nucl -th].

[36] J.S. Moreland, J.E. Bernhard, S.A. Bass, Phys. Rev. C 92 (1) (2015) 011901, 
https://doi .org /10 .1103 /PhysRevC .92 .011901, arXiv:1412 .4708 [nucl -th].

[37] W. Broniowski, M. Chojnacki, W. Florkowski, A. Kisiel, Phys. Rev. Lett. 
101 (2008) 022301, https://doi .org /10 .1103 /PhysRevLett .101.022301, arXiv:
0801.4361 [nucl -th].

[38] K. Aamodt, et al., ALICE, Phys. Rev. Lett. 107 (2011) 032301, https://doi .org /10 .
1103 /PhysRevLett .107.032301, arXiv:1105 .3865 [nucl -ex].

[39] S. Acharya, et al., ALICE Collaboration, Phys. Lett. B 773 (2017) 68, https://doi .
org /10 .1016 /j .physletb .2017.07.060, arXiv:1705 .04377 [nucl -ex].

[40] D. Teaney, L. Yan, Phys. Rev. C 86 (2012) 044908, https://doi .org /10 .1103 /
PhysRevC .86 .044908, arXiv:1206 .1905 [nucl -th].

[41] S. Floerchinger, U.A. Wiedemann, Phys. Lett. B 728 (2014) 407–411, https://
doi .org /10 .1016 /j .physletb .2013 .12 .025, arXiv:1307.3453 [hep -ph].

[42] S. Floerchinger, U.A. Wiedemann, A. Beraudo, L. Del Zanna, G. Inghirami, V. 
Rolando, Phys. Lett. B 735 (2014) 305, https://doi .org /10 .1016 /j .physletb .2014 .
06 .049, arXiv:1312 .5482 [hep -ph].

http://refhub.elsevier.com/S0370-2693(20)30704-8/bib468790FC170AD3DDC4532F249B2E987As1
http://refhub.elsevier.com/S0370-2693(20)30704-8/bib468790FC170AD3DDC4532F249B2E987As1
https://doi.org/10.1103/PhysRevLett.120.092301
https://doi.org/10.1140/epjc/s10052-017-4988-1
https://doi.org/10.1140/epjc/s10052-017-4988-1
https://doi.org/10.1103/PhysRevLett.102.211601
https://doi.org/10.1103/PhysRevLett.102.211601
https://doi.org/10.1103/PhysRevLett.108.201602
https://doi.org/10.1103/PhysRevLett.115.182301
https://doi.org/10.1103/PhysRevLett.115.182301
https://doi.org/10.1007/JHEP04(2016)031
http://refhub.elsevier.com/S0370-2693(20)30704-8/bib1C8600A0763068278A5474009DDE8D6Cs1
http://refhub.elsevier.com/S0370-2693(20)30704-8/bib1C8600A0763068278A5474009DDE8D6Cs1
https://doi.org/10.1103/PhysRevLett.115.072501
https://doi.org/10.1103/PhysRevLett.115.072501
https://doi.org/10.1103/PhysRevD.97.091503
https://doi.org/10.1103/PhysRevLett.110.211602
https://doi.org/10.1103/PhysRevLett.120.012301
https://doi.org/10.1103/PhysRevLett.120.012301
https://doi.org/10.1103/PhysRevLett.124.102301
https://doi.org/10.1103/PhysRevD.97.036020
https://doi.org/10.1103/PhysRevD.97.036020
https://doi.org/10.1016/j.physletb.2018.02.058
https://doi.org/10.1016/j.physletb.2018.02.058
http://refhub.elsevier.com/S0370-2693(20)30704-8/bib2571F4FE242D1E2C67EB831F5A381DA7s1
https://doi.org/10.1016/j.physletb.2018.07.003
https://doi.org/10.1016/j.physletb.2018.07.003
https://doi.org/10.1103/PhysRevD.99.116012
https://doi.org/10.5506/APhysPolB.50.1243
https://doi.org/10.1007/JHEP10(2015)070
https://doi.org/10.1007/JHEP10(2015)070
https://doi.org/10.1103/PhysRevD.99.116004
https://doi.org/10.1103/PhysRevD.99.116004
https://doi.org/10.1103/PhysRevLett.124.191601
https://doi.org/10.1007/JHEP06(2017)154
https://doi.org/10.1007/JHEP06(2017)154
https://doi.org/10.1103/PhysRevLett.121.261601
https://doi.org/10.1103/PhysRevLett.121.261601
https://doi.org/10.1140/epjc/s10052-019-7262-x
https://doi.org/10.1140/epjc/s10052-019-7262-x
https://doi.org/10.1140/epjc/s10052-019-7428-6
https://doi.org/10.1140/epjc/s10052-019-7428-6
https://doi.org/10.1103/PhysRevD.98.054016
https://doi.org/10.1103/PhysRevD.98.054016
https://doi.org/10.1103/PhysRevD.92.125011
https://doi.org/10.1103/PhysRevD.92.125011
https://doi.org/10.1016/j.physletb.2017.11.059
https://doi.org/10.1016/j.physletb.2017.11.059
https://doi.org/10.1103/PhysRevD.97.044041
http://refhub.elsevier.com/S0370-2693(20)30704-8/bibF6BA19F6C32D7EA8196EE34D24A11992s1
https://doi.org/10.1007/JHEP08(2016)171
https://doi.org/10.1007/JHEP12(2018)128
https://doi.org/10.1007/JHEP12(2018)128
https://doi.org/10.1016/j.physletb.2018.06.064
https://doi.org/10.1016/j.physletb.2018.06.064
https://doi.org/10.1140/epjc/s10052-018-6313-z
https://doi.org/10.1140/epjc/s10052-018-6313-z
https://doi.org/10.1103/PhysRevC.92.011901
https://doi.org/10.1103/PhysRevLett.101.022301
https://doi.org/10.1103/PhysRevLett.107.032301
https://doi.org/10.1103/PhysRevLett.107.032301
https://doi.org/10.1016/j.physletb.2017.07.060
https://doi.org/10.1016/j.physletb.2017.07.060
https://doi.org/10.1103/PhysRevC.86.044908
https://doi.org/10.1103/PhysRevC.86.044908
https://doi.org/10.1016/j.physletb.2013.12.025
https://doi.org/10.1016/j.physletb.2013.12.025
https://doi.org/10.1016/j.physletb.2014.06.049
https://doi.org/10.1016/j.physletb.2014.06.049

	Hydrodynamization in systems with detailed transverse profiles
	1 Introduction
	2 Kinetic theory
	3 Results for mode-by-mode kinetic theory
	4 Evolving initial conditions with realistic event-by-event fluctuations in kinetic theory
	Declaration of competing interest
	Acknowledgements
	References


