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Abstract

The observation of fluid-like behavior in nucleus-nucleus (AA), proton-nucleus (pA) and high-multiplicity proton-
proton (pp) collisions motivates systematic studies of how different measurements approach their fluid-dynamic limit.
We have developed numerical methods to solve the ultra-relativistic Boltzmann equation for systems of arbitrary size
and transverse geometry. Here, we apply these techniques for the first time to the study of azimuthal flow coefficients
vn including non-linear mode-mode coupling and to an initial condition with realistic event-by-event fluctuations. We
show how both linear and non-linear response coefficients extracted from vn develop as a function of opacity from
free streaming to perfect fluidity. We note in particular that away from the fluid-dynamic limit, the signal strength of
linear and non-linear response coefficients does not reduce uniformly, but that their hierarchy and relative size shows
characteristic differences.

Introduction. Hydrodynamization denotes the transition to hydrodynamics of systems that carry fluid- and non-
fluid-dynamic degrees of freedom and that therefore do not need to behave fluid dynamically at all times and under all
conditions. The observation of strong signs of collectivity in ultra-relativistic nucleus-nucleus (AA), proton-nucleus
(pA) and proton-proton (pp) collisions [1, 2, 3] has motivated in recent years many studies of hydrodynamization
in strongly- and weakly-coupled models of quark-gluon plasma [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]. Their ultimate aim is to provide a rigorous underpinning of the
fluid-dynamic interpretation of collective flow in AA, pA and pp collisions, and to delineate the limitations of any
such interpretation.

Most studies of hydrodynamization profit from simplified set-ups that do not reflect all phenomenological com-
plications but that exhibit general features in great clarity. In particular, most studies of hydrodynamization to date
assume exact Bjorken boost invariance, employ conformally symmetric collective dynamics and focus on dimension-
ally reduced 1 + 1D systems [4, 5, 6, 7, 9, 10, 11, 12, 14, 15, 16, 17, 19] (for studies extending this framework,
see [13, 18, 20, 21, 22, 23, 24, 25, 26, 32]). Within this setting, one has reached in recent years a thorough under-
standing of the off-equilibrium evolution of simple observables in various models. For instance, the asymmetry pT /pL

between longitudinal and transverse pressure and the higher longitudinal momentum moments of the stress-energy
tensor are known to approach rapidly their universal attractor solution in kinetic theory [33, 26, 16]. The mathematical
structures behind this behaviour continue to be studied in the context of resurgence [9, 10, 27, 28].

The lessons learnt from these 1 + 1D systems are expected to carry over to the phenomenological reality in 3 + 1D.
For instance, the early-time dynamics of pT /pL in boost-invariant 3 + 1D systems is known to be governed locally
in the transverse plane by an effective 1 + 1D evolution, and the 1 + 1D universal attractor for pT /pL is therefore of
relevance for the 3 + 1D dynamics. However, very few observables of phenomenological relevance can be studied
in 1 + 1D systems, and some important questions have therefore received little attention so far in the debate of
hydrodynamization. One of them is whether all bulk observables hydrodynamize under conditions comparable to
those under which pT /pL hydrodynamizes, or whether some classes of observables require systems of longer lifetime,
larger spatial extent and/or higher density to approach the values they attain under conditions of almost perfect fluidity.
Of particular interest in this context are the conditions for hydrodynamization of the azimuthal momentum anisotropies
vn of soft multi-particle production, as these are amongst the most abundant and most precisely measured signatures
of collective behavior in AA, pA and pp collisions. Here, we analyze their hydrodynamization in a boost invariant
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conformally symmetric 3 + 1D kinetic transport theory, whose 1 + 1D variants have been used repeatedly in studies
of hydrodynamization.

Up until this point, only the linear response coefficients have been studied in full kinetic theory because of the
technical challenges related to solving Boltzmann equations for a distribution functions in complex geometries [37,
25, 26], though some results exist for perturbative solutions around free-streaming [38, 37]. We have developed
numerical techniques to solve such systems and we present here the first non-linear response coefficients, and we
present the first solution to the Boltzmann equation for an initial condition with realistic event-by-event fluctuations.

Kinetic Theory. We consider massless, boost-invariant kinetic theory in the isotropization-time approximation,
and we restrict the discussion to the first momentum moments F(~x⊥,Ω, τ) =

∫ 4πp2dp
(2π)3 p f of the distribution function f .

Here, p is the modulus of the three-momentum, the velocity is vµ ≡ pµ/p with pµ pµ = 0 and v0 = 1, and Ω denotes
the angular phase space of vµ. F defines the energy momentum tensor T µν =

∫
dΩ vµvνF, as well as arbitrary higher

vµ-moments that lie beyond hydrodynamics. It satisfies the equations of motion [26]

∂τF + ~v⊥ · ∂~x⊥F −
vz

τ
(1 − v2

z )∂vz F +
4v2

z

τ
F = −C[F] = −γε1/4(x)[−vµuµ](F − Fiso) , (1)

where ε is the local energy density. Fluid-like and particle-like excitations are known to coexist in this kinetic transport
and their properties can be calculated analytically. In particular, the coupling γ is related to the specific shear viscosity
η

sT = 1
5γε1/4 , and F relaxes locally on a time scale τR = 1

γε1/4 to the isotropic distribution Fiso(τ, ~x⊥; Ω) =
ε(τ,~x⊥)

(−uµvµ)4 whose
functional form is fixed by symmetries and by the Landau matching condition, uµT ν

µ = −εuν.
As the dynamics (1) is scaleless, dimensionful characteristics of the collision system can enter only via the initial

conditions, and they can affect results only in dimensionless combinations. For a system of transverse r.m.s. size R
and energy density ε0 at initial time τ0, it follows that the opacity γ̂ = γR3/4(ε0τ0)1/4 is the unique model parameter.
Eq. (1) interpolates between free-streaming in the limit of vanishing opacity γ̂ → 0 and ideal fluid dynamics in the
limit γ̂ → ∞.

We initialize (1) with two different classes of initial conditions. We first study linear and non-linear response
coefficients based on the simple Gaussian ansatz

F(τ0, ~x⊥; φ, vz) = 2ε0 δ(vz) exp
[
−

r2

R2

] 1 +
∑

n

δn

( r
R

)n
cos (nθ − nψn) exp

[
−

r2

2R2

] . (2)

The exponential exp
[
− r2

2R2

]
multiplying the cos-term ensures that the distribution stays positive everywhere for suf-

ficiently small δn’s. The initial spatial azimuthal asymmetries are proportional to the real factors δn, and they are
oriented along the azimuthal directions ψn. Alternatively, we initialize (1) also with the “realistic” initial conditions
arising from the TRENTo model by replacing the radial profile with that arising from the initial state model.

For both classes of initial conditions, we quantify azimuthal anisotropies in terms of the complex-valued spatial
eccentricities for n > 1,

εn ≡ −

∫
dθ r dr rn exp [inθ] F(τ0, ~x⊥; Ω)∫

dθ r dr rnF(τ0, ~x⊥; Ω)
≡ |εn| ei nψn . (3)

Evolving with eq. (1) the initial conditions (2), we obtain the evolution of the energy-momentum tensor T µν and the
transverse energy flow dE⊥ at late times

dE⊥
dηsdφ

≡

∫
dp2
⊥

p⊥ dN
dp2
⊥dηsdφ

=
dE⊥

2πdηs

1+2
∞∑

n=1

vn cos (n φ − n φn)

 . (4)

This determines the energy flow coefficients Vn = vn ei n φn , where φn is the azimuthal orientation of the energy flow.
In contrast to flow coefficients extracted from particle distributions dN, our study focusses on energy-flow coefficients
which are not affected by hadronization since hadronization conserves energy and momentum.

The viscous fluid-dynamic limit of eq. (1) is restricted to the evolution of seven fluid-dynamic fields which may
be identified with those seven components of T µν(τ, ~x⊥) =

∫
dΩ vµvνF that do not vanish under boost-invariance. We

are interested in the apparently simple kinetic theory (1) for F(τ, ~x⊥; φ, vz) away from the fluid dynamics limit since it
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Figure 1: Elliptic v2 (left panel) and quartic v4 (right panel) energy flow coefficients, divided by the leading power ε2 and ε2
2 of the perturbative

expansion (5), respectively. Results of the kinetic theory (1), with initial conditions (2) seeded by a single non-vanishing elliptic eccentricity are
displayed for different values of the opacity γ̂ and as a function of the squared eccentricity

(
ε2ε
∗
2

)
.

provides an explicit realization of fluid fields coupled to a tower of arbitrarily many non-fluid-dynamic excitations (that
may be parametrized by the higher vµ-moments of F). However, going beyond the fluid-dynamic limit has a price: F
depends on two additional dimensions φ and vz in momentum space. Discretizing φ in twenty points and discretizing
the vz-dependence in 50 points implies a 1000-fold increase of the numerical complexity compared to viscous fluid
dynamics. The numerical method for solving this evolution equation (1) has been described in [26], but there it was
applied only to the linear response of flow coefficients for infinitesimally small εn when the coupling between different
harmonics can be neglected and the numerics simplifies. Here, we overcome this remaining limitations and we study
the kinetic theory for arbitrary eccentricities, arbitrary opacities, and arbitrary coupled non-linear responses.

Results for mode-by-mode kinetic theory. The coefficients vn are known to arise from the dynamical response
to spatial eccentricities εn in the inital nuclear overlap. The numerically largest responses are linear (vn ∝ wn;nεn) [34],
but sizeable quadratic (∝ wn;n1,n2εn1εn2 ) and cubic corrections have been quantified [35, 36] and these can dominate
higher harmonics (n ≥ 4). For linear responses to spatial eccentricities, there is an intrinsic ambiguity between the
initial geometry that specifies the values εn, and the collective dynamics that builds up vn from these εn. Non-linear
response coefficients are of particular interest, since they help to disentangle this ambiguity.

As a first example, we consider initial conditions (2) in which a single mode δ2 is excited (δn = 0 for n , 2).
In the course of the evolution, the non-linear mode-mode coupling of this initial second harmonic with itself excites
4th, 6th, 8th, ... harmonics, but also the 0th harmonic. In turn, these higher harmonics affect the non-linear response
of v2. For this reason, numerical studies of the non-linear response to v2 require sufficiently fine discretization in the
momentum angle φ to follow numerically also the higher excited harmonics. The numerical results shown here were
obtained for a φ-range discretized with 40 points, and their numerical stability was checked with finer discretizations.
Our first main result is to observe that the non-linearities are more important for large opacity, as the lines in Fig. 1
develop larger slopes and curvatures. While the numerical results for v2 and v4 in Fig. 1 do not involve a perturbative
expansion in εn or γ̂, symmetry arguments imply that they must agree for sufficiently small ε2 with the perturbative
series

V2 = w2,2ε2 + w2,222
(
ε2ε
∗
2
)
ε2 + O(|ε2|

5) , V4 = w4,22ε
2
2 + O(|ε2|

4) . (5)

According to eq. (5), the response coefficient w2,2(γ̂) at a given opacity γ̂ is the intercept limε2
2→0

v2
ε2

(ε2
2 ) of the corre-

sponding curve in Fig. 1 with the ordinate. The non-linear response coefficicient w2,222(γ̂) is the slope of the same
curves in Fig. 1 at ε2

2 = 0. Similarly, one finds the non-linear response w4,22(γ̂) = limε2
2→0

v4
ε2

2
(ε2

2 ). For notational
simplicity, we do not denote explicitly the phases of the eccentricities in the following as these can be inferred easily
from symmetry arguments. Fig. 2 shows the γ̂-dependence of the linear response coefficient extracted from Fig. 1 in
this way.

In close analogy, we determine other linear and non-linear response coefficients numerically by seeding the initial

3
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Figure 2: Left panel: the linear response coefficients wn,n = limεn→0
vn
εn

calculated for the kinetic theory (1), (2) as a function of opacity γ̂ (thick
lines). Arrows at the right indicate values in the ideal-fluid limit corresponding to γ̂ → ∞. Right panel: Same as in left panel but in semi-logarithmic
presentation and overlaid with results from viscous fluid dynamics (thin dashed lines).

conditions with suitable choices of eccentricities. To determine the linear response coefficients wn,n(γ̂), n ≤ 5, shown
in Fig. 2, we run simulations seeded with a single n-th harmonic for different values of εn, and we extrapolate to
limε2

n→0
vn
εn

(ε2
n ), see Fig. 2. For the non-linear response coefficients wn,m1m2 (n = m1 + m2 or = |m1 − m2|), displayed

in Fig. 3, we pick initial data with non-vanishing εm1 , εm2 and all other eccentricities vanishing. Extrapolating from
simulations for different initial values of εm1 , εm2 , we determine wn,m1m2 = limεm1 ,εm2→0

vn
εm1 εm2

.
We ask next how the linear and non-linear response coefficients in Figs. 2 and 3 hydrodynamize, i.e., how they

approach their fluid-dynamic limit with increasing opacity γ̂. To this end, we relate the opacity that characterizes
kinetic transport to quantities accessible in viscous fluid dynamics. The definition γ̂ = γR3/4 (ε0 τ0)1/4 assumes that
the early-time evolution is given by free-streaming which is not the case for viscous fluid dynamics. We therefore
have to work with an equivalent definition that can be expressed in terms of quantities measured at a time at which the
flow builds up and fluid dynamics may be operational. To this end, we write

γ̂ = γR
(

εR

f0→R(γ̂)

)1/4

, (6)

where, for the Gaussian background in the initial condition (2), ε0 and εR denote central (r = 0) energy densities at
times τ0 and R, respectively. The function f0→R(γ̂) = εRR

ε0τ0
is defined as the ratio of the energy per unit rapidity at time

τ = R to the energy which the system would have if it were free-streaming [26]. We calculate f0→R(γ̂) from kinetic
theory for γ̂ ≤ 10, and we match for larger γ̂ to the known asymptotic large-γ̂ behavior f0→R ∼ γ̂

−4/9.
With f0→R(γ̂) known, we relate viscous fluid-dynamic calculations to γ̂ by specifying εR and η/s from fluid dy-

namics and solving eq. (6) for γ̂. In particular, we use the kinetic relation between the interaction strength γ and the
shear viscosity η

sT = 1
5γε1/4 . We then initialize at some initial time τ0 < R the components of T µν from the same initial

conditions (2) as the kinetic theory and we evolve them with viscous fluid dynamics for varying η
s and ε0. This allows

us to determine εR and γ̂, and to extract from the transverse energy flow (4) at late times the energy-flow coefficients
vn. In general, these results depend on τ0. That the τ0 → 0-limit of vn(γ̂) exists is a direct consequence of the fact that
viscous fluid dynamics, like kinetic theory, has a universal attractor solution at arbitrarily early times [12]. While the
attractor of kinetic theory keeps ετ fixed leading to the scaling of γ̂ = γR3/4 (ε0 τ0)1/4 , the attractor of the viscous
(Israel-Stewart) hydrodynamics considered here keeps ετ

4
15

(√
5−5

)
constant [13]. Therefore taking the τ0 → 0 limit

while keeping γ̂ as defined in eq. (6) fixed corresponds to scaling initial energy densities by ε(τ0) ∝ τ
− 4

15

(√
5−5

)
0 . While

this non-standard procedure differs from the common phenomenological practise, it allows for a particularly clean
comparison between kinetic theory and fluid dynamics by eliminating the unphysical model parameter τ0. The differ-
ence between the kinetic theory and fluid-dynamic results obtained this way do not inform us on the validity or the
breakdown of the current phenomenological practice. Instead it emphasizes the importance of the early-time attractor
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Figure 3: Left panel: Quadratic response coefficients calculated from the kinetic theory (1), (2) (thick lines) and their ideal-fluid limits coresponding
to γ̂ → ∞ (arrows). Right panel: Cubic response coefficients from the same kinetic theory.

(which differs between kinetic theory and the fluid dynamics) for the physical observables measured in experiments
and it informs us about the extent to which the entire signal vn is or is not build up by the degrees of freedom encoded
in viscous fluid dynamics. For linear response coefficients, this comparison is shown in the right panel of Fig. 2.

Technically, we evolve the viscous fluid-dynamic equations as described in Ref. [39, 40] by splitting all fluid
dynamic fields into an azimuthally symmetric background and an azimuthally anisotropic perturbation and solving
for them to first order in initial eccentricites. In the same way, we set up a control calculation for the much simpler ideal
fluid-dynamic equations to obtain an independent determination of linear response coefficients in the limit γ̂ → ∞
(arrows in Fig. 2). Results for w2,2 and w3,3 differ somewhat from those reported in [26] since the initial conditions
are different.

As expected from general reasoning, the viscous fluid-dynamic results for vn(γ̂)
εn

in the limit τ0 → 0 asymptote
for γ̂ → ∞ to the ideal fluid-dynamic results in the same τ0 → 0 limit, see Fig. 2. Remarkably, the hierarchy
between the elliptic and triangular linear response coefficient gets inverted as a function of γ̂: kinetic theory at low γ̂
shows w2,2 > w3,3 while ideal fluid dynamics shows w2,2 < w3,3. Viscous fluid dynamics accounts for this inversion
qualitatively: for very small specific shear viscosity η

s , i.e., very large opacity γ̂, it is consistent with ideal fluid
dynamics, but the hierarchy changes as a function of opacity, see right panel of Fig. 2. Also the results from kinetic
theory hint at such an inversion, as the slope of w3,3(γ̂ = 10) is larger than the slope of w2,2(γ̂ = 10).

As seen from Fig. 2, viscous fluid dynamics reproduces the main qualitative trends of kinetic theory (hierarchy of
response coefficients) at γ̂ ∼ O(10), but significant quantitative differences persist. On general grounds, we expect that
kinetic theory matches quantitatively to viscous fluid dynamics at sufficiently large γ̂ when the fluid dynamic gradient
expansion becomes quantitatively reliable. All data shown here are consistent with this expectation. It would clearly
be interesting to extend the numerical calculations in kinetic theory to larger γ̂ and to determine the γ̂-scale at which a
seamless matching to viscous fluid dynamics is found. However, with increasing γ̂, the numerical evaluation becomes
more expensive, and within the scope of the present letter, we were not able to push to higher γ̂.

We have extended this analysis to a set of quadratic and cubic response coefficients, see Fig. 3. To make some
statements about their hydrodynamization we determine the quadratic response coefficients in the limit γ̂ → ∞ by
solving ideal fluid dynamics to second order in eccentricities (arrows in Fig. 3). Within the range γ̂ < 10, several
quadratic response coefficients are seen to cross, and at γ̂ = 10, the hierarchy of the numerically large response
coefficients (w5,23 > w4,22 > w6,24) found in kinetic theory is consistent with that of ideal fluid dynamics. In the range
γ̂ > 10, the numerically smaller response coefficients w3,25 and w2,53 need to cross. These observations give further
support to the conclusions reached from Fig. 2.

In a remarkable note [38], it was observed already that in the dilute limit of kinetic theory far from equilibirum,
linear and quadratic response coefficients grow linearly in the average number of rescatterings N̄resc. while cubic ones
have a quadratic dependence. In Ref. [38], this scaling was established for elastic two-to-two collision kernels. The
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Figure 4: Upper panels: Energy density in the transverse plane initialized with the TRENTo model at τ0/R = 0.05 and evolved for γ̂ = 2 with
the kinetic theory up to times τ/R = 0.05, 0.5, 2.0 and 4.0, respectively. Lower panel: The value of the elliptic and triangular flow coefficients
evaluated for the same TRENTo event and for different opacities γ̂. Results for the full event including harmonics n ≤ 7 are compared to simplified
events in which only specific harmonics are kept. (For γ̂ = 1, the circles for n ≤ 3 and f ull event overlap in the left plot.)

line of arguments of Ref. [38] does not apply to the collision kernel (1). However, a perturbative expansion of (1)
in γ̂ can be viewed as an expansion in the average number of scattering centers [37], and it is therefore natural to
test whether our results show this same scaling, too. For linear and quadratic coefficients, we know already from
the perturbative analysis in [37] that they do. For cubic response coefficients, however, we observe small violations
of the scaling. In the neighborhood of γ̂ = 0, the cubic coefficients in the right panel of Fig. 3 show a small linear
component, though the quadratic one can be dominant.

Evolving initial conditions with realistic event-by-event fluctuations in kinetic theory. We now apply our
newly developed numerical machinery to the first exploratory study of a realistic initial condition that would be one
single event in an event sample of an event-by-event analysis. The initial condition is a typical TRENTo event [41] in
the 5−10% centrality class smoothened such that only initial εn’s for n ≤ 7 are kept. We have checked that the finesse
of our discretization allows for the stable propagation of such events. A typical time evolution is shown in the upper
panel of Fig. 4 with γ̂ = 2. It illustrates that the Boltzmann equation can be solved non-perturbatively for distribution
functions representing realistic initial conditions.

The radial profile of the TRENTo event studied here differs from (2) and this can affect the value of linear and
non-linear response coefficients. To quantify the difference, we compare the w2,2 extracted for these two profiles and
find the following numbers w(TrENTo)

2,2 = v2
ε2
|Trento,n=2 = 0.156, 0.239, 0.288 and 0.319, compared to w2,2(γ̂) = 0.166,

0.266, 0.327 and 0.372 taken from Fig. 2 for γ̂ = 1, 2, 3, 4. Technically, w(TrENTo)
2,2 is not a linear response coefficient,

since it was extracted at finite eccentricity, but Fig. 1 informs us that the numerical contribution arising from finite
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eccentricity is negligible for small opacity. We checked this for the TRENTo profile as well (data not shown). We
observe that the dependence on the radial profile in the linear response coefficients ranges from 5% to 15% in this
γ̂-range. The analogous study of w3,3 shows a 2% to 10% difference in the same γ̂-range. Therefore, the open circles
in the lower panel of Fig. 4 are accounted for within 2% - 15% accuracy by the linear response coefficients calculated
from the simplified profile (2). The remaining difference between open circles and full results in Fig. 4 result from
mode-mode couplings of different harmonics. We see that while the linear response covers the ballpark of the results,
non-linearities have to be included to go reliably beyond 20%-30% accuracy. The non-linearities generated by the
lowest harmonics n ≤ 3 account for half of all the non-linearities.

This paper is motivated by the wealth of studies of hydrodynamization and thermalization in simplified settings.
We have developed the necessary machinery for overcoming many of these simplications and to facilitate studies of
hydrodynamization in complex realistic geometries, and to thus push the study of hydrodynamization from in vitro to
in vivo. The ability to solve the Bolzmann equation for ultra-relativistic systems with realistic initial geometries and
including all non-linear mode-mode couplings provides insight into how the characteristic features of fluid dynamics
emerge gradually with increasing interaction strength. Away from the fluid dynamic limit, signals of collectivity are
not simply reduced uniformily in size, but their relative strength varies characteristically with opacity, the hierarchy
of the dominant linear response coefficients is inverted and so is the hierarchy of several non-linear ones. This may
provide novel possibilities for characterizing to what extent systems of different size do or do not hydrodynamize. In
the long run, we hope that the technical advances documented here can be developed further to study the evolution of
event samples, and to study Boltzmann equations with other phenomenologically relevant complications.
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the European Unions Horizon 2020 research and innovation programme (grant agreement No 759257).

References

[1] B. B. Abelev et al. [ALICE Collaboration], Phys. Rev. C 90 (2014) no.5, 054901 [arXiv:1406.2474 [nucl-ex]].
[2] A. M. Sirunyan et al. [CMS Collaboration], Phys. Rev. Lett. 120 (2018) no.9, 092301 doi:10.1103/PhysRevLett.120.092301

[arXiv:1709.09189 [nucl-ex]].
[3] M. Aaboud et al. [ATLAS Collaboration], Eur. Phys. J. C 77 (2017) no.6, 428 doi:10.1140/epjc/s10052-017-4988-1 [arXiv:1705.04176

[hep-ex]].
[4] P. M. Chesler and L. G. Yaffe, Phys. Rev. Lett. 102 (2009), 211601 doi:10.1103/PhysRevLett.102.211601 [arXiv:0812.2053 [hep-th]].
[5] M. P. Heller, R. A. Janik and P. Witaszczyk, Phys. Rev. Lett. 108 (2012) 201602 doi:10.1103/PhysRevLett.108.201602 [arXiv:1103.3452

[hep-th]].
[6] A. Kurkela and Y. Zhu, Phys. Rev. Lett. 115 (2015) no.18, 182301 doi:10.1103/PhysRevLett.115.182301 [arXiv:1506.06647 [hep-ph]].
[7] L. Keegan, A. Kurkela, P. Romatschke, W. van der Schee and Y. Zhu, JHEP 1604 (2016) 031 doi:10.1007/JHEP04(2016)031

[arXiv:1512.05347 [hep-th]].
[8] J. Berges, M. P. Heller, A. Mazeliauskas and R. Venugopalan, [arXiv:2005.12299 [hep-th]].
[9] M. P. Heller and M. Spalinski, Phys. Rev. Lett. 115 (2015) no.7, 072501 doi:10.1103/PhysRevLett.115.072501 [arXiv:1503.07514 [hep-th]].
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