
EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

Eur. Phys. J. C 81 (2021) 689
DOI: 10.1140/epjc/s10052-021-09402-3

CERN-EP-2020-083
30th August 2021

Jet energy scale and resolution measured in
proton–proton collisions at

√
𝒔 = 13 TeV with the

ATLAS detector

The ATLAS Collaboration

Jet energy scale and resolution measurements with their associated uncertainties are reported
for jets using 36–81 fb−1 of proton–proton collision data with a centre-of-mass energy of√
𝑠 = 13 TeV collected by the ATLAS detector at the LHC. Jets are reconstructed using two
different input types: topo-clusters formed from energy deposits in calorimeter cells, as well
as an algorithmic combination of charged-particle tracks with those topo-clusters, referred
to as the ATLAS particle-flow reconstruction method. The anti-𝑘𝑡 jet algorithm with radius
parameter 𝑅 = 0.4 is the primary jet definition used for both jet types. This result presents new
jet energy scale and resolution measurements in the high pile-up conditions of late LHC Run 2
as well as a full calibration of particle-flow jets in ATLAS. Jets are initially calibrated using a
sequence of simulation-based corrections. Next, several in situ techniques are employed to
correct for differences between data and simulation and to measure the resolution of jets. The
systematic uncertainties in the jet energy scale for central jets (|𝜂 | < 1.2) vary from 1% for a
wide range of high-𝑝T jets (250 < 𝑝T < 2000 GeV), to 5% at very low 𝑝T (20 GeV) and 3.5%
at very high 𝑝T (> 2.5 TeV). The relative jet energy resolution is measured and ranges from
(24 ± 1.5)% at 20 GeV to (6 ± 0.5)% at 300 GeV.
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1 Introduction

The energetic proton–proton (𝑝𝑝) collisions produced by the Large Hadron Collider (LHC) yield final
states that are predominantly characterized by jets, or collimated sprays of charged and neutral hadrons.
Jets constitute an essential piece of the physics programme carried out using the ATLAS detector due to
their presence in the signal processes being measured and searched for, the various background processes
that hide those signals, and the additional activity due to simultaneous 𝑝𝑝 collisions. Measurements of the
energy scale and resolution of these complex objects, as well as their associated systematic uncertainties,
are therefore essential both for precision measurements of the Standard Model (SM) and for sensitive
searches for new physics beyond it. This paper presents the strategy used for the determination of the jet
energy scale (JES) and resolution (JER) by the ATLAS experiment and its implementation as it pertains to
the analysis of data from Run 2 of the LHC. Results for the JES and JER are presented using data collected
during 2015–2017, corresponding to integrated luminosities in the range 36–81 fb−1, depending on the
analysis method and its goals. This publication focuses on calibrating jets reconstructed with the anti-𝑘𝑡 [1]
algorithm with radius parameter 𝑅 = 0.4.

The ATLAS Collaboration has published previous calibrations and uncertainties of the energy scale and
resolution for this jet definition with data taken in 2010 [2–4], 2011 [5], 2012 [6], and 2015 [7]. Additionally,
some ATLAS publications have targeted different jet definitions. In particular, the Run 1 papers include
dedicated calibrations1 of jets reconstructed with the anti-𝑘𝑡 algorithm with 𝑅 = 0.6 and 𝑅 = 1.0, and a
dedicated in situ calibration of large-radius jets has also been completed in Run 2 data [9]. This publication
extends and improves on previous calibrations of anti-𝑘𝑡 𝑅 = 0.4 jets, taking full advantage of the larger
dataset recorded over the period of 2015–2017. The significant increase in the number of proton collisions
per bunch crossing in 2016 and 2017 data-taking leads to a correspondingly more difficult environment
for jet reconstruction, and this result presents new jet energy scale and resolution measurements in these
unique high pile-up conditions.

Section 2 describes the ATLAS detector, and Section 3 describes the recorded data and the Monte Carlo
(MC) simulation samples used in this paper. Section 4 presents the inputs and algorithms used to reconstruct
the jets. Section 5 and Section 6 present the methods used and the result of both the calibration and the
resulting systematic uncertainties of the JES and the JER, respectively.

2 The ATLAS detector

The ATLAS detector [10] at the LHC covers nearly the entire solid angle around the collision point.2 It
consists of an inner tracking detector surrounded by a thin superconducting solenoid, electromagnetic and
hadronic calorimeters, and a muon spectrometer incorporating three large superconducting toroidal magnets.
The inner-detector system (ID) is immersed in a 2 T axial magnetic field and provides charged-particle
tracking in the range |𝜂 | < 2.5.

1 Comparisons in Run 1 between 𝑅 = 0.4 and 𝑅 = 0.6 jets confirm the need for dedicated calibrations for different jet radii [8].
2 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the centre of the detector. The
positive 𝑥-axis is defined by the direction from the interaction point to the centre of the LHC ring, with the positive 𝑦-axis
pointing upwards, while the beam direction defines the 𝑧-axis. Cylindrical coordinates (𝑟, 𝜙) are used in the transverse plane, 𝜙
being the azimuthal angle around the 𝑧-axis. The pseudorapidity 𝜂 is defined in terms of the polar angle 𝜃 by 𝜂 = − ln tan(𝜃/2).
Rapidity is defined as 𝑦 = 0.5 ln[(𝐸 + 𝑝𝑧)/(𝐸 − 𝑝𝑧)], where 𝐸 denotes the energy and 𝑝𝑧 is the component of the momentum
along the beam direction. The angular distance Δ𝑅 is defined as

√︁
(Δ𝑦)2 + (Δ𝜙)2.
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The silicon pixel detector covers the vertex region and typically provides four measurements per track,
with the innermost space-point provided by the insertable B-layer that was installed before Run 2 [11, 12].
The pixel detector is followed by the silicon microstrip tracker, which usually yields eight measurements
per track. The silicon-based detectors are complemented by the transition radiation tracker (TRT), which
enables radially extended track reconstruction up to |𝜂 | = 2.0. The TRT also provides electron identification
information based on the fraction of hits (typically 30 in total) above a higher energy-deposit threshold
corresponding to transition radiation.

The calorimeter system covers the pseudorapidity range |𝜂 | < 4.9. Within the region |𝜂 | < 3.2,
high-granularity lead/liquid-argon (LAr) calorimeters with both barrel and endcap sections provide
electromagnetic calorimetry. An additional thin LAr presampler covers |𝜂 | < 1.8, and is used to correct for
energy loss in materials traversed by particles prior to reaching the calorimeters. Hadronic calorimetry is
provided by the steel/scintillator-tile calorimeter, segmented into three barrel structures within |𝜂 | < 1.7,
and two copper/LAr hadronic endcap calorimeters cover the range 1.5 < |𝜂 | < 3.2. The solid angle
coverage between 3.2 < |𝜂 | < 4.9 is completed with forward copper/LAr and tungsten/LAr calorimeter
modules optimized for electromagnetic and hadronic measurements respectively. Interfaces that exist
between each of these components, in particular between the barrel and endcap regions, provide for space
to route various services and infrastructure, such as electrical and fiber-optic cabling, cooling, and support
structures. However, these so-called transition regions also create discontinuities in the response of the
calorimeter to both charged and neutral particles due to energy absorption in the inactive materials and
changes in the geometry of the active materials of the calorimeters. The calibrated response and resolution
of the calorimeter must therefore either correct for these features, or account for them when establishing
systematic uncertainties. Figure 1 shows the many components of the calorimeter system, with reference
pseudorapidities and various relevant transition regions marked as well [10, 13, 14].

The muon spectrometer (MS) comprises separate trigger and high-precision tracking chambers measuring
the deflection of muons in a magnetic field generated by superconducting air-core toroids. The field integral
of the toroids ranges between 2.0 and 6.0 Tm across most of the detector. A set of precision chambers
covers the region |𝜂 | < 2.7 with three layers of monitored drift tubes, complemented by cathode-strip
chambers in the forward region, where the background is highest. The muon trigger system covers the
range |𝜂 | < 2.4 with resistive-plate chambers in the barrel, and thin-gap chambers in the endcap regions.

Interesting events are selected to be recorded by the first-level trigger system implemented in custom
hardware, followed by selections made by algorithms implemented in software in the high-level trigger [15].
The first-level trigger accepts events from the 40MHz bunch crossings at a rate below 100 kHz, which the
high-level trigger reduces in order to record events to disk at about 1 kHz.

3 Data and Monte Carlo simulated samples

The data used for the measurements presented here were collected in 𝑝𝑝 collisions at the LHC with a
centre-of-mass energy of 13 TeV and a 25 ns proton bunch crossing interval during 2015–2017. The
integrated luminosities of the datasets used are in the range 36–81 fb−1 after requiring that all detector
subsystems were operational during data recording.

Additional 𝑝𝑝 collisions in the same and nearby bunch crossings are referred to as pile-up. The number
of reconstructed primary vertices (𝑁PV) and the mean number of interactions per bunch crossing (𝜇) are
optimal observables to quantify the level of pile-up activity. The average value of 𝜇 is 13.7, 24.9, and 37.8
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in the 2015, 2016, and 2017 datasets, respectively [16]. As described below, these conditions are accounted
for in the production and reconstruction of simulated data.

Simulated dĳet, multĳet, 𝑍+jet, and 𝛾+jet samples are used in determining the jet energy scale and its
uncertainties. Table 1 summarizes the MC generators, adjustable sets of parameters (tunes), and parton
distribution function (PDF) sets used for all nominal and alternative samples of the various simulated
processes. The nominal samples for the majority of analyses were generated with Pythia 8.186 [17] (from
now on referred to as Pythia8) or Powheg+Pythia8.186 [17, 20, 21]. The multĳet balance analysis uses
Sherpa 2.1.1 [22] as the nominal generator since it incorporates up to three jets in the matrix element and
is thus more suitable for multĳet processes that have more than two jets in the final state. The dĳet, multĳet,
and 𝛾+jet nominal samples use the NNPDF2.3LO PDF set [19] and the A14 set of tuned parameters [18].
For the 𝑍+jet analysis, the dedicated AZNLO tune [26] is used instead. Alternative samples for defining
systematic variations use various generators and tunes.

Stable particles, defined as those with 𝑐𝜏 > 10 mm, output by the generators were passed through the
Geant4-based simulation of the ATLAS detector [27, 28]. This step simulates the interactions of the
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Figure 1: Layout of the ATLAS calorimeters with pseudorapitidy (𝜂) values marked for reference. The inner detector
systems can be seen in black-and-white in the center of the diagram; tracking is provided up to 𝜂 = 2.5. The
electromagnetic (EM) barrel and endcap calorimeters are shown in green. The EM barrel has consistent performance
throughout, but has a seam in the construction at 𝜂 = 0 which can impact jet energy resolution. The EM endcap has a
precision region marked in darker green and an extended region in light green, and the transition from one to the
other around 𝜂 ∼ 2.5 involves a dramatic change in the material layers. The hadronic Tile calorimeter is shown in
light blue while the hadronic endcap calorimeters based on liquid argon are illustrated in light orange. The forward
calorimeters are shown in dark orange. Pink filled regions represent the tile plug calorimeter, often referred to as
TileGap1 and TileGap2. The thin hot pink line marks the location of the very narrow gap and cryostat scintillators
(TileGap3). The regions corresponding to the transition from barrel to endcap (𝜂 ∼ 1.4) and from endcap to forward
calorimeter (𝜂 ∼ 3.1) are given for reference.
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Table 1: List of generators used for various processes. Information is given regarding the underlying-event tunes, the
PDF parameter sets, and the perturbative QCD highest-order accuracy used in the matrix element. Abbreviations
in the PDF names and matrix element orders are LO (leading order), NLO (next-to-leading order), and NNLO
(next-to-next-to-leading order).

Process Generator Tune PDF set Matrix element
+ fragmentation/hadronization order

Dĳet Pythia 8.186 [17] A14 [18] NNPDF2.3LO [19] LO
& Powheg+Pythia 8.186 [17, 20, 21] A14 NNPDF2.3LO [19] NLO

multĳet Sherpa 2.1.1 [22] Sherpa-default CT10 [23] LO (2→2+2→3)
Herwig 7.0.4 [24] H7UE [24] NNPDF3.0NLO [25] LO

𝑍+jet Powheg+Pythia 8.186 [17, 20, 21] AZNLO [26] CT10 [23] Z+0j@NLO
Sherpa 2.2.1 [22] Sherpa-default NNPDF3.0NNLO [25] Z+0,1,2j@NLO

𝛾+jet Pythia 8.186 [17] A14 [18] NNPDF2.3LO [19] LO
Sherpa 2.1.1 [22] Sherpa-default CT10 [23] LO

particles with matter in the detector and generates outputs which can be reconstructed in the same way as
data. Hadronic showers were simulated using the FTFP BERT model as described in Ref. [29]. A set of
simulated dĳet events using the less detailed Atlfast-II (AFII) are also studied to determine the difference
in performance between full and fast simulation and provide appropriate calibrations for AFII samples in
analyses [27].

Pile-up is incorporated in the MC samples by overlaying simulated inelastic interactions on the generated
hard-scatter interaction. The inelastic interactions were simulated in Pythia 8.210 using the A3 tune and
the NNPDF2.3LO PDF set [19, 30]. To determine the number of simulated 𝑝𝑝 collisions to overlay onto
a particular hard-scattering process, a random value is drawn from a Poisson distribution of the number
of 𝑝𝑝 collisions per bunch crossing with a mean given by the desired average number of collisions per
crossing for a particular data period. Events simulated with a particular pile-up profile are then compared
with data from the corresponding data period. One set of MC samples was created using the pile-up profile
of 2015+2016 data (average number of collisions 23.7) while a second independent set of samples used the
profile of 2017 data. When data and simulation are compared in this paper, both sets of MC samples are
used unless otherwise specified and are normalized to the luminosity of 2015+2016 data and 2017 data
separately.

4 Jet reconstruction

The primary jet definition used in the majority of physics analyses by the ATLAS Collaboration and in
the studies presented here is the anti-𝑘𝑡 [1] algorithm with a radius parameter 𝑅 = 0.4 as implemented in
the FastJet 3.2.2 [31, 32] software package. Four-vector objects are used as inputs to the algorithm, and
may be stable particles defined by MC generators, charged-particle tracks, calorimeter energy deposits, or
algorithmic combinations of the latter two, as in the case of the particle-flow reconstruction technique [33].

For use in jet reconstruction, calorimeter cells are first clustered into three-dimensional, massless, topological
clusters (topo-clusters) using a nearest-neighbour algorithm [34]. Cells are added to a topo-cluster according
to the ratio of the cell energy to the expected noise in each cell using thresholds that control the growth of
each topo-cluster. The resulting energy of the topo-cluster is defined at the electromagnetic (EM) scale,
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which is the baseline calorimeter scale that correctly measures energy depositions from electromagnetic
showers. Only positive-energy topo-clusters are used as inputs to the jet reconstruction. A jet produced
in the hard-scatter process is expected to originate from the primary vertex, defined as the reconstructed
vertex with at least two associated tracks and the largest sum of squared track momentum. Therefore, an
event-by-event correction to account for the position of the primary vertex in each event – referred to
as an origin correction – is applied to every topo-cluster, based on its depth within the calorimeter and
pseudorapidity. This method is to be contrasted with earlier approaches [7] that applied this correction
only to the jet four-momentum rather than to its constituents.

Jets reconstructed using only calorimeter-based energy information use the origin-corrected EM scale
topo-clusters and are referred to as EMtopo jets. This was the primary jet definition used in ATLAS physics
results prior to the end of Run 2. EMtopo jets exhibit robust energy scale and resolution characteristics
across a wide kinematic range, and are independent of other reconstruction algorithms such as tracking at
the jet-building stage.

Hadronic final-state measurements can be improved by making more complete use of the information from
both the tracking and calorimeter systems. The particle flow (PFlow) algorithm is based on Ref. [33] and
updated as described below. Particle flow directly combines measurements from both the tracker and the
calorimeter to form the input signals for jet reconstruction, which are intended to approximate individual
particles. Specifically, energy deposited in the calorimeter by charged particles is subtracted from the
observed topo-clusters and replaced by the momenta of tracks that are matched to those topo-clusters.
These resulting PFlow jets exhibit improved energy and angular resolution, reconstruction efficiency, and
pile-up stability compared to calorimeter jets [33]. EMtopo and PFlow jets are retained for the analyses
discussed in this paper only if they have an uncalibrated 𝑝T > 7 GeV and |𝜂 | < 4.5.

The updates to the PFlow algorithm since its description in Ref. [33] are as follows. The expected
mean value of the energy deposited by pions, 〈𝐸dep〉, and its expected standard deviation, 𝜎(𝐸dep), were
recomputed using the updated simulation, geometry, and topo-cluster noise thresholds for Run 2 [7]. The
shower profiles were similarly updated. The only algorithmic change was an improvement in the transition
between using track energy and cluster energy in high-𝑝T jets. Since energetic particles are often in the
core of jets and thus poorly isolated from nearby activity, accurate removal of the calorimeter energy
associated with the track can be difficult. Therefore, the PFlow algorithm prevents energy subtraction in
these cases. Formerly this was managed by applying a simple 𝑝trkT < 40 GeV cut in the track selection. In
the updated algorithm, a more sophisticated procedure is used to prevent the subtraction in cases where the
advantages of the tracker are smaller and where the particle shower falls in a region with significant energy
depositions from other particles. For all tracks up to 𝑝trkT = 100 GeV, if the energy 𝐸clus in a cone of size
Δ𝑅 = 0.15 around the extrapolated particle satisfies

𝐸clus − 〈𝐸dep〉
𝜎(𝐸dep)

> 33.2 × log10(40 GeV/𝑝trkT ) , (1)

then the subtraction is not performed. With this parameterization, the subtraction is performed at lower
track momenta unless the calorimeter activity measured by 𝐸clus is very high, such as in very dense
environments where the accuracy of the subtraction is degraded. Since the calorimeter provides a good
energy measurement at high 𝑝trkT , this parameterization effectively slowly truncates the algorithm, yet
allows the subtraction to continue to be performed for a small range above this cut-off even when the
calorimeter energy deposition is low or near the expected value, 〈𝐸dep〉. The momentum range up to
which the subtraction is still allowed to be performed is driven by the coefficient of 33.2 in Eq. (1) and
is typically about 20–50% above the 40 GeV cut-off previously used. Above 𝑝trkT = 100 GeV no track
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information is used and the PFlow algorithm becomes equivalent to EMtopo, benefitting from excellent
calorimeter performance at high energies. The result of the improved subtraction method detailed here is
that the energy resolution of PFlow jets becomes compatible with that of EMtopo jets at high energies
while remaining superior at low energies.

After the subtraction, two scalings are applied. These account for the difference in response, here defined as
the ratio of measured to true particle energy, between topo-clusters at the EM scale and tracks for which the
energy scale is closer to the true particle energy. The first scale factor applies only when no subtraction has
been performed for a selected track. In this case the PFlow object includes both the full topo-cluster energy
and the track momentum. To avoid double-counting the energy while maintaining the contribution from the
calorimeter measurement, the track momentum is scaled by a factor (1− 〈𝐸dep〉/𝑝trk). The resulting PFlow
object uses the desired information and has a final energy of approximately 𝑝trk, matching the response for
the subtracted case. The second scale factor is applied in both the subtracted and non-subtracted cases
for all PFlow objects created from selected tracks below 100 GeV. It smooths the transition between
the lower-energy PFlow objects which are at the scale of the tracks and the higher-energy objects at the
electromagnetic scale of the clusters. The energy of these PFlow objects is scaled by unity for 𝑝trkT below
30 GeV, by (1 − 〈𝐸dep〉/𝑝trk) for objects with 60 GeV < 𝑝trkT < 100 GeV, and by a linearly descending
scale factor in between. This ensures that all objects are at the electromagnetic scale by 60 GeV.

Tracks used in PFlow objects and in deriving calibrations for both EMtopo and PFlow jets are reconstructed
within the full acceptance of the inner detector (|𝜂 | < 2.5), required to have a 𝑝T > 500MeV, and satisfy
quality criteria based on the number of hits in the ID subdetectors. To suppress the effects of pile-up,
tracks must satisfy |𝑧0 sin 𝜃 | < 2 mm, where 𝑧0 is the distance of closest approach of the track to the
hard-scatter primary vertex along the 𝑧-axis and 𝜃 is the polar angle. Tracks are matched to jets using ghost
association [35], a procedure that treats them as four-vectors of infinitesimal magnitude during the jet
reconstruction and assigns them to the jet with which they are clustered.

MC simulation is used to determine the energy scale and resolution of jets by comparing PFlow and
EMtopo jets with particle-level truth jets. Truth jets are reconstructed using stable final-state particles and
exclude muons, neutrinos, and particles from pile-up interactions. Truth jets are selected with the same
𝑝T > 7 GeV and |𝜂 | < 4.5 thresholds as EMtopo and PFlow jets, and are geometrically matched to those
jets using the angular distance Δ𝑅 with the requirement Δ𝑅 < 0.3.

5 Jet energy scale calibration

The jet energy scale calibration restores the jet energy to that of jets reconstructed at the particle level. The
full chain of corrections is illustrated in Figure 2. All stages correct the four-momentum, scaling the jet 𝑝T,
energy, and mass.

At the beginning of the chain, the pile-up corrections remove the excess energy due to additional proton–
proton interactions within the same (in-time) or nearby (out-of-time) bunch crossings. These corrections
consist of two components: a correction based on the jet area and transverse momentum density of the
event, and a residual correction derived from MC simulation and parameterized as a function of the mean
number of interactions per bunch crossing (𝜇) and the number of reconstructed primary vertices in the
event (𝑁PV). These corrections are discussed in Section 5.1.1. The absolute JES calibration corrects
the jet so that it agrees in energy and direction with truth jets from dĳet MC events, and is detailed in
Section 5.1.2. Furthermore, the global sequential calibration (derived from dĳet MC events) improves
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the jet 𝑝T resolution and associated uncertainties by removing the dependence of the reconstructed jet
response on observables constructed using information from the tracking, calorimeter, and muon chamber
detector systems, as introduced in Section 5.1.3. All these calibrations are applied to both data and MC
simulation. Finally, a residual in situ calibration is applied to data only to correct for remaining differences
between data and MC simulation. It is derived using well-measured reference objects, including photons, 𝑍
bosons, and calibrated jets, and for the first time benefits from a low-𝑝T measurement using the missing-𝐸T
projection fraction method for better pile-up robustness. It is described in Section 5.2. The full treatment
and reduction of the systematic uncertainties is discussed in Section 5.3.

5.1 Simulation-based jet calibrations

The derivation of the calibrations derived exclusively from MC simulation samples is described below.

5.1.1 Pile-up corrections

As a result of the increase of the topo-clustering 𝑝T thresholds (to suppress electronic and pile-up noise)
and in the instantaneous luminosity, the contribution from pile-up to the JES in the 2015–2017 data-taking
period differs from the one observed in 2015. The pile-up corrections are therefore evaluated using updated
MC simulations of the software reconstruction and pile-up conditions. These corrections are derived using
the same methods employed in 2015 [7] and are summarized in the following paragraphs.

First, a jet 𝑝T-density-based subtraction of the per-event pile-up contribution to the jet 𝑝T is performed.
The jet area 𝐴 is a measure of the susceptibility of the jet to pile-up and is calculated by determining the
relative number of ghost particles associated with a jet after clustering. Next, the pile-up contribution is
estimated from the median 𝑝T density, 𝜌, of jets in the 𝑦–𝜙 plane, 〈𝑝T/𝐴〉. The calculation of 𝜌 uses jets
reconstructed using the 𝑘𝑡 algorithm [36] with radius parameter 𝑅 = 0.4 from positive-energy topo-clusters
with |𝜂 | < 2. The computation of 𝜌 in the central region of the detector gives a more meaningful measure
of the pile-up activity than the median over the entire 𝜂 range, and this is because 𝜌 drops to nearly zero
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Figure 2: Stages of jet energy scale calibrations. Each one is applied to the four-momentum of the jet.
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beyond |𝜂 | ∼ 2. This drop is due to the lower occupancy in the forward region relative to the central region,
which is a result of a coarser segmentation in the forward region. The 𝑘𝑡 algorithm is chosen due to its
tendency to naturally reconstruct jets including an uniform soft background [35], while 𝜌 is used to reduce
the bias from hard-scatter jets which populate the high-𝑝T tails of the distribution. The distribution of 𝜌 in
MC simulation for representative 𝑁PV values is shown in Figure 3. The ratio of the 𝜌-subtracted jet 𝑝T to
the uncorrected jet 𝑝T is applied as a scale factor to the jet four-momentum and does hence not affect its
direction.
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Figure 3: Per-event median 𝑝T density, 𝜌, at 𝑁PV = 15 (solid), 𝑁PV = 25 (long dashed), and 𝑁PV = 35 (short dashed)
for 37 < 𝜇 < 38 as found in MC simulation.

The 𝜌 calculation is derived from the central, lower-occupancy regions of the calorimeter and does not
fully describe the pile-up sensitivity in the forward calorimeter region or in the higher-occupancy core of
high-𝑝T jets. It is therefore observed that after this correction some dependence of the anti-𝑘𝑡 jet 𝑝T on the
pile-up activity remains, and consequently, a residual correction is derived. This residual dependence is
defined as the difference between the reconstructed jet 𝑝T and truth jet 𝑝T and it is observed as a function
of both 𝑁PV and 𝜇, which are sensitive to in-time and out-of-time pile-up respectively.

The jet 𝑝T after all pile-up (𝑝T-density-based and residual) corrections is given by

𝑝corrT = 𝑝recoT − 𝜌 × 𝐴 − 𝛼 × (𝑁PV − 1) − 𝛽 × 𝜇 ,

where 𝑝recoT refers to the 𝑝T of the reconstructed jet before any pile-up correction is applied. Reconstructed
jets with 𝑝T > 7GeV are geometrically matched to truth jets within Δ𝑅 = 0.3. The residual 𝑝T dependences
on 𝑁PV (𝛼) and 𝜇 (𝛽) are observed to be fairly linear and independent of one another. Independent linear
fits are used to derive 𝛼 and 𝛽 coefficients in bins of 𝑝trueT and |𝜂det |, where 𝑝trueT is the 𝑝T of the truth jet
that matches the reconstructed jet. The jet 𝜂 pointing from the geometric centre of the detector, 𝜂det, is
used to remove any ambiguity as to which region of the detector is measuring the jet. Both the 𝛼 and
𝛽 coefficients are seen to have a logarithmic dependence on 𝑝trueT , and logarithmic fits are performed in
the range 20GeV < 𝑝trueT < 200GeV for each bin of |𝜂det |. In each |𝜂det | bin, the fitted values of the 𝛼
and 𝛽 coefficients at 𝑝trueT = 25GeV are taken as their nominal values, reflecting their behaviour in the 𝑝T
region where pile-up effects are most relevant. The differences between the logarithmic fits over the full
𝑝trueT range and the nominal fits are used for a 𝑝T-dependent systematic uncertainty in the residual pile-up
dependence. Finally, linear fits are performed to the binned coefficients as a function of |𝜂det |. This reduces
the effects of statistical fluctuations and allows the 𝛼 and 𝛽 coefficients to be smoothly sampled in |𝜂det |,
particularly in regions of varying dependence.
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The dependences of the 𝑝T-density-based and residual corrections on 𝑁PV and 𝜇 as a function of |𝜂det |
for PFlow jets are shown in Figure 4. The negative dependence on 𝜇 for out-of-time pile-up is a result of
the liquid-argon calorimeter’s pulse shape, which is negative during the period shortly after registering a
signal [37]. These corrections are similar to those derived for EMtopo jets, although the 𝑁PV-dependent
corrections for PFlow jets in the |𝜂det | < 2.5 region are reduced by about 60% relative to EMtopo due
to the usage of tracks in the PFlow algorithm. For EMtopo jets, the shape of the residual corrections is
comparable to that found in 2015 MC simulation, except in the forward region (|𝜂det | > 2.5), where it is
found to be smaller by 0.1GeV. This difference is primarily caused by higher topo-cluster noise thresholds
used in the full Run 2 data.
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Figure 4: Dependence of PFlow jet 𝑝T on (a) in-time pile-up (𝑁PV averaged over 𝜇) and (b) out-of-time pile-up (𝜇
averaged over 𝑁PV) as a function of |𝜂det | for 𝑝trueT = 25GeV. Errors are taken from the fit results and are too small to
be visible on the scale of the plot.

Four systematic uncertainties are introduced to account for MC mis-modelling of 𝑁PV, 𝜇, the 𝜌 topology,
and the 𝑝T dependence of the residual pile-up corrections. The last of these is derived from the full
logarithmic fits to 𝛼 and 𝛽, as discussed previously. Two in situ methods are used to estimate uncertainties
in the modelling of 𝑁PV and 𝜇. The first method uses jets reconstructed from tracks to provide a measure
of the jet 𝑝T independent of pile-up. This is only used for |𝜂 | < 2.1. The second method exploits the
𝑝T balance between a reconstructed jet and a 𝑍 boson and is used for 2.1 < |𝜂 | < 4.5. These systematic
uncertainties are described in more detail in Ref. [38]. Finally, the 𝜌 topology uncertainty accounts for the
uncertainty in the underlying event’s contribution to 𝜌, and is discussed in detail in Section 5.2.4.

5.1.2 Jet energy scale and 𝜼 calibration

The absolute jet energy scale and 𝜂 calibrations correct the reconstructed jet four-momentum to the
particle-level energy scale accounting for non-compensating calorimeter response, energy losses in passive
material, out-of-cone effects and biases in the jet 𝜂 reconstruction. Such biases are primarily caused by
the transition between different calorimeter technologies and sudden changes in calorimeter granularity.
The calibration is derived for 𝑅 = 0.4 anti-𝑘𝑡 jets from a Pythia8 MC simulation of dĳet events after the
application of the pile-up corrections. Reconstructed jets are geometrically matched to truth jets within
Δ𝑅 = 0.3. In addition, reconstructed (truth) jets are required to have no other reconstructed (truth) jet of
𝑝T > 7 GeV within Δ𝑅 = 0.6 (Δ𝑅 = 1.0).
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The average jet energy response R, defined as the mean of a Gaussian fit to the core of the 𝐸 reco/𝐸 true
distribution, is measured in 𝐸 true and 𝜂det bins. The decision to calculate the response as a function of
𝐸 true instead of 𝐸 reco is motivated by the fact that for fixed 𝐸 true (𝐸 reco) bins the response distribution is
(not) Gaussian. The average response is parameterized as a function of 𝐸 reco using a numerical inversion
procedure, as detailed in Ref. [2], and the jet calibration factor is taken as the inverse of the average
energy response. The response is higher for PFlow jets than for EMtopo jets at low energies since tracking
information is used. The response for PFlow jets as a function of 𝐸 reco (𝜂det) for representative 𝜂det (𝐸 reco)
bins is shown in Figure 5.
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Figure 5: The average energy response as a function of reconstructed jet (a) 𝜂det and (b) energy 𝐸 reco. Each value
is obtained from the corresponding parameterized function derived with the Pythia8 MC sample and only jets
satisfying 𝑝T > 20 GeV are shown.

After the JES calibration based on the results in Figure 5 is applied, the response diverges from 1 by a
maximum of about 5% (3%, 1%) at 𝑝trueT = 20 (30, 50) GeV. This level of non-closure is observed across
entire 𝜂det range. These small non-closures are seen for low-𝑝T jets due to a slightly non-Gaussian energy
response and jet reconstruction threshold effects, both of which impact the response fits. The closure in
this result is an improvement with respect to the 2015 calibration and is thanks to advances in the fitting
method and parameters.

A bias in the reconstructed jet 𝜂, defined as a significant deviation from zero in the signed difference
between the reconstructed and truth jet 𝜂, denoted by 𝜂reco and 𝜂true respectively, is observed and shown
in Figure 6 as a function of |𝜂det | for PFlow jets. The bias for EMtopo jets is similar, showing the same
features. It is largest in jets that encompass two calorimeter regions with different energy responses caused
by changes in calorimeter geometry or technology. This artificially increases the energy of one side of the
jet relative to the other, altering the reconstructed four-momentum. The barrel–endcap (|𝜂det | ∼ 1.4) and
endcap–forward (|𝜂det | ∼ 3.1) transition regions can be clearly seen in Figure 5(a) as susceptible to this
effect. A second correction is therefore derived as the difference between the reconstructed and truth 𝜂
(𝜂reco and 𝜂true respectively) parameterized as a function of 𝐸 true and 𝜂det to remove such bias. A numerical
inversion procedure is again used to derive corrections in 𝐸 reco from 𝐸 true. This calibration only alters the
jet 𝑝T and 𝜂, not the full four-momentum. EMtopo and PFlow jets calibrated with the full jet energy scale
and 𝜂 calibration are considered to be at the EM+JES scale and PFlow+JES scale, respectively.

The absolute JES and 𝜂 calibrations are also derived for a Pythia8 MC sample using AFII. An additional
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Figure 6: The signed difference between the reconstructed and truth jet 𝜂, denoted by 𝜂reco and 𝜂true respectively.
Each value is obtained from the corresponding parameterized function derived with the Pythia8 MC sample and
only jets satisfying 𝑝T > 20 GeV are shown.

systematic uncertainty is considered for these samples to account for a small non-closure in the calibration
beyond |𝜂det | ∼ 3.2, due to the approximate treatment of hadronic showers in the forward calorimeters.
This uncertainty is below 0.5% for all central jets and is about 3% for a forward jet of 𝑝T = 20 GeV, falling
rapidly with increasing 𝑝T.

5.1.3 Global sequential calibration

Even after the application of the previous jet calibrations (from now on referred to as MCJES), for a given
(𝑝trueT , 𝜂det) bin, the response can vary from jet to jet depending on the flavour and energy distribution
of the constituent particles, their transverse distribution, and the fluctuations of the jet development in
the calorimeter. Furthermore, the average particle composition and shower shape of a jet varies between
initiating particles, most notably between quark- and gluon-initiated jets. A quark-initiated jet will often
include hadrons with a higher fraction of the jet 𝑝T that penetrate further into the calorimeter, while
a gluon-initiated jet will typically contain more particles of softer 𝑝T, leading to a lower calorimeter
response and a wider transverse profile. The global sequential calibration (GSC), a procedure used in
the 2012 [6] and 2015 [7] calibrations, is a series of multiplicative corrections to reduce the effects from
these fluctuations and improve the jet resolution without changing the average jet energy response. The jet
resolution 𝜎R is given by the standard deviation of a Gaussian fit to the jet 𝑝T response distribution, where
the 𝑝T response is defined similarly to jet energy response as the ratio of 𝑝recoT to 𝑝trueT .

The GSC is based on global jet observables such as the longitudinal structure of the energy depositions
within the calorimeters, tracking information associated with the jet, and information related to the activity
in the muon chambers behind a jet. For these studies, reconstructed jets are geometrically matched to
truth jets and a numerical inversion procedure is used, as explained in Section 5.1.2. Six observables are
identified that improve the resolution of the JES through the GSC. For each observable, an independent jet
four-momentum correction is derived as a function of 𝑝trueT and |𝜂det | by inverting the reconstructed jet
response in Pythia8 MC simulation events. Corrections for each observable are applied independently and
sequentially to the jet four-momentum for jets with |𝜂det | < 3.5 (unless stated otherwise). No improvement
in resolution was found from altering the sequence of the corrections.
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The six stages of the GSC account for the dependence of the jet response on (in the order in which they are
applied):

• 𝑓charged, the fraction of the jet 𝑝T measured from ghost-associated tracks with 𝑝T > 500MeV
(|𝜂det | < 2.5);

• 𝑓Tile0, the fraction of jet energy measured in the first layer of the hadronic Tile calorimeter
(|𝜂det | < 1.7);

• 𝑓LAr3, the fraction of jet energy measured in the third layer of the electromagnetic LAr calorimeter
(|𝜂det | < 3.5);

• 𝑛trk, the number of tracks with 𝑝T > 1GeV ghost-associated with the jet (|𝜂det | < 2.5);

• 𝑤trk, also known as track width, the average 𝑝T-weighted transverse distance in the 𝜂–𝜙 plane
between the jet axis and all tracks of 𝑝T > 1GeV ghost-associated with the jet (|𝜂det | < 2.5);

• 𝑛segments, the number of muon track segments ghost-associated with the jet (|𝜂det | < 2.7).

The first correction is only applied to PFlow jets. The 𝑛segments correction, also known as the punch-through
correction, reduces the tails of the response distribution caused by high-𝑝T jets that are not fully contained
in the calorimeter. All corrections are derived as a function of jet 𝑝T, except for the punch-through
correction, which is derived as a function of jet energy since this effect is more correlated with the energy
escaping the calorimeters.

The underlying distributions of these observables are shown for PFlow jets in MC simulation and bins
of equal statistics in Figure 7. Each observable has been studied in data and simulation and is found to
be well modelled [6, 7, 33]. The spike at zero in the 𝑓Tile0 distribution at low 𝑝trueT , shown in Figure 7(b),
corresponds to jets that are fully contained in the electromagnetic calorimeter and do not deposit energy
in the Tile calorimeter. The tail towards negative values in the 𝑓Tile0 and 𝑓LAr3 distributions at low 𝑝trueT ,
shown in Figures 7(b) and 7(c), respectively, reflects calorimeter noise fluctuations. Slight differences with
respect to data have a negligible impact on the GSC since the dependence of the average jet response on
the observables is well modelled in MC simulation, as observed by an in situ dĳet tag-and-probe method
described in Ref. [2]. In this method, the average 𝑝T asymmetry between back-to-back jets is measured as
a function of each observable.

The average jet 𝑝T response for PFlow jets in MC simulation as a function of each of the GSC observables
is shown in Figure 7 for representative 𝑝trueT ranges. The dependence of the jet response on each observable
is reduced to less than 2% after the full GSC is applied, with small deviations from unity reflecting the
correlations between observables that are unaccounted for in the corrections.

The fractional jet resolution, defined as 𝜎R/R, is used to determine the size of the fluctuations in the jet
energy reconstruction and is shown for PFlow jets with 0.2 < |𝜂det | < 0.3 in MC simulation in Figure 8.
As more corrections are applied, the fractional jet resolution improves and the jet response dependence on
the jet flavour is reduced. No improvement is observed in Figure 8 from the punch-through correction
since only a small fraction of jets received this calibration, but there are analyses where their region of
interest has a large fraction of jets that would receive this correction [39, 40].
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Figure 7: Jet response for PFlow jets in four broad 𝑝trueT ranges as a function of each of the six observables used in the
GSC (a) the fraction of the jet 𝑝T carried by charged particles, (b) the fraction of energy in the first layer of the Tile
calorimeter, (c) the fraction of energy in the third layer of the electromagnetic calorimeter, (d) the number of tracks,
(e) the track width, and (f) the number of muon spectrometer track segments associated with the jet. Jets at the
PFlow+JES scale with 0.2 < |𝜂det | < 0.3 (except for 𝑛segments which is shown for |𝜂det | < 1.3 due to low statistics)
are selected from a sample of Pythia8 dĳet MC events and the corresponding preceding GSC steps have been
applied accordingly. The error bars show only the statistical uncertainty. The bottom panels show the normalized
distributions of the variables.
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5.2 In situ jet calibrations

Once jets are corrected to the particle level using the MCJES and GSC, they require one final calibration
step to account for differences between the jet response in data and simulation. These differences are
caused by imperfect simulation of both the detector materials and the physics processes involved: the hard
scatter and underlying event, jet formation, pile-up, and particle interactions with the detector. The final
in situ calibration measures the jet response in data and MC simulation separately and uses the ratio as an
additional correction in data.

Jet response is calculated by balancing the 𝑝T of a jet against that of a well-calibrated reference object or
system. The response Rin situ is defined as the average ratio of the jet 𝑝T to the reference object 𝑝T in bins
of reference object 𝑝T, where that average is taken from the peak location found by fitting the distribution
with a Gaussian function. Rin situ is sensitive to effects such as the presence of additional radiative jets or
the transition of energy into or out of the jet cone, although these effects can be mitigated through careful
event selection.3 A better method is to form the double ratio from the response in data and MC simulation:

𝑐 =
Rdatain situ

RMCin situ
,

which is robust to secondary effects so long as they are well modelled in simulation and is therefore a
reliable measure of the jet energy scale difference between data and MC simulation. The double ratio 𝑐 is
transformed via numerical inversion from a function of reference object 𝑝T to a function of jet 𝑝T (and jet
𝜂 where applicable). This is the final in situ calibration.

There are three stages of in situ analyses. First, the 𝜂 intercalibration analysis corrects the energy scale of
forward (0.8 ≤ |𝜂det | < 4.5) jets to match those of central (|𝜂det | < 0.8) jets using the 𝑝T balance in dĳet
events. Second, the 𝑍+jet and 𝛾+jet analyses balance the hadronic recoil in an event against the 𝑝T of a
calibrated 𝑍 boson or photon. The missing-𝐸T projection fraction (MPF) method uses the full hadronic
recoil instead of a jet to compute the balance to help mitigate effects of pile-up and jet reconstruction
threshold which otherwise make low-𝑝T measurements challenging [41]. Finally, the multĳet balance
(MJB) analysis uses a system of well-calibrated low-𝑝T jets to calibrate a single high-𝑝T jet [42]. The
𝑍/𝛾+jet and MJB analyses are computed only for central jets, but are also applicable to forward jets due to
the effect of the 𝜂 intercalibration. Each measurement is translated from a function of reference object 𝑝T
into jet 𝑝T. A statistical combination of the 𝑍/𝛾+jet and MJB analyses provides a single smooth calibration
applicable across the full momentum range.

Since the three in situ analyses (𝜂 intercalibration, 𝑍/𝛾+jet MPF, and MJB) are performed sequentially,
systematic uncertainties are propagated from each to the next. Within each analysis, systematic uncertainties
arise from three sources: modelling of physics processes in simulation, uncertainties in the measurement of
the reference object, and uncertainties in the expected 𝑝T balance due to the event’s topology. Mis-modelling
is accounted for by comparing the predictions of two MC generators and taking their difference as the
uncertainty. Systematic uncertainties in the measurement of the reference object are taken from the ±1𝜎
uncertainties in each object’s calibration and propagated through the analysis. Event topology uncertainties
are estimated by varying the event selections used and observing the impact on the final MC simulation to
data ratio.

3 Requirements on the angle between the leading jet and the well-calibrated reference object, as well as cuts on the maximum 𝑝T
of the second jet in the event, help suppress additional radiation to ensure the events are as clean as possible.
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A rebinning procedure is applied to each systematic uncertainty to ensure that the features represented in
the final result are statistically significant and not the result of fluctuations in small numbers of simulated or
data events. This is only performed where the response does not vary sharply with 𝑝T, ensuring it does not
obscure real physics effects. The rebinning procedure follows a bootstrapping method: pseudo-experiment
datasets are created by sampling from a Poisson distribution with a mean of one for each event in the data
or MC simulation [43]. The pseudo-experiments are therefore statistically correlated yet unique, and the
root mean square of the response distribution across the pseudo-experiments provides a measure of the
statistical uncertainty of the analysis. The measured result for each systematic uncertainty is then rebinned
as appropriate for each analysis to ensure that the final shapes are statistically significant.

The 𝑍/𝛾+jet andMJB calibrations and uncertainties are derived from the full 2015–2017 combined datasets
with a total luminosity of 80 fb−1. The 𝜂 intercalibration analysis uses a dataset of total size 81 fb−1, but
since this analysis is more sensitive than the others to year-by-year fluctuations, the dataset is split into
two blocks and a time-dependent result is computed instead. One 𝜂 intercalibration is derived from and
applies to the 2015 + 2016 dataset while a second independent calibration is derived from the 2017 dataset
and applies to 2017 + 2018 data. These two data periods are treated separately due to a change in LAr
calorimeter read-out that occurred between 2016 and 2017 data taking and affected jet reconstruction in
the endcap regions. With no changes of similar scale made between 2017 and 2018 data taking, the 2017
calibration can be reasonably applied to 2018 as well. The post-calibration jet performance is consistent
between these two different data periods and therefore a single set of uncertainties based on the 2015+ 2016
dataset is used for the 𝜂 intercalibration in all years, with only a small localized additional uncertainty
added for 2018 as described in Section 5.2.1.

Certain common selection criteria are applied to all three in situ analyses. Each event must have a
reconstructed vertex with at least two associated tracks of 𝑝T > 500 MeV. All jets must satisfy quality
criteria to reject non-collision background, calorimeter noise, and cosmic rays [44]. Furthermore, each
jet with 20 GeV < 𝑝T < 60 GeV and |𝜂det | < 2.4 must pass jet vertex tagging, or JVT, requirements with
selection criteria that are specific to the jet definition [45]. These requirements match jets to the primary
vertex and are 92% efficient for EMtopo jets and 97% efficient for PFlow jets.

5.2.1 Relative calibration measurement in 𝜼 using dĳet events

The 𝜂 intercalibration analysis produces a correction which is applied to forward jets (0.8 ≤ |𝜂det | < 4.5) to
bring them to the same energy scale as central jets (|𝜂det | < 0.8). Jets in the central region of the detector
are taken to be well-calibrated, while jets in the forward regions vary in response and must be corrected
accordingly. Events are selected with exactly two jets in different 𝜂 regions of the detector. To maximize
statistics, neither jet need be in the central region: instead, all regions will be calibrated relative to one
another.

For these dĳet events, momentum balance requires that the transverse momentum of the two jets must
be equal and opposite. Therefore, the momentum asymmetry of the two jets is a metric for the response
difference between the two detector regions (left and right for simplicity):

A =
𝑝leftT − 𝑝

right
T

𝑝
avg
T

,

18



where 𝑝avgT = (𝑝leftT + 𝑝
right
T )/2. The response ratio R of the two jets defines the calibration factor 𝑐 for each

jet and is then:

R =
𝑐left

𝑐right
=
2 + 〈A〉
2 − 〈A〉 �

𝑝leftT

𝑝
right
T

.

The average response ratio 〈R𝑖 𝑗 𝑥〉 is measured in each bin 𝑖 of 𝜂left, 𝑗 of 𝜂right, and 𝑥 of 𝑝avgT ; Δ〈R𝑖 𝑗 𝑥〉 is
the statistical uncertainty in each bin. All 𝜂 values are in detector coordinates rather than corrected jet
coordinates (𝜂det) since the properties of interest correlate to specific regions of detector hardware. The
following function relates the correction factors and responses in each of the 𝑁 bins:

𝑆(𝑐1𝑥 , . . . , 𝑐𝑁 𝑥) =
𝑁∑︁
𝑗=2

𝑗−1∑︁
𝑖=1

(
1

Δ〈R𝑖 𝑗 𝑥〉
(𝑐𝑖𝑥 〈R𝑖 𝑗 𝑥〉 − 𝑐 𝑗 𝑥)

)2
+ 𝑋 (𝑐𝑖𝑥) .

Here, the function 𝑋 (𝑐𝑖𝑥) quadratically imposes a penalty on correction factors deviating from 1.4
Minimizing this function produces the correction factors to be used in the calibration.

Previous iterations of the jet energy scale have used a fit in Minuit to minimize 𝑆(𝑐𝑖𝑥). The current
calibration instead minimizes the function analytically. Suppressing the 𝑥 indices for clarity and setting the
derivative of 𝑆 with respect to some correction factor 𝑐𝛼 equal to zero, the following equation defines the
correction factor values which minimise S:

𝛼−1∑︁
𝑖=1

(( −〈R𝑖𝛼〉
Δ2〈R𝑖𝛼〉

+ 𝜆

𝑁2

)
𝑐𝑖

)
+

(
𝛼−1∑︁
𝑖=1

1
Δ2〈R𝑖𝛼〉

+
𝑁∑︁

𝑖=𝛼+1

〈R𝛼𝑖〉2
Δ2〈R𝛼𝑖〉

+ 𝜆

𝑁2

)
𝑐𝛼

+
𝑁∑︁

𝑖=𝛼+1

(( −〈R𝛼𝑖〉
Δ2〈R𝛼𝑖〉

+ 𝜆

𝑁2

)
𝑐𝑖

)
− 𝜆

𝑁
= 0 . (2)

Here 𝜆 is a Lagrange multiplier arising from the penalty term whose value has no effect on the minimization
result but prevents the trivial solution where all the 𝑐𝑖 are null.

Equation (2) can then be expressed as a matrix system of linear equations. This matrix system is solved
independently for each 𝑝avgT bin 𝑥 to obtain values for the correction factors 𝑐𝑖𝑥 for each 𝜂det bin 𝑖 in this
momentum range. Solving analytically for the 𝑐𝑖𝑥 in this way allows the result to be found approximately a
thousand times more quickly than using a fit. This large reduction in computational requirements in turn
allows the analysis to use a finer binning in 𝜂det, capturing more details of the detector structure. The
two methods agree well and each shows good closure when tested in simulation. Finally, the full set of
correction factors are normalized such that the average correction factor in the central region |𝜂det | < 0.8 is
unity.

Events are selected using a combination of single-jet triggers, with each trigger only considered in the jet 𝑝T
range for which it is at least 99% efficient [15, 46]. Events may pass either a central jet trigger or a forward
jet trigger, or both. In the case that a trigger is prescaled, the passing event is weighted by the appropriate
amount. Jets with |𝜂det | < 2.4 are also required to satisfy JVT criteria to minimize contributions from
pile-up and must pass basic cleaning requirements [38, 44]. Each selected event must have two jets with

4 This penalty function takes the form 𝑋 (𝑐𝑖) = 𝜆

(
1
𝑁

∑𝑁
𝑖=1 𝑐𝑖 − 1

)2
, where 𝜆 introduces the Lagrange multiplier visible in Eq. (2).

The purpose of the penalty function is to ensure that the appropriate minimum is selected by suppressing local minima with
large values of 𝑐𝑖𝑥 , and as such its exact form is somewhat arbitrary.
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𝑝T > 25 GeV and |𝜂 | < 4.5. To ensure a clean dĳet topology, events are further required to have no third
jet with significant 𝑝T: 𝑝thirdT /𝑝avgT < 0.25, where 𝑝avgT is the average momentum of the two leading jets.
The two leading jets are required to be back-to-back in the azimuthal plane such that Δ𝜙 > 2.5 rad.

Like the other in situ analyses, the goal of the 𝜂 intercalibration is to correct for data–simulation differences,
so the quantity of interest is the ratio of the measured calorimeter response in MC simulation to the response
in data. The nominal calibration is derived by comparison with Powheg+Pythia8 simulated events. The
analysis binning in 𝑝avgT and 𝜂det is selected to balance the requirements of both sufficient statistics in sparse
regions and resolution of narrow detector features. As such, it varies for different values of 𝜂det. Remaining
statistical fluctuations in the final calibration are smoothed using a two-dimensional Gaussian kernel with
parameters selected to preserve significant structures.

Figure 9 shows the measured response in data and Powheg+Pythia8 MC simulation for the 2017 dataset
as a function of 𝜂det for three different 𝑝

avg
T ranges (Figures 9(a), 9(b), 9(c)) and as a function of 𝑝

avg
T for

three different 𝜂det ranges (Figures 9(d), 9(e), 9(f)). The simulation can be seen to approximately reproduce
the 𝜂det-dependent features of the response observed in data, although the response in data is consistently
higher than the response in simulation. The simulation/data response ratio as directly measured is shown
in discrete points in the bottom panel, while the calibration derived from smoothing the response ratio is
overlaid as the solid curve. The dashed curve shows the extrapolation to 𝑝T ranges beyond the available
data, taken from the Gaussian smoothing results. Since the smoothing is stronger in the 𝑝T direction and
weaker in 𝜂det to preserve detector features, this sets each extrapolated value to approximately the value of
the last populated bin at lower 𝑝T. Above 𝑝T = 2 TeV the value is kept constant.

Uncertainties are derived as a function of 𝜂det and 𝑝T and account for mis-modelling of physics, detector,
and event topology effects on the momentum balance of dĳet events. The dominant uncertainty is in MC
mis-modelling and is taken to be the difference between the smoothed calibration curves derived from
the Powheg+Pythia8 and Sherpa dĳet samples. Additional uncertainties in the physics and topology
modelling are assessed by varying the 𝑝thirdT , Δ𝜙, and pile-up suppression cuts and using a bootstrapping
method to ensure observed shapes are statistically significant as discussed in Section 5.2. Similarly, the
JVT uncertainty is determined by comparison with tighter and looser working points. These uncertainties
can take positive or negative values. The statistical uncertainty is strictly positive and is taken from the data
and MC simulation sample sizes. Finally, a non-closure uncertainty is assessed by comparing the response
in data with that in Powheg+Pythia8 after applying the derived 𝜂 intercalibration. This uncertainty is
largest for |𝜂det | ∼ 2.1–2.6, where detector transitions make modelling of the LAr pulse shape particularly
difficult [34], and for jets near the kinematic limit, where they have the maximum possible 𝑝T for a given
𝜂det subject to the constraint of a 13 TeV centre-of-mass energy. The non-closure uncertainty is treated
as three independent nuisance parameters, two covering the regions around ±2.4 in 𝜂det and one at the
kinematic limit, since these two non-closure uncertainties are uncorrelated.

After being corrected each with their dedicated calibration, the 2015+2016 and 2017 datasets are in good
agreement, and therefore a single set of uncertainties is sufficient to cover both cases. The uncertainties
calculated with the 2015+2016 dataset are selected for this role. The only dataset-dependent uncertainty is
an additional small non-closure uncertainty used for 2018 data only. It covers the region around 𝜂 = ±1.5 to
account for the difference in Tile calorimeter calibration during this year of data-taking and has a maximum
size of 2%.

Themethod uncertainties are shown in Figure 10. Three illustrative 𝑝T values are selected. The uncertainties
decrease slightly as a function of 𝑝T and increase significantly as a function of 𝜂det outside of the central
detector region, while in the central region they are zero by construction. For practical use the various
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Figure 9: Relative response of jets calibrated with PFlow+JES in data (black circles) and Powheg+Pythia8 MC
simulation (red squares). Response is shown as a function of 𝜂det for jets of (a) 40 GeV < 𝑝

jet
T < 60 GeV, (b)

85GeV < 𝑝
jet
T < 115GeV, and (c) 270GeV < 𝑝

jet
T < 330GeV, and as a function of 𝑝T for jets of (d) 1.2 < 𝜂det < 1.4,

(e) 2.6 < 𝜂det < 2.8, and (f) 3.0 < 𝜂det < 3.2. The lower panel shows the response ratio of simulation to data (red
squares) as well as the smoothed in situ calibration factor derived from the ratio (solid curve) which is used to perform
the 𝜂 intercalibration. Dotted lines show the extrapolation of the in situ calibration to the regions without data points.
The dashed red and blue horizontal lines provide reference points for the viewer.
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systematic uncertainty terms are summed in quadrature to produce one single systematic uncertainty
dominated by the modelling term. In the cases where up and down variations differ, the largest absolute
value of the two is used at each point. The total systematic uncertainty and the statistical uncertainty are
both symmetrized in 𝜂det. The non-closure uncertainties, not included in Figure 10 as they are not method
uncertainties, are instead shown in Figure 22 where it can be seen that they are kept asymmetric to reflect
real differences in the detector.
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Figure 10: Systematic uncertainties associated with the 𝜂 intercalibration procedure as a function of 𝜂det for
PFlow+JES jets of (a) 𝑝T = 50GeV, (b) 𝑝T = 100GeV, and (c) 𝑝T = 300GeV. The solid purple band shows the total
systematic uncertainty, while the grey band shows the statistical uncertainty alone. Individual sources of uncertainty
are marked by coloured lines. These have been smoothed to remove the impact of statistical fluctuations. Thus the
visible shapes are statistically significant. The MC modelling term is the dominant source of uncertainty.

The calibrations are similar in size and shape between PFlow and EMtopo jets. Systematic uncertainties are
also similar in size and shape since the dominant MC modelling component does not differ meaningfully
between the two jet collections.

5.2.2 Calibration measurement using 𝒁+jet and 𝜸+jet events

The next stage of the in situ calibration corrects for the differences between data and MC simulation using
the momentum balance between the measured hadronic activity in the event and the 𝑝T of a well-calibrated

22



photon or 𝑍 boson. Only the central region of the detector (|𝜂 | < 0.8) is used for this analysis: the 𝜂
intercalibration ensures that a correction derived centrally translates directly to forward jets as well.

The 𝑍/𝛾+jet analyses rely on the energy scale of the photon or the electrons and muons from the 𝑍 decay
being well measured. All three objects are cleanly measured in the ATLAS detector and the uncertainties in
their energy scales are small [47, 48]. The response is calculated separately in 𝑍 → 𝑒+𝑒− and 𝑍 → 𝜇+𝜇−

events since the sources of uncertainties propagated from 𝑒 and 𝜇 calibration are independent, and the three
channels are combined at a later stage. The 𝑍+jet response measurement is limited at moderate to high 𝑝T
by low statistics and thus covers a range in jet 𝑝T from 17 GeV to 1 TeV with large uncertainties in the final
bin. The 𝛾+jet response measurement benefits from much higher statistics and extends to 1.2 TeV with
little loss in sensitivity. However, it is limited at low jet 𝑝T by both the trigger prescales and the prevalence
of soft jets misidentified as photons and so begins at 25 GeV.

The missing-𝐸T projection fraction technique is used for both of the 𝑍/𝛾+jet analyses and balances the
reference object 𝑝T against the full hadronic recoil in an event. By doing so, it is possible to compute
the calorimeter response to hadronic showers directly. This approach is robust to both pile-up and the
underlying event, which each cancel out directionally on average over a large collection of events, and is
not strongly affected by jet definitions since these become relevant only in the application of the calibration.
The showering and topology effects in moving from a recoil-level quantity to a jet-level quantity are
studied and found to be small, as discussed below. Taking ®𝑝 recoilT as the total transverse momentum of the
hadronic activity in a clean 𝑍/𝛾+jet event and 𝑝refT as the transverse momentum of the photon or 𝑍 boson,
conservation of transverse momentum means that at the particle level:

®𝑝 refT,truth + ®𝑝 recoilT,truth = 0 . (3)

This balance could be altered by the presence of initial- or final-state radiation.5 To suppress the effects of
such additional radiation, a cut is placed on the azimuthal angle Δ𝜙 between the jet and the reconstructed
photon or 𝑍 boson in the event and an uncertainty due to the topology is evaluated by varying the event
selection requirements. If the calorimeter response to the hadronic activity in this event is 𝑟MPF and the
response for the calibrated reference object is 1, and assuming any missing energy in the event is due to the
low response to the hadronic recoil (𝑟MPF < 1), then at the detector level Eq. (3) becomes:

®𝑝 refT + 𝑟MPF ®𝑝 recoilT = − ®𝐸 missT

After taking the projection of each term in the direction of the reference object, defined by a unit vector
�̂�ref, the response to the hadronic recoil is then seen to depend only on the missing energy in the event and
the momentum of the reference object. The MPF response RMPF is defined by measuring the average of
𝑟MPF across events binned in the reference object 𝑝T. Thus,

RMPF =
〈
1 +

�̂�ref · ®𝐸 missT

𝑝refT

〉
.

5 The balance can also be affected by leptonic processes in heavy flavour decays, though heavy flavour production is rare in
𝑍+jet events. Electrons are included in the balance calculation but muons and neutrinos are not. However, this effect is not a
problem like additional radiation, since the balance in heavy flavour events actually contributes to measuring the energy loss
and correctly calibrating their momenta.
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This peak location is taken to be the average response in that bin, and the response is mapped from reference
to jet 𝑝T by finding the average jet 𝑝T in the events in each bin after 𝜂 intercalibration but before the
application of any other in situ steps.

Missing energy in each event is reconstructed from calorimeter topo-clusters in the case of EMtopo jet
calibration and from particle-flow objects in the case of PFlow jet calibration, ensuring that the energy scale
is consistent. The 𝑍 → 𝑒𝑒 events are required to pass a dielectron trigger with 𝑝𝑒1,𝑒2T > 15 GeV; 𝑍 → 𝜇𝜇

events must pass a similar dimuon trigger with 𝑝𝜇1,𝜇2
T > 14 GeV [49, 50]. Electrons entering the analysis

must have 𝑝T > 20 GeV, ensuring that the trigger is fully efficient, must be contained within the tracker
such that |𝜂𝑒 | < 2.47, and must not fall in the calorimeter transition region (1.37 < |𝜂 | < 1.52). Muons
entering the analysis are required to have 𝑝T > 20 GeV and to fall within |𝜂 | < 2.4. Both electron and
muon candidates must also pass loose identification and isolation requirements [47, 48]. All 𝑍+jet events
are selected such that the reconstructed mass calculated from the electron or muon pair must be close to the
𝑍 boson mass: 66 GeV < 𝑚𝑒𝑒/𝜇𝜇 < 116 GeV. A combination of single-photon triggers are used for the
𝛾+jet analysis, with the lowest trigger threshold corresponding to 𝐸𝛾

T > 15 GeV. Offline photons must
have 𝐸𝛾

T > 25 GeV and |𝜂𝛾 | < 1.37 and must satisfy tight identification and isolation criteria [47].

Both the 𝑍+jet and 𝛾+jet analyses have further selection requirements on the jets and event topology to
suppress pile-up and initial- and final-state radiation. All jets within Δ𝑅 = 0.2 of a photon or Δ𝑅 = 0.35 of
a lepton are removed. Jets must satisfy basic cleaning requirements and pass the JVT selection to suppress
pile-up. Selected events must have one jet with 𝑝T > 10 GeV and |𝜂 | < 0.8. Additional event activity
is suppressed by requiring that any subleading jet must have 𝑝T < max(0.3 × 𝑝refT , 12) GeV and that the
leading jet and reference object must be relatively back-to-back with Δ𝜙ref, jet > 2.9. The relatively loose
𝑝T cut on subleading jets is shown to be acceptable for the MPF analysis due to its intrinsic robustness to
pile-up effects.

Figures 11 and 12 show the MPF response calculated in 𝑍+jet and 𝛾+jet events for data and for two
MC samples using different generators. The lower panels show the MC simulation to data ratio for both
generators. The results using Powheg+Pythia8 (𝑍+jet) and Pythia8 (𝛾+jet) constitute the nominal
calibration while Sherpa is used to define an uncertainty due to the generator choice. In the lowest 𝑝T bin
of the 𝛾+jet measurement, the discrepancy between the MC predictions is caused by a generator-level cut
at 35 GeV present in the Sherpa sample. This point is included in the final in situ combination, but due to
its large generator uncertainty it contributes very little to the overall weighted-average-based result (see
Section 5.2.5 and Figure 19(a)) and the total effect is negligible. The 𝛾+jet generator uncertainty at this
point has therefore been set to its value in the second-lowest bin for display purposes in Figure 14 to better
reflect its actual contribution to the total systematic uncertainties. The apparent dip near the lowest 𝑝T
range of each measurement is due to the interplay of two factors: an asymmetry in the RMPF distribution
near the low 𝑝T reconstruction threshold which causes the measured response to increase for the lowest 𝑝T
values, and the natural increase in response with higher jet 𝑝T. One motivation for the use of the MPF
technique is increased resilience to this threshold effect.

Two small correction factors are derived in simulation and use the true calorimeter response, defined as the
ratio of measured energy in the calorimeter deposited by particles belonging to a particle-level jet to the
total energy of the particle-level jet. The topology correction accounts for the differences in calorimeter
response for sparse energy depositions versus those in the dense cores of jets, and is found by taking the
average of the ratio of RMPF to the true calorimeter response in each 𝑝T bin. The showering correction
accounts for the flow of particles entering or exiting across the boundaries of the jet definition and is
calculated from the ratio of the true calorimeter response to the measured response of the reconstructed
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Figure 11: Average PFlow jet response as a function of reference 𝑝T for 𝑍+jet events where the 𝑍 boson decays into
(a) electrons and into (b) muons calculated using the MPF technique. 𝑍 → 𝑒𝑒 and 𝑍 → 𝜇𝜇 events are combined at a
later stage. The black points correspond to 2015–2017 data while the pink diamonds and blue triangles correspond to
independent Monte Carlo samples from two different generators, and their error bars show the statistical uncertainties.
The ratio of MC simulation to data for both generators is shown in the bottom panel and defines the in situ correction
to be applied. The dotted lines at 1 and 1.05 serve as a reference.

jet, therefore varying with the jet algorithm and size. The total correction factor is the product of the
two and is found to be less than 2% for jets of 𝑝T < 50 GeV and negligible above that. This correction
factor would in principle be applied identically to RMPF in both data and simulation to better estimate
jet response, but since the ratio of RMPF in data and simulation is the quantity of interest for the in situ
calibration, the correction would cancel out in the ratio and only the uncertainty in its derivation is relevant.
This uncertainty is taken from a comparison of two different physics lists (FTFP BERT [29] and QGSP
BIC [51]) in the simulation of the particle/detector interactions and is found to be ∼ 2% for jets with
𝑝T < 20 GeV, ∼ 0.5% for jets with 20 GeV < 𝑝T < 40 GeV and zero for jets with 𝑝T > 40 GeV.

The full set of uncertainties is shown for the 𝑍 → 𝑒𝑒 + jet and 𝑍 → 𝜇𝜇 + jet analyses in Figure 13 and for
the 𝛾+jet analysis in Figure 14. The dominant systematic uncertainties are due to generator differences at
lower 𝑝T and to the photon energy scale at higher 𝑝T. Uncertainties in the 𝑒, 𝜇, and 𝛾 energy scales and
resolutions are taken from the calibrations provided for each physics object and are propagated through the
analysis [47, 48]. The Δ𝜙 and second-jet veto uncertainties are estimated by varying the cuts and comparing
the resulting response measurements. As in the 𝜂 intercalibration, the JVT uncertainty is determined by
comparison with tighter and looser working points. A photon purity uncertainty is estimated for the 𝛾+jet
analysis using control regions dominated by dĳet events where one of the jets can be misidentified as a
photon. The uncertainty on the final state modelling is taken, as discussed, from the generator comparison.
Limited data and MC statistics contribute to the statistical uncertainty, which is largest for the lowest
and highest bins of each analysis. A bootstrapping procedure is applied to the uncertainties to suppress
statistical fluctuations as previously described.
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Figure 12: Average PFlow jet response as a function of reference 𝑝T for 𝛾+jet events calculated using the MPF
technique. The black points correspond to 2015–2017 data. The red and blue triangles correspond to independent
Monte Carlo samples from two different generators. Error bars show the statistical uncertainties. The ratio of MC
simulation to data for both generators is shown in the bottom panel and defines the in situ correction to be applied.
The dotted lines at 1 and 1.05 serve as a reference.

Similar analyses in the 𝑍/𝛾+jet final states but explicitly balancing the reference 𝑝T against the 𝑝T of a
reconstructed jet (direct balance) are used to cross-check the jet energy scale calibration. The JES results
computed using direct balance showed good agreement with those derived via MPF.

The innate difference in response between EMtopo and PFlow jets can be seen by comparing their measured
MPF responses. Since the MPF method uses topo-clusters and PFlow objects in computing the missing
energy, the measured responses are independent of the MCJES calibration and reflect the precalibration
response for each jet input type. The MPF responses measured in the 𝛾+jet analysis for EMtopo and
PFlow jets are shown in Figure 15. The shape of the EMtopo measurement follows the form of the
Groom’s function, which corresponds to the response expected from a hadronic calorimeter [52]. The
PFlow measurement does not follow the same shape but instead shows an improvement over the baseline
calorimeter response at low 𝑝T thanks to the inclusion of information from tracks.
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Figure 13: Systematic uncertainties for PFlow jets as a function of reference 𝑝T for (a) 𝑍 → 𝑒𝑒+jet events and
(b) 𝑍 → 𝜇𝜇+jet events calculated using the MPF technique. Uncertainties due to the JVT, second-jet veto, and
Δ𝜙 cuts derive from the analysis technique. Electron or muon (as appropriate) scale and resolution uncertainties
are propagated through the analysis from the uncertainties associated with the individual objects. The statistical
uncertainties come from the MC simulation/data ratio and reach a maximum value of 0.083 in (b) while the difference
between the Pythia8 and Sherpa samples defines the MC generator uncertainty. All uncertainties are smoothed to
ensure that the visible fluctuations are statistically significant.
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Figure 14: Systematic uncertainties on PFlow jets as a function of reference 𝑝T for 𝛾+jet events calculated using
the MPF technique. Uncertainties due to the JVT, second-jet veto, and Δ𝜙 cuts derive from the analysis technique.
Photon scale and resolution uncertainties are propagated through the analysis from the uncertainties associated with
the individual objects. The statistical uncertainties come from the MC simulation/data ratio while the difference
between the Pythia8 and Sherpa samples defines the MC generator uncertainty. All uncertainties are smoothed to
ensure that the visible fluctuations are statistically significant.
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Figure 15: Average jet response as a function of reference 𝑝T for 𝛾+jet events calculated using the MPF technique in
2015–2017 data. The solid points correspond to PFlow jets while the hollow points correspond to EMtopo jets. The
ratio of PFlow response to EMtopo response is shown in the bottom panel.
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5.2.3 High- 𝒑T jet calibration using multĳet balance

The final stage of in situ calibration derives a correction for jets with 𝑝T above the range of the 𝑍/𝛾+jet
analyses using the multĳet balance (MJB) technique. Events are selected with a single high-𝑝T jet balanced
against a system of lower-𝑝T jets (the recoil system). The jets of the recoil system are selected to ensure
they are well calibrated using a combination of the 𝑍/𝛾+jet results (Section 5.2.2), while the leading jet is
left at the scale of the 𝜂 intercalibration. The response of the system is defined as:

RMJB =

〈
𝑝leadT

𝑝refT

〉
,

where 𝑝refT is taken from the vector sum of all jets in the recoil system. In a procedure parallel to that used
for the 𝑍/𝛾+jet analyses, the response is measured in bins of 𝑝refT and the correction is then mapped to the
uncalibrated leading jet by finding the average 𝑝leadT of the events in each bin.

Since the MJB analysis can only include events where all jets of the recoil system can already be well-
calibrated, events with very high 𝑝leadT are often excluded as their second and third leading jets can have
momenta outside the range of calibration by the 𝑍/𝛾+jet analyses. To address this, MJB proceeds via
two iterations. In the first iteration, a combination of the 𝑍/𝛾+jet results is used to calibrate the recoil
system, so only events with subleading jets of 𝑝T < 1.2 TeV are included. In the second iteration, events
with subleading jets up to 𝑝T = 1.8 TeV are included and calibrated using the MJB results from the first
iteration. This extends the range of the calibration to 𝑝leadT = 2.4 TeV.

Events are selected for the MJB analysis using a variety of single-jet triggers with each corresponding to
a unique range of 𝑝leadT . To suppress dĳet topologies and ensure that only true multĳet events are used,
events must have at least three jets with 𝑝T > 25 GeV and |𝜂 | < 2.8 and the subleading jet must not have
a momentum above 0.8𝑝leadT . Jets are as usual required to pass JVT selections, limiting the effects of
pile-up. Isolation of the leading jet from contamination by the recoil system is ensured by requiring that
the azimuthal angle Δ𝜙 between the leading jet and the direction of the recoil system is at least 0.3 radians
and that the Δ𝜙 between the leading jet and any individual jet in the recoil system with a 𝑝T > 0.05𝑝leadT is
at least 1.0 radians.

The MJB response in data and in four MC samples with different generators is shown in Figure 16(a). In
both data and MC simulation, the response decreases at lower 𝑝T due to the intrinsic bias in RMJB from
the combined effects of the leading jet isolation and 𝑝T asymmetry requirements. This bias is greater for
lower-𝑝T leading jets, but is well modelled in simulation, leaving the calibration unbiased. The lower panel
shows the ratio of the response of each MC sample to data. Here, the ratio of the Sherpa sample to data
defines the nominal correction while the ratio based on Pythia defines an uncertainty on the generator
choice. This response ratio is constant and approximately 2% for jets above 1 TeV; below this point the
calculated correction is slightly smaller.

All uncertainties in the MJB analysis are shown in Figure 16(b). The dominant term at low 𝑝leadT is
the uncertainty from jet flavour, derived in simulation and reflecting the difference in jet response for
quark-initiated and gluon-initiated jets. Two terms contribute, one reflecting the uncertainty in the
fraction of gluon-initiated jets in the sample, the other based on the difference in MC simulation-derived
gluon response between generators. Other independently derived uncertainties correspond to pile-up and
punch-through effects and are propagated through the MJB analysis via the recoil system. The 𝑍+jet, 𝛾+jet,
and 𝜂 intercalibration uncertainties are propagated from the previous stages of in situ analysis. Event
selection uncertainties are determined by varying each of the analysis cuts and determining the effects
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Figure 16: (a) Response for the leading PFlow jet in multĳet events as a function of 𝑝refT and (b) the systematic
uncertainties on the response. Subleading jets in the event are calibrated using the 𝑍/𝛾+jet MPF corrections, while
the leading jet is calibrated only up to the 𝜂 intercalibration. The response is shown for data and for simulation using
four different MC generators, and the MC simulation-to-data response ratios in the bottom panel correspond to the
derived 𝑖𝑛 𝑠𝑖𝑡𝑢 calibration. The error bars show the statistical uncertainties. The nominal calibration is defined by the
comparison with Sherpa; its difference from the Pythia result defines the ‘MC generator’ uncertainty in (b). This
uncertainty is defined in a single-sided way by the measured response difference and therefore it is not symmetrised
for display in (b) but instead its full one-sided value is shown. Other uncertainties come from the event selection
and MC simulation/data statistics or are propagated from the 𝑍+jet, 𝛾+jet, flavour, pile-up, 𝜂 intercalibration, and
punch-through studies.

on the measured response ratio. Finally, the MC generator uncertainty is derived as described above
by comparing the response ratio of Sherpa with Pythia as an alternative. Results using Herwig and
Powheg+Pythia8 are shown for reference but are not included in the uncertainty definition as they are less
reliable for this measurement. All uncertainties are smoothed via the bootstrapping procedure to ensure
statistical significance, and the total uncertainty is found to be below 1.5% for all considered values of
𝑝leadT . The MC generator uncertainty, which is defined in a one-sided fashion from the response ratios,
is symmetrised by the in situ combination process along with the other uncertainties. However, its full
one-sided size is shown in Figure 16(b) for easier comparison with Figure 16(a).

For EMtopo jets the intrinsic bias at low 𝑝T is slightly smaller and more closely tracked by simulation,
leading in turn to slightly reduced systematic uncertainties for jets below 𝑝T ∼ 700GeV. Above 𝑝T > 1 TeV,
in situ uncertainties propagated from lower-𝑝T jets have a greater impact, and therefore the uncertainty is
smaller for PFlow jets than for EMtopo jets.
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5.2.4 Pile-up and the in situ analyses

One of the primary changes in LHC run conditions over the course of Run 2 was an increase in pile-up. The
average number of interactions per crossing (𝜇) during 2015+2016 data taking was 23.7, which increased
to 37.8 in 2017. The data taken during 2018 and to which the calibrations in this paper are also applied
has an average of 36.1 interactions per crossing [16]. The consistency of the calibrations for events with
different pile-up conditions is therefore an important feature of the methods.

Figure 17 shows individual bins in the response ratios of the 𝑍+jet and 𝛾+jet analyses separated out as a
function of number of primary vertices in the event. The 𝑍+jet results are shown for 25GeV < 𝑝refT < 30GeV
and the 𝛾+jet results for 45 GeV < 𝑝refT < 65 GeV, in the regions where each has appropriate statistical
significance. The multĳet balance analysis is not shown: due to the higher 𝑝T regime in which it operates
it is more robust to pile-up effects. A linear fit to the data/simulation ratio has a slope compatible with zero
within the fit uncertainties in each plot, demonstrating the stability of the in situ calibration as a function of
𝑁PV. This in turn illustrates the efficacy of the pile-up corrections described in Section 5.1.1 and shows
that the inclusively derived calibration is applicable to events with a range of pile-up conditions.
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Figure 17: Average PFlow MPF jet response as a function of 𝑁PV for (a) 𝑍+jet events with reference 𝑝T derived from
the reconstructed 𝑍 boson in the range 25 GeV < 𝑝refT < 30 GeV and for (b) 𝛾+jet events with reference 𝑝T defined
from the photon in the range 45 GeV < 𝑝refT < 65 GeV. For the 𝑍+jet analysis, results from the 𝑍 → 𝑒𝑒 and 𝑍 → 𝜇𝜇

channels are combined to reduce statistical fluctuations. The black points correspond to 2015–2017 data while the
pink and blue points correspond to Monte Carlo samples from two different generators. The error bars reflect the
statistical uncertainties. The ratio of MC simulation to data for both generators is shown in the bottom panel.

The in situ JES measurements can be used to calculate the dependence of the measured median 𝑝T density
𝜌 on the event topology in simulation and data and to derive an uncertainty, as mentioned in Section 5.1.1.
The density 𝜌 is computed as a function of 𝜇 for each of the 𝑍+jet, 𝛾+jet, and dĳet topologies as shown in
the top panels of Figure 18. Taking 𝜌2017 as the value of 𝜌 for the average pile-up conditions during 2017
data taking and t1 and t2 as any two in situ measurement topologies out of 𝑍+jet, 𝛾+jet, and dĳet, then the
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following metric of consistency can be defined:

Δ =

(
𝜌t12017 − 𝜌t22017

)
MC

−
(
𝜌t12017 − 𝜌t22017

)
data

.

The quantity max( |Δ|) is then the largest value of Δ across the various topology comparisons. The total 𝜌
topology systematic uncertainty is given by

Δ𝑝T = max( |Δ|) × 𝐶JES𝑝T
× 𝜋𝑅2 ,

where 𝐶JES is the size of the MCJES correction for a jet with the relevant 𝑝T. The second panels in
Figure 18 show 𝜌t12017 − 𝜌t22017 for the comparisons (𝑍+jet, dĳet) and (𝛾+jet, dĳet) in both MC simulation
and data. The lower panels show the difference of these two quantities between data and MC simulation,
that is, Δ𝑍+jet, dĳet and Δ𝛾+jet, dĳet. The input to the systematic uncertainty max( |Δ|) is the most discrepant
of the two lines in the lower panel evaluated at 𝜇 = 37.8, the value in 2017 data. As Figure 18 illustrates,
this uncertainty is larger for PFlow jets than for EMtopo jets. This is understood to be due to a greater
sensitivity to the underlying event when tracking information is included, which leads to greater differences
among the simulated samples.
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Figure 18: Inputs to the 𝜌 topology uncertainty derived in the 𝑍+jet, 𝛾+jet, and dĳet in situ analyses. The error bars
show the statistical uncertainties. The top panels relate the 𝑝T density 𝜌 to the mean number of interactions per bunch
crossing 𝜇 in data and MC simulation for the three input analyses. The second panels show the difference between the
𝑍+jet and dĳet and between the 𝛾+jet and dĳet measurements. The lowermost panels show the difference between
the data and MC simulation lines in the second panels: this defines the size of the topology uncertainty. The two plots
show (a) EMtopo and (b) PFlow jets, illustrating why this uncertainty is larger for PFlow jets than for EMtopo jets.

5.2.5 In situ combination
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from the four different ‘absolute’ in situ measurements of 𝑍 (→ 𝑒𝑒)+jet, 𝑍 (→ 𝜇𝜇)+jet, 𝛾+jet, and the
multĳet balance must be combined to produce a single calibration covering the full range of jet 𝑝T from
17 GeV to 2.4 TeV. The four measurements overlap one another in various 𝑝T ranges, so this procedure
must account for their relative statistical power as well as the tension between different response ratio
measurements in the same 𝑝T range. The 𝑍 (→ 𝑒𝑒)+jet and 𝑍 (→ 𝜇𝜇)+jet channels, though compatible
within uncertainties, are treated as separate measurements for the sake of the combination since they are
affected by different systematic uncertainties.

The combination procedure is briefly summarized here; for a detailed description see Ref. [5]. Each of the
absolute in situ measurements is converted from a parameterisation in terms of reference object 𝑝T into
jet 𝑝T and divided into finer bins of 1 GeV using second-order polynomial splines. A 𝜒2 minimization is
performed in each bin, taking as inputs the measurements available in that 𝑝T range and their uncertainties.
This minimisation functions as a weighted average, with the weight given to each input measurement
decreasing as its uncertainty grows. In this way, the measurement with the smallest statistical and systematic
uncertainties dominates the estimate of the response ratio in that bin.

The weights of each input measurement in this combination are shown in Figure 19(a) as a function of jet
𝑝T. The 𝑍+jet measurements dominate for jet 𝑝T below ∼ 500 GeV where the statistical uncertainties on
these measurements grow dramatically; the 𝑍 (→ 𝜇𝜇)+jet is the more powerful of the two in the upper half
of this range due to the size of the electron scale and resolution uncertainties affecting the 𝑍 (→ 𝑒𝑒)+jet
channel. The combination is then dominated by 𝛾+jet until jet 𝑝T of above 1 TeV, where the lower statistics
in this channel and the decreased flavour uncertainties in the multĳet balance analysis allow the latter to
dominate. The final calibration curve is determined by smoothing the outputs from the minimization with
a Gaussian kernel.
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Figure 19: (a) The weight assigned to different techniques in the combination of in situ measurements of the relative
𝑝T response of anti-𝑘𝑡 𝑅 = 0.4 particle-flow jets in data and simulation, as a function of the jet 𝑝T. For each 𝑝T
bin, the weights of the 𝑍+jet, 𝛾+jet, and multĳet balance methods are shown. (b) The 𝜒2/𝑁dof metric, illustrating
the compatibility of the in situ measurements being combined, as a function of jet 𝑝T. In the low 𝑝T range, the
combination is between three measurements (𝑍 (→ 𝑒𝑒)+jet, 𝑍 (→ 𝜇𝜇)+jet, and 𝛾+jet) of which the two 𝑍+jet
measurements have several correlated uncertainties, resulting in increased tension compared to previous calibrations.

The
√︁
𝜒2/𝑁dof across the measurements, before any scaling is applied, is shown in Figure 19(b). This

metric shows the degree of tension between the input measurements at each point: when they are in
agreement well within uncertainties the value will be below 1, while when they differ relative to their
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uncertainties it will be above 1. Following PDG guidelines, in bins where tension between the input
measurements, quantified by

√︁
𝜒2/𝑁dof, is found to be greater than 1, the uncertainties in the measurements

in that bin are scaled by the same tension factor to ensure that the overall level of agreement between
methods is acceptable within uncertainties for all 𝑝T values [53]. However, since the tensions visible at
low 𝑝T are primarily between the two 𝑍+jet measurements, and since the MC generator and showering and
topology uncertainties are fully correlated between the two channels and therefore cannot contribute to this
tension, these two components are excluded from the scaling procedure. The components which are not
scaled are the dominant uncertainties.

Figure 20 shows the final in situ combination as a function of jet 𝑝T. To complete the calibration, the inverse
of the curve (𝑅MC/𝑅data) is taken as the scaling factor and applied to data. The combined measurement
(solid line) for PFlow+JES jets is compared with each of the four absolute in situ analyses (empty shapes)
in Figure 20(a). The total size of the correction is approximately 3% at low 𝑝T and decreases to around 2%
for jets above 200 GeV. A comparison between the results for EM+JES and PFlow+JES jets is shown in
Figure 20(b), where the overall size of both the correction and its uncertainty is seen to be slightly larger
for EM+JES jets.
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Figure 20: (a) Ratio of the PFlow+JES jet response in data to that in the nominal MC event generators as a function
of jet 𝑝T for 𝑍+jet, 𝛾+jet, and multĳet in situ calibrations. The inner horizontal ticks in the error bars give the size of
the statistical uncertainty while the outer horizontal ticks indicate the total uncertainty (statistical and systematic
uncertainties added in quadrature). The final correction and its statistical and total uncertainty bands are also shown,
although the statistical uncertainty is too small to be visible in most regions. (b) A comparison of the combined
correction and its uncertainty for PFlow+JES and EM+JES jets.

Each uncertainty component from the in situ analyses is individually propagated through the combination
procedure. First, the relevant measured response is varied by 1𝜎 in the uncertainty component within its
standard binning. The finer rebinning, 𝜒2 minimization, and combination procedure is repeated, although
using the weights as determined for the nominal result to prevent the varied uncertainty from decreasing
the contribution of the measurement. The difference between the combined calibration curve with the
systematically shifted input and the nominal calibration curve is taken as 1𝜎 in the varied uncertainty.
Throughout this process, each individual uncertainty source is treated as fully correlated across 𝜂 and 𝑝T
but entirely uncorrelated with all other uncertainty sources. After this step, the uncertainties from the
𝑍+jet analyses are taken to be fully correlated with the same uncertainties propagated through the multĳet
balance. Other assumptions of correlation between components can similarly be made and altered after
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their propagation, allowing multiple different assumptions.

5.3 Systematic uncertainties

The full uncertainty in the jet energy scale consists of 125 individual terms derived from the in situ
measurements, pile-up effects, flavour dependence, and estimates of additional effects as summarized in
Table 2. The majority of the individual terms stem from the in situ measurements and cover the effects of
analysis selection cuts, event topology dependence, and MC mis-modelling and statistical limitations, as
well as the uncertainties associated with the calibration of the electrons, muons, and photons.

The 𝜂 intercalibration analysis results in five nuisance parameters, with a sixth for 2018 data only, as
discussed in Section 5.2.1: one covers systematic effects, one covers statistical uncertainty, and three (four
in 2018) are used to parameterize the non-closure. Pile-up effects are described by four nuisance parameters
which account for offsets and 𝑝T dependence in 〈𝜇〉 and 𝑁PV as well as event topology dependence of the
density metric 𝜌. The offset and 𝑝T dependence terms are derived in data using a combination of 𝑍+jet
measurements and measurements comparing reconstructed jets with track-jets. The 𝜌 topology term is
the largest of the pile-up uncertainties and is determined by the maximum deviation in measured density
between different in situ measurements under the same pile-up conditions.

The two flavour dependence uncertainties are derived from simulation and account for relative flavour
fractions and differing responses to quark- and gluon-initiated jets [5, 6]. The flavour composition
uncertainty accounts for the differing response of quark- and gluon-initiated jets in a sample with some
uncertainty on the fraction of gluon-initiated jets 𝑓𝑔. Where R𝑞 and R𝑔 are the responses measured in
Pythia and 𝜎 𝑓

𝑔 is the uncertainty on 𝑓𝑔 in the sample, the flavour composition uncertainty is defined as:

𝜎composition = 𝜎
𝑓
𝑔

|R𝑞 − R𝑔 |
𝑓𝑔R𝑔 + (1 − 𝑓𝑔)R𝑞

.

The flavour response uncertainty accounts for the fact that, unlike quark-initiated jet response, gluon-initiated
jet response is found to differ significantly between generators. This uncertainty is defined by comparison
between the nominal Pythia sample and an alternative Herwig sample:

𝜎response = 𝑓𝑔 (RPythia𝑔 − RHerwig𝑔 ) .

Figure 21 shows the gluon-jet response and the difference between quark-jet and gluon-jet responses using
both Pythia and Herwig for PFlow jets. The samples are the same as those used for the multĳet balance
analysis and are dominated by gluon jets at low 𝑝T. For Herwig, R𝑞 − R𝑔 becomes negative in the 90–600
𝑝T region (which appears as a bump in the |R𝑞 − R𝑔 | curve).

An additional uncertainty applied only to 𝑏-initiated jets covers the difference in response between jets
from light- versus heavy-flavour quarks and replaces the flavour composition and response uncertainties for
these heavy-flavour jets. The punch-through uncertainty accounts for mis-modelling of the GSC correction
to jets which pass through the calorimeter and into the muon system, taking the difference in jet response
between data and MC simulation in bins of muon detector activity as the systematic uncertainty. Both
are discussed in more detail in Ref. [6]. Finally, the high-𝑝T ‘single particle’ uncertainty is derived from
studies of the response to individual hadrons and is used to cover the region beyond 2.4 TeV, where the
MJB analysis no longer has statistical power [29]. When calibrating MC samples simulated using AFII, an
additional non-closure uncertainty is applied to account for the difference in jet response between these
samples and those which used full detector simulation.
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Table 2: Sources of uncertainty in the jet energy scale.

Component Description

𝜂 intercalibration

Systematic mis-modelling Envelope of the generator, pile-up, and event topology variations
Statistical component Statistical uncertainty (single component)
Non-closure Three components describing non-closure at high energy and at 𝜂 ∼ ±2.4
Non-closure, 2018 only Single component describing non-closure at 𝜂 ∼ ±1.5 due to Tile calibration

𝑍 + jet

Electron scale Uncertainty in the electron energy scale
Electron resolution Uncertainty in the electron energy resolution
Muon scale Uncertainty in the muon momentum scale
Muon resolution (ID) Uncertainty in muon momentum resolution in the ID
Muon resolution (MS) Uncertainty in muon momentum resolution in the MS
MC generator Difference between MC event generators
JVT cut Jet vertex tagger uncertainty
Δ𝜙 cut Variation of Δ𝜙 between the jet and 𝑍 boson
Subleading jet veto Radiation suppression through second-jet veto
Showering & topology Modelling energy flow and distribution in and around a jet
Statistical Statistical uncertainty in 28 discrete 𝑝T terms

𝛾 + jet

Photon scale Uncertainty in the photon energy scale
Photon resolution Uncertainty in the photon energy resolution
MC generator Difference between MC event generators
JVT cut Jet vertex tagger uncertainty
Δ𝜙 cut Variation of Δ𝜙 between the jet and photon
Subleading jet veto Radiation suppression through second-jet veto
Showering & topology Modelling energy flow and distribution in and around a jet
Photon purity Purity of sample used for 𝛾 + jet balance
Statistical Statistical uncertainty in 16 discrete 𝑝T terms

Multĳet balance

Δ𝜙 (lead, recoil system) Angle between leading jet and recoil system
Δ𝜙 (lead, any sublead) Angle between leading jet and closest subleading jet
MC generator Difference between MC event generators
𝑝
asym
T selection Second jet’s 𝑝T contribution to the recoil system
Jet 𝑝T Jet 𝑝T threshold
Statistical Statistical uncertainty in 28 discrete 𝑝T terms

Pile-up

𝜇 offset Uncertainty in the 𝜇 modelling in MC simulation
𝑁PV offset Uncertainty in the 𝑁PV modelling in MC simulation
𝜌 topology Uncertainty in the per-event 𝑝T density modelling in MC simulation
𝑝T dependence Uncertainty in the residual 𝑝T dependence

Jet flavour

Flavour composition Uncertainty in the proportional sample composition of quarks and gluons
Flavour response Uncertainty in the response of gluon-initiated jets
𝑏-jets Uncertainty in the response of 𝑏-quark-initiated jets

Punch-through Uncertainty in GSC punch-through correction

Single-particle response High-𝑝T jet uncertainty from single-particle and test-beam measurements

AFII non-closure Difference in the absolute JES calibration for simulations in AFII
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Figure 21: (a)Measured gluon-initiated jet response and (b) difference between quark- and gluon-initiated jet responses
for PFlow jets using two different generators. These define the flavour response and composition uncertainties
respectively.

The total jet energy scale uncertainty is shown in Figure 22(a) as a function of jet 𝑝T for fixed 𝜂jet = 0 and
in Figure 22(b) as a function of jet 𝜂 for fixed 𝑝jetT = 60 GeV. A dĳet-like composition of the sample (that
is, predominantly gluons) is assumed in computing the flavour uncertainties. The uncertainties in the 𝜂
intercalibration analysis are labelled ‘relative in situ JES’ with the non-closure uncertainty creating the
asymmetric peaks around 𝜂 = ±2.5. Uncertainties in all other in situ measurements are combined into the
‘absolute in situ JES’ term, which also includes the single-particle uncertainty.

20 30 210 210×2 310 310×2
 [GeV]jet

T
p

0

0.02

0.04

0.06

0.08

Fr
ac

tio
na

l J
ES

 u
nc

er
ta

in
ty

ATLAS

 = 0.4 (PFlow+JES)R tkAnti-
 = 13 TeVsData 2015-2017, 

 = 0.0η
Inclusive jets

Total uncertainty
 JESin situAbsolute 
 JESin situRelative 

Flav. composition
Flav. response
Pile-up
Punch-through

(a)

4− 3− 2− 1− 0 1 2 3 4
η

0

0.02

0.04

0.06

0.08

Fr
ac

tio
na

l J
ES

 u
nc

er
ta

in
ty

ATLAS

 = 0.4 (PFlow+JES)R tkAnti-
 = 13 TeVsData 2015-2017, 

 = 60 GeVjet
T

p
Inclusive jets

Total uncertainty
 JESin situAbsolute 
 JESin situRelative 

Flav. composition
Flav. response
Pile-up
Punch-through

(b)

Figure 22: Fractional jet energy scale systematic uncertainty components for anti-𝑘𝑡 𝑅 = 0.4 jets (a) as a function
of jet 𝑝T at 𝜂 = 0 and (b) as a function of 𝜂 at 𝑝T = 60 GeV, reconstructed from particle-flow objects. The total
uncertainty, determined as the quadrature sum of all components, is shown as a filled region topped by a solid black
line. Flavour-dependent components shown here assume a dĳet flavour composition.
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5.3.1 Uncertainty correlations and reductions

The detail contained in 125 independent nuisance parameters is far more than is required by most analyses,
so it is necessary to reduce the uncertainty description to a smaller number of terms. One could imagine a
single ‘Jet energy scale’ nuisance parameter constructed by adding in quadrature all of the independent
components. However, a meaningful set of correlations exist between the jet energy scale uncertainties
for two jets at different 𝜂 and 𝑝T as a result of the structures of the nuisance parameters. In the case of
reduction to a single component, the entirety of this correlation information would be lost and an unrealistic
assumption – that of full correlation between the jet energy scale uncertainties for any values of 𝜂 and 𝑝T –
would be enforced. In practice, a variety of reduced uncertainty schemes are provided to allow simplified
descriptions with a minimum loss of correlation information.

The 98 uncertainty components stemming from the absolute in situ analyses are functions only of 𝑝T and
thus their behaviour can be easily represented by a smaller number of orthogonal terms. An eigenvector
decomposition is performed on a covariance matrix of these uncertainty components and the largest of
the resulting orthogonal terms are kept separate as new effective nuisance parameters [5]. The remaining
terms are combined into a single residual nuisance parameter. To determine how many components to
keep independently and how many to combine in the residual term, the covariance matrix for the reduced
set is also computed and the difference in correlation in each jet 𝜂 and 𝑝T between the reduced set and
the full set is calculated. This difference is taken as a measure of the information loss and the number of
combined terms is adjusted so that the difference is below an acceptable bound (usually 0.05). Two different
reduction schemes are produced: the global reduction combines all 𝑝T-dependent in situ uncertainty
components regardless of their sources and results in 8 reduced components for a total of 23 once the
two-dimensional terms (not arising from the in situ analyses and not reduced) are included. The category
reduction combines the 𝑝T-dependent in situ uncertainty components in separate groups based on their
origin (detector, statistical, modelling, or mixed) and results in 15 reduced components for a total of
30. The JES correlation matrix for the full set of nuisance parameters is shown in Figure 23(a). The
bin-by-bin correlation loss between the full set of nuisance parameters and the category reduction is shown
in Figure 23(b) and is below 0.05 everywhere as required.

While the same procedure could in principle be used for the components which depend on both 𝑝T and 𝜂,
the complexity added by the second dimension means that nearly as many eigenvectors would be needed
to adequately describe the correlations as there were original terms and so the gain would be minimal.
However, many analyses still require fewer than 25 nuisance parameters and are not affected by loss of
correlation information. To provide suitable uncertainties for these, a strong reduction procedure is used to
group the globally reduced versions of the absolute in situ uncertainties together with the two-dimensional
uncertainties into three effective nuisance parameters as detailed in Ref [7]. The three terms of the
𝜂 intercalibration non-closure uncertainty are kept separate because their two-dimensional shapes are
especially difficult to reduce and would cause an unacceptably large correlation loss.

Four different sets (scenarios) of the three effective nuisance parameters are created by varying the
combinations of terms they contain. The varied sets are chosen such that the correlation loss in each
is constrained to an 𝜂–𝑝T range which is well described by a different set. The metric for assessing
performance of the four scenarios is the uncovered correlation loss, defined as the maximum difference in
correlation between any two reduced scenarios minus the minimum difference in correlation between any
reduced scenario and the full set of nuisance parameters. The uncovered correlation loss is calculated for a
fine grid of points in 𝜂 and 𝑝T, ensuring no small-scale structures are missed. Contents of the effective
nuisance parameters are varied, keeping systematic uncertainties with similar behaviours mostly grouped
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Figure 23: (a) The jet energy scale correlation matrix for two PFlow+JES jets at 𝜂 = 0 using the full set of 98
𝑝T-dependent in situ nuisance parameters and (b) the difference in correlation information between the full description
and the category reduction. The maximum loss of correlation information is 0.02 and occurs at the (𝑝 𝑗1

T , 𝑝
𝑗2
T ) location

specified by the text at the bottom of the plot.

together, until a set of scenarios is found in which the maximum uncovered correlation loss is kept below
0.25 and confined to sufficiently small regions that the average correlation loss in an 𝜂–𝑝T plane does not
exceed 0.02. A detailed discussion of the application of strongly reduced uncertainties within physics
analyses can be found in Ref. [7].

5.3.2 Uncertainties for EMtopo and PFlow jets

Although the scale of individual calibrations may vary between EMtopo and PFlow jets, the final
uncertainties are similar in size. A slightly larger pile-up uncertainty contribution in PFlow jets due to the
impact of the underlying event is offset by smaller in situ uncertainties, leading to a comparable total overall
uncertainty. Figure 24 shows the total uncertainty in EMtopo and PFlow jets for a range of 𝑝T values at
fixed 𝜂 = 0 and for a range of 𝜂 values at fixed 𝑝T = 60 GeV. The level of agreement is representative of
other 𝑝T and 𝜂 ranges.
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Figure 24: Fractional jet energy scale systematic uncertainty summed across all components for anti-𝑘𝑡 𝑅 = 0.4 jets
(a) as a function of jet 𝑝T at 𝜂 = 0 and (b) as a function of 𝜂 at 𝑝T = 60 GeV. The total uncertainty is shown for both
EMtopo and PFlow jets. Contributions from topology-dependent components are calculated assuming a dĳet flavour
composition.

6 Jet energy resolution

Precise knowledge of the jet energy resolution (JER) is important for detailed measurements of SM jet
production, measurements and studies of the properties of the SM particles that decay to jets (e.g. 𝑊/𝑍
bosons, top quarks), as well as searches for physics beyond the SM involving jets. The JER also affects the
missing transverse momentum, which plays an indispensable role in many searches for new physics and
measurements involving particles that decay into neutrinos, and thus rely on well-reconstructed missing
momentum.

The dependence of the relative JER on the transverse momentum of the jet may be parameterized using a
functional form expected for calorimeter-based resolutions, with three independent contributions, namely
the noise (𝑁), stochastic (𝑆) and constant (𝐶) terms [54]:

𝜎(𝑝T)
𝑝T

=
𝑁

𝑝T
⊕ 𝑆
√
𝑝T

⊕ 𝐶 . (4)

The noise (𝑁) term is due to the contribution of electronic noise to the signal measured by the detector
front-end electronics, as well as that due to pile-up. Since both contribute directly to the energy measured
in the calorimeter but are approximately independent of the energy deposited by the showing particles, the
contribution to the JER scales like 1/𝑝T. The noise term is expected to be significant in the low-𝑝T region,
below ∼30 GeV. Statistical fluctuations in the amount of energy deposited are captured by the stochastic
(𝑆) term, which represents the limiting term in the resolution up to several hundred GeV in jet 𝑝T. The 𝑆
term contribution to the JER scales like 1/√𝑝T. The constant (𝐶) term corresponds to fluctuations that are
a constant fraction of the jet 𝑝T, such as energy depositions in passive material (e.g. cryostats and solenoid
coil), the starting point of the hadron showers, and non-uniformities of response across the calorimeter.
The constant term is expected to dominate the high-𝑝T region, above approximately 400 GeV.

In order to measure the JER, jet momentum must be measured precisely. This implies that the jets must
either recoil against a reference object whose momentum can be measured precisely, or be balanced against
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one another in a well-defined dĳet system [5, 6]. Measurements using the latter approach are presented
here, as well as a method for measuring the contributions to the resolution from the noise term (𝑁) due to
both pile-up and electronics. The 2017 data, corresponding to an integrated luminosity of 44 fb−1 is used
for these measurements.

6.1 Resolution measurement using dĳet events

Dĳet events are both plentiful and produced via a set of 2 → 2 processes that are theoretically well-
understood. JER measurements using these events for the dĳet balance method rely on the approximate
scalar balance between the transverse momenta of the two leading jets. Deviations from exact balance,
measured via the asymmetry, given by

A ≡
𝑝
probe
T − 𝑝refT

𝑝
avg
T

, (5)

are due to a combination of experimental resolution, the presence of additional radiation in the event, and
biases due to the event selection used in the measurement. In Eq. (5), 𝑝refT is the 𝑝T of a reference jet
which is required to be located in a well-calibrated region of the detector (𝜂refdet), taken here to be the central
region of the calorimeter 0.2 ≤ |𝜂refdet | < 0.7, where the seam at 𝜂det = 0 is excluded to ensure the reference
jet energy is as cleanly measured as possible. The probe jet, with transverse momentum 𝑝

probe
T , may be

located either within this central reference region or beyond it, with |𝜂probedet | < 4.5. The probe jet is the jet
for which the resolution is to be measured and 𝑝avgT is the mean of the probe and reference jet momenta,
𝑝
avg
T = (𝑝probeT + 𝑝refT )/2. The standard deviation of A for a particular (𝑝avgT , 𝜂

probe
det ) bin is denoted by 𝜎A ,

and in the case of a measurement of the probe jet asymmetry may be expressed as

𝜎
probe
A =

𝜎
probe
𝑝T ⊕ 𝜎ref𝑝T

〈𝑝avgT 〉
=

〈
𝜎𝑝T

𝑝T

〉probe
⊕

〈
𝜎𝑝T

𝑝T

〉ref
,

where 𝜎probe𝑝T and 𝜎ref𝑝T are the standard deviations of 𝑝
probe
T and 𝑝refT , respectively, and are used to denote

the JER for each of the relevant objects. For calibrated jets, 〈𝑝probeT 〉 = 〈𝑝refT 〉 = 〈𝑝avgT 〉 in the reference
region. The reference jet relative resolution, 〈𝜎𝑝T/𝑝T〉ref, must therefore be subtracted from the measured
asymmetry distribution in order to extract the resolution of the probe jet as〈

𝜎𝑝T

𝑝T

〉probe
= 𝜎

probe
A 	

〈
𝜎𝑝T

𝑝T

〉ref
. (6)

Equation (6) is valid in the probe region as well, up to a correction factor that accounts for the potential
overall imbalance between the reference jet and the probe jet in that region. This correction factor is found
to be negligible (< 1%) for the measurements performed here. However, the 𝑝T balance of the measured
jets, and thus the measured asymmetry distribution, is measurably affected on an event-by-event basis
by physics effects such as additional radiation, non-perturbative processes including hadronization and
multi-parton interactions, and others that may lead to particle losses and additions in the measured jets.
Consequently, the measured dĳet balance asymmetry distribution represents a convolution of the intrinsic
detector resolution and the particle-level balance affected by the aforementioned effects. The determination
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of 𝜎probeA must therefore account for such effects, for example by subtracting the particle-level quantity
from the measured quantity in quadrature:(

𝜎
probe
A

)
det

=

(
𝜎
probe
A

)
meas

	 𝜎truthA .

The results presented here use an iterative fitting procedure to extract the impact of these effects and
to isolate the intrinsic detector resolution,

(
𝜎
probe
A

)
det
, by assuming a Gaussian convolution of detector

effects with the particle-level balance. First, the asymmetry distribution measured at particle level in MC
simulation is fitted with an ad hoc function Atruth based on exponential curves and found to describe it
well. Second, the measured asymmetry distribution, Ameas, is fitted by the function

Ameas = Atruth ⊗ R(𝜇detA , 𝜎detA ),
taking Atruth from the particle-level fit and where R(𝜇detA ) is a Gaussian distribution with width 𝜎detA
representing the detector resolution for the probe jet and offset 𝜇detA accounting for any residual non-closure
in the JES calibration.

Collision data used for the dĳet balance measurement are collected using specific combinations of central
and forward jet triggers for each of the 11 𝑝avgT ranges used in the measurement. Trigger selections are
required to be at least 99% efficient in the range of 𝑝avgT in which a particular combination is used. Jets
must also pass JVT selection requirements as described in Section 5.2.2.

Topology criteria are applied to select well-defined dĳet production processes with minimal contributions
due to additional radiation or higher-order processes. The azimuthal angle, Δ𝜙, between the two leading
jets in the event and the maximum 𝑝T of a potential third jet, 𝑝

𝑗3
T , are constrained by the following two

criteria:

Δ𝜙( 𝑗1, 𝑗2) ≥ 2.7 rad. ,
𝑝

𝑗3
T < max(25 GeV, 0.25 · 𝑝avgT ).

Example asymmetry distributions are shown in Figure 25 in two representative bins of 𝑝avgT and probe jet
𝜂
probe
det . An iterative Gaussian fit to the core of the asymmetry distribution is used to extract the JER. The
result of the measurement of the relative JER and its systematic uncertainty is shown in Figure 26 for a
single narrow range of 𝜂probedet and as a function of 𝑝

jet
T . The JER is observed to be slightly underestimated

by MC simulation in this central region of the detector.

Systematic uncertainties are dominated by imprecise knowledge of the scale of the jets at low 𝑝T, which
results in an approximate 1.5% uncertainty at 40 GeV, whereas the non-closure of the dĳet balance method
itself is largely dominant at higher 𝑝T. The non-closure uncertainty is evaluated as the difference between
the resolution measured using the in situ procedure applied to MC simulation and the particle-level
resolution, 𝜎(𝑅)/𝑅, where 𝑅 = 𝑝recoT /𝑝trueT . Good agreement is found, resulting in an uncertainty in the
relative resolution that is approximately 0.4% and generally increases with 𝑝T due to the non-Gaussian
jet response. At lower 𝑝T the uncertainties propagated from the JES dominate. The increase in JES
uncertainty around 800 GeV is a result of the single-particle uncertainty (see Section 5.3): the jet energy
scale calibration used for the dĳet energy resolution measurement is necessarily based on a smaller dataset
than the one presented in this paper, allowing the two measurements to converge simultaneously, and as a
result the statistics were lower and the single-particle uncertainty became dominant at a lower 𝑝jetT value
than in Figure 22(a). Additional systematic uncertainties are estimated by varying the analysis cuts and the
JVT selection and by comparing the result with one obtained from an alternative MC generator (Sherpa
2.1.1).
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Figure 25: Asymmetry distribution measured in data and particle-level Pythia8 for PFlow jets in two example 𝑝T
and 𝜂 ranges. Error bars represent the statistical uncertainty. (a) The measured asymmetry is shown for probe
jets with 80 GeV < 𝑝

avg
T < 110 GeV in the range 0.2 < |𝜂probedet | < 0.7, where the distributions are symmetric by

construction. (b) The measured asymmetry is shown for probe jets with 300 GeV < 𝑝
avg
T < 400 GeV in the range

1.3 < |𝜂probedet | < 1.8. In this 𝜂probedet range the distributions can be asymmetric. Two fits are performed iteratively: the
particle-level asymmetry is modelled with an ad hoc function which is subsequently convolved with a Gaussian
function in order to describe the reconstructed asymmetry. The detector resolution is then extracted from the Gaussian
fit parameter.
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Figure 26: (a) Relative jet energy resolution and (b) absolute uncertainty in the relative resolution as a function of 𝑝T
for PFlow jets in the central region of the detector, measured using the dĳet balance method. The resolution in data is
shown in black points with error bars indicating statistical uncertainties; the resolution in detector-level simulated
events is shown by the blue curve with total systematic uncertainty given by the blue band. The systematic uncertainty
is dominated by terms propagated from the JES uncertainty, while additional terms arise from the analysis selection,
pile-up rejection (JVT), physics modelling (comparison with alternative generator), and non-closure effects. The
bump in uncertainty around 800 GeV comes from the single-particle uncertainty.
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6.2 Noise measurement using random cones

Direct estimates of the noise term of Eq. (4) are obtained bymeasuring the fluctuations in the energy deposits
due to pile-up using data samples that are collected by random unbiased triggers. These measurements are
performed using the random cones method in which energy deposits in the calorimeter are summed at the
energy scale of the constituents in circular areas analogous to the jet area for anti-𝑘𝑡 𝑅 = 0.4 jets. This
approach is adopted due to its ability to account for any non-Gaussian behaviour of the noise contributions
to the JER. Two such random cone sums, 𝑝c1T and 𝑝

c2
T , are obtained at random 𝜙 values and within opposite

±Δ𝜂 regions and the difference between them, Δ𝑝RCT , provides a measure of the random fluctuations of
deposited energy. Multiple non-overlapping cones are selected within each event to maximize statistical
power; this is demonstrated to cause no bias in the overall result. This random cone balance is given by

Δ𝑝RCT = 𝑝c1T − 𝑝c2T ,

and the estimated pile-up noise is determined by the central 68% confidence interval of the distribution
of Δ𝑝RCT , 𝜎RC, sampled over many events as a function of both 𝜂 and pile-up levels, as indexed by 𝜇.
Specifically, the noise term due to pile-up, 𝑁PU, is determined as

𝑁PU =
𝜎RC

2
√
2
, (7)

where the width of the distribution is divided by 2 to obtain the half-width of the distribution, and by
√
2 to

obtain the fluctuations corresponding to just a single random cone. The distribution of Δ𝑝RCT is shown in
Figure 27(a). Updates to the random cone method since its initial description in Ref. [6] include removing
a restriction to only a pair of back-to-back cones since this was found to have no effect on the result and
taking multiple non-overlapping random cone pairs per event to maximise statistics.

The energy scale of the noise estimated by 𝑁PU in Eq. (7) is the constituent energy scale and not that of
the jets measured in Section 6.1. In order to compare the measurement of the noise term 𝑁PU using the
random cone method with the JER measured at the fully calibrated scale (e.g. PFlow+JES) a conversion
factor is required. The nominal JES calibration factor is used to perform this conversion to the appropriate
energy scale. The result is an estimate of the noise due to pile-up that may be directly compared with the
measured JER.

A closure test of the random cone measurements is performed by comparing the in situ measurement of
the calibrated 𝑁PU with the expectation from MC simulation. Results are reported here for PFlow jets.
To isolate the contribution to the JER from pile-up noise in the MC simulation, the JER is determined in
simulated events both with and without pile-up and a subtraction in quadrature is performed between the
extracted resolutions. The two JER determinations in MC simulation events with and without pile-up are
shown in Figure 27(b) and their quadratic difference is compared directly to the in situ measurement from
the random cones method. Each is fitted, as shown by the dotted lines in Figure 27(b): the random cone
measurement is fitted with 𝑁/𝑝T while the quadratic difference is fitted with 𝑁/𝑝T ⊕ 𝑆/√𝑝T to account
for non-negligible stochastic contributions. The non-closure of the method is largely due to the differences
in topo-cluster formation sensitivity to pile-up and electronic noise in the presence versus absence of
hard-scatter particles, and is taken as a systematic uncertainty in the result. This non-closure uncertainty
is the dominant uncertainty in the JER noise term, ranging from approximately 17% in the most central
region to 75% in the endcap transition region (2.5 < |𝜂 | < 3.2).

The total noise contribution to the JER includes not just pile-up but also electronic noise, to which the
random cones are not sensitive due to the topo-clustering process. To estimate this electronic contribution,
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Figure 27: (a) The difference in the random cone sums, Δ𝑝RCT , measured in the central region (|𝜂det | < 0.7) in
randomly triggered data using PFlow objects. (b) Comparison between the pile-up noise term 𝑁PU determined using
the random cone method (black solid circles) and the expectation from MC simulation (orange squares) as extracted
from the difference in quadrature of MC simulation with (red downward triangles) and without (blue upward triangles)
pile-up. Results are shown at the PFlow+JES energy scale for jets in the central region of the detector (|𝜂det | < 0.7).

a fit is performed to the JER measured in a dedicated MC simulation sample with 𝜇 = 0 and the electronic
noise term is extracted as 𝑁𝜇=0. The total noise term used in the JER combination is therefore taken to
be 𝑁 = 𝑁PU ⊕ 𝑁𝜇=0 and is shown as a function of 𝜂 in Figure 28 along with its systematic uncertainties.
The dominant systematic uncertainty in the random cone measurement of 𝑁PU is the previously discussed
non-closure uncertainty, but additional terms arise from varying the quantile of the confidence interval
used to extract 𝜎RC and from using a different estimate of the conversion factor to the calibrated JES scale.
Two systematic uncertainties apply to 𝑁𝜇=0: a 20% relative uncertainty conservatively estimating the
differences in JER between data and MC simulation and an uncertainty due to the fit parameterization and
stability. The systematic uncertainties enter the combined JER fit unsymmetrized in 𝜂 but are symmetrized
during the statistical combination, and so the one-sided components are symmetrized in Figure 28 to
illustrate their final contribution to the total uncertainty.
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6.3 Combination of in situ jet energy resolution

A combined measurement of the JER is obtained by performing a fit to the dĳet balance measurements
(Section 6.1) using a constraint on the noise term (𝑁) derived from the random cones measurement and
𝜇 = 0 simulation sample (Section 6.2). The implementation of this statistical combination is performed
in a manner nearly identical to that for the JES (Section 5.2.5), propagating uncertainties from the dĳet
measurement in the same way and using a similar eigenvalue decomposition to reduce the final number of
nuisance parameters.

Instead of using polynomial splines to interpolate across 𝑝jetT , the JER combination uses the functional
form from Eq. (4). A fit to the dĳet measurement data is performed, fixing the noise term to the value
measured by the random cone analysis. Dĳet measurement uncertainties are taken to be fully correlated
between 𝜂 bins. Uncertainties due to the random cones measurements are determined by propagating the
noise term uncertainties and repeating the fit with different values of 𝑁 . These uncertainties are taken to be
decorrelated between central (|𝜂 | < 2.5) and forward (|𝜂 | > 2.5) regions.

The resulting combined measurement of the JER for PFlow+JES jets is shown in Figure 29(a). The dĳet
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Figure 29: (a) The relative jet energy resolution as a function of 𝑝T for fully calibrated PFlow+JES jets. The error
bars on points indicate the total uncertainties on the derivation of the relative resolution in dĳet events, adding in
quadrature statistical and systematic components. The expectation from Monte Carlo simulation is compared with
the relative resolution as evaluated in data through the combination of the dĳet balance and random cone techniques.
(b) Absolute uncertainty on the relative jet energy resolution as a function of jet 𝑝T. Uncertainties from the two
in situ measurements and from the data/MC simulation difference are shown separately.

measurement data points are shown along with the total in situ combination, while the constraint on the
noise term derived from random cones and included in that combination is demonstrated by plotting
𝑁/𝑝T and its uncertainties as a separate curve for illustrative purposes. Figure 29(b) shows the absolute
uncertainties on the combined JER measurement. For each value of 𝑝jetT and 𝜂det a toy jet is created and the
size of each JER nuisance parameter corresponding to it is retrieved and plotted.

Comparisons of the JER measurements for PFlow+JES and EM+JES jets, as a function of both 𝑝jetT and 𝜂,
are provided in Figure 30. The fit to the resolution as a function of 𝑝T for the PFlow+JES jets shows an
improvement in resolution over EM+JES jets at low 𝑝T.

Figure 31 shows the total JER uncertainty in EMtopo and PFlow jets for a range of 𝑝T values at fixed
𝜂 = 0.2 and for a range of 𝜂 values at fixed 𝑝T = 30 GeV. The level of agreement is representative of other
𝑝T and 𝜂 ranges.
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Figure 30: The relative jet energy resolution for fully calibrated PFlow+JES jets (blue curve) and EM+JES jets
(green curve) (a) as a function of 𝑝jetT and (b) as a function of 𝜂. The fit to the resolution as a function of 𝑝

jet
T for the

PFlow+JES jets shows an improvement in resolution over EM+JES jets at low-𝑝T.
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Figure 31: Fractional jet energy resolution systematic uncertainty summed across all components for anti-𝑘𝑡 𝑅 = 0.4
jets (a) as a function of jet 𝑝T at 𝜂 = 0.2 and (b) as a function of 𝜂 at 𝑝T = 30 GeV. The total JER uncertainty is
shown for both EM+JES and PFlow+JES jets.
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6.4 Application of JER and its systematic uncertainties

In order to ensure that the resolution of the jet energy scale in simulation matches that in data wherever
possible, a smearing procedure is recommended. For regions of jet 𝑝T in which the resolution in data is
larger than in MC simulation, the simulation sample should be smeared until its average resolution matches
that of data. In regions of jet 𝑝T where resolution is smaller in data than in MC simulation, no smearing is
performed, since the data should remain unaltered.

JER systematic uncertainties are propagated through physics analyses by smearing jets according to a
Gaussian function with width 𝜎smear. If 𝜎nom is the nominal JER of the sample, after MC simulation
smearing if necessary, and 𝜎NP is the one-standard-deviation variation in the uncertainty component to be
evaluated, then:

𝜎2smear = (𝜎nom + |𝜎NP |)2 − 𝜎2nom .

Application of JER systematic uncertainties must account for two factors: first, anti-correlations across a
single uncertainty component, and second, differences in resolution between data and MC simulation.

Anti-correlation becomes an issue when a single JER component is positive in some regions of phase space
and negative in others. To propagate such systematic uncertainties to analyses, smearing should be applied
to the simulation when 𝜎NP > 0 and applied to the data when 𝜎NP < 0. It should be noted that the nominal
data remains unchanged as this applies only to the application of systematic uncertainties. In the case that
data statistics are too low to safely smear, pseudo-data may be smeared instead.

Differences in resolution between data and MC simulation are already accounted for by the application of
additional smearing to the simulation when the resolution in simulation is better than in data. When the
JER is smaller in data, this difference is accounted for by applying its full value as an additional systematic
uncertainty:

𝜎NP = 𝜎datanom − 𝜎MCnom .

This term is defined by the dĳet asymmetry measurements of Section 6.1 and is zero for the central 𝜂 slice
shown in Figure 29(b), but for some 𝑝T ranges in more forward detector regions it can be significant. A
large value of this uncertainty for PFlow jets at 𝜂 ∼ 3.2 is the source of the peaks visible in Figure 31(b).

7 Conclusions

The calibration of the jet energy scale and resolution for jets reconstructed with the anti-𝑘𝑡 algorithm with
radius parameter 𝑅 = 0.4 is presented. Jets are built from either the energy deposits that form topological
clusters of calorimeter cells or a combination of charged-particle tracks and topological clusters. The
measurements discussed here use 36–81 fb−1 of data recorded with the ATLAS detector during 2015–2017
in 𝑝𝑝 collisions at a centre-of-mass energy of 13 TeV at the Large Hadron Collider. It is the first full
calibration of PFlow jets performed by the ATLAS collaboration, the first jet energy scale measurement in
the high pile-up conditions of late Run 2 data-taking, and the first jet energy resolution measurement in
13 TeV data.
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A sequence of simulation-based corrections removes the contribution to the jet energy from additional
proton–proton interactions in the same or nearby bunch crossings, corrects the jet so that it agrees in energy
and direction with particle-level jets and, improves the jet energy resolution. Any remaining difference
between simulation and data is removed with in situ techniques using well-measured reference objects,
including photons, 𝑍 bosons, and other jets, such that the energy scale of fully calibrated jets is unity within
uncertainties. The jet energy resolution is measured in a dĳet balance system, and the contribution to the
resolution from the noise term due to pile-up and electronics is also measured. The relative jet energy
resolution ranges from 0.25 (0.35) to 0.04 for PFlow (EMtopo) jets as a function of jet 𝑝T.

Systematic uncertainties in the jet energy scale for central jets (|𝜂 | < 1.2) vary from 1% for a large range of
high-𝑝T jets (250 < 𝑝T < 2000GeV), to 5% at very low 𝑝T (20GeV) and 3.5% at very high 𝑝T (> 2.5 TeV).
The absolute uncertainty on the relative jet energy resolution is found to be 1.5 at 20 GeV decreasing to 0.5
at 300 GeV.
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