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Abstract

Axion-like particles can source the baryon asymmetry of our Universe through spontaneous baryo-

genesis. Here we clarify that this is a generic outcome for essentially any coupling of an axion-like

particle to the Standard Model, requiring only a non-zero velocity of the classical axion field while

baryon or lepton number violating interactions are present in thermal bath. In particular, cou-

pling the axions only to gluons is sufficient to generate a baryon asymmetry in the presence of elec-

troweak sphalerons or the Weinberg operator. Deriving the transport equation for an arbitrary set

of couplings of the axion-like particle, we provide a general framework in which these results can

be obtained immediately. If all the operators involved are efficient, it suffices to solve an algebraic

equation to obtain the final asymmetries. Otherwise one needs to solve a simple set of differential

equations. This formalism clarifies some theoretical subtleties such as redundancies in the axion

coupling to the Standard Model particles associated with a field rotation. We demonstrate how our

formalism automatically evades potential pitfalls in the calculation of the final baryon asymmetry.

ar
X

iv
:2

00
6.

03
14

8v
3 

 [
he

p-
ph

] 
 1

9 
Se

p 
20

23



Contents

1 Introduction 2

2 Transport equation and basis independence 4

2.1 Transport equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Transport equation including an axion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Asymmetry generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Transport equation in the Standard Model 13

3.1 Standard Model interactions and charge vectors . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Conserved quantities and decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Spontaneous B +L-genesis before the electroweak phase transition 20

4.1 Basic properties of the transport equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Equilibrium solution including the axion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Spontaneous B −L-genesis around the reheating epoch 25

5.1 Transport equation including the Weinberg operator . . . . . . . . . . . . . . . . . . . . . . 25

5.2 Equilibrium solution including the axion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.4 Dependence on axion model parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6 Conclusion 34

A Definitions of symbols and indices 37

B Derivation of transport equation 38

B.1 Transport equation without axion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

B.2 Source term from the axion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

C Proof of the condition for vanishing backreaction 43



1 Introduction

The axion was introduced to solve the strong C P problem [1–4], but has since matured into a broader

concept addressing many open questions in particle physics and cosmology. These axion-like parti-

cles♮1 are pseudoscalars which couple to the Standard Model (SM) gauge fields and fermions via (clas-

sically) shift-symmetric couplings mediated by dimension five operators. For example, in the context

of cosmic inflation, this shift symmetry ensures a sufficiently flat direction in field space suitable to

drive the exponential expansion of the very early Universe [5]. In the context of dark matter, these

small interactions with the SM ensure that an axion dark matter candidate is sufficiently long lived,

while simultaneously providing an avenue for detection [6–8]. In the context of string theory, axions

are ubiquitous and typically arise as a result of the compactification [9–11].

Beyond all this, axions provide all the ingredients necessary to generate the matter antimatter

asymmetry of our Universe via spontaneous baryogenesis: a non-vanishing velocity of a classical ax-

ion field spontaneously breaks C PT , which, in the presence of baryon number violating interactions,

can generate a baryon asymmetry [12, 13]. This idea has been pursued e.g., in Refs. [14–21]. There

are two main points which differ among these works. Firstly, the motion of the axion may happen at

any time between cosmic inflation or the electroweak phase transition, with correspondingly different

physical processes responsible for triggering this motion. Secondly, different studies chose different

couplings of the axion to the SM particle content, i.e., different linear combinations of the possible

shift-symmetric operators.

In this paper we provide a simple formalism to study this class of models in a more systematic way.

Starting from an axion a coupling to an arbitrary combination of classically shift-symmetric operators

(with coefficients encoded in the source charge vector nS) we compute the final baryon asymmetry

taking into account all the SM equilibration processes. A non-vanishing velocity of the axion biases

the SM processes by acting as an effective chemical potential, thus modifying the equilibrium state of

the system. As long as the baryon violating processes are involved in attaining this new equilibrium,

the baryon asymmetry becomes non-zero and its final value is conserved when the baryon violating

processes freeze-out (see Fig. 1 as an illustration). Therefore this mechanism generically leads to a

generation of a baryon asymmetry even if there is no direct coupling between the axion and any baryon

or lepton number violating operator.♮2

♮1In the following, we will for brevity refer to all axion-like particles simply as ‘axions’, using the term ‘QCD axion’ to refer to

the axion addressing the strong C P problem.
♮2A similar idea was discussed in Refs. [14, 15], where a baryon (and/or) lepton asymmetry is generated from a scalar field

that is not coupled to the baryon nor lepton current. They consider the case of an operator OV that violates both a global

Peccei-Quinn symmetry U(1)PQ and the baryon (and/or lepton) symmetry U(1)B , i.e., ∂µ J
µ
PQ = ∆PQOV and ∂µ J

µ
B = ∆B OV

with ∆PQ and ∆B characterizing the amounts of violation of each symmetry. An axion coupling of a∂µ J
µ
PQ can generate the

baryon (and/or lepton) asymmetry because one can rewrite a∂µ J
µ
PQ as a∂µ J

µ
B by performing a field rotation associated with

QPQ−(∆PQ/∆B )QB . In this paper, we will show that adding such an operator is not necessary for baryogenesis if we introduce

an additional ingredient. See Fig. 1. There we illustrate our idea with a toy model: ∂µ J
µ
B = ∂µ(J

µ
1 + J

µ
2 ) = OV and ∂µ J

µ
2 = OX .

As explained in the caption, a derivative coupling of a∂µ J
µ
2 can generate QB although J2 is not broken by OV . By applying

this mechanism to a more realistic case, we show, for instance, the SU(3) Chern-Simons coupling aGG̃ can source the baryon

2
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Figure 1: A schematic figure of our baryogenesis mechanism. Since the SM involves many particle species and interactions,

here we consider a toy model composed of two species and two interactions as an illustration. Its current equations are

∂µ J
µ
1 = −OX +OV and ∂µ J

µ
2 = OX , and the degrees of freedom for Q1 and Q2 are assumed to be the same. We would like

to generate QB = Q1 +Q2, which is violated by OV as ∂µ J
µ
B = OV . Conventional spontaneous baryogenesis introduces a

direct coupling of a scalar field a to the QB -violating operator as aOV or equivalently a∂µ J
µ
B . However, a coupling of aOX

(or equivalently a∂µ J
µ
2 ) which is not directly related to the JB -current is enough for baryogenesis. A non-vanishing velocity

(ȧ ̸= 0) biases Q1 and Q2 through aOX while OV tries to wash out Q1. As a result, the new equilibrium solution (eq) is different

from the thermal equilibrium (th-eq) and has a non-vanishing QB . After OV freezes-out, QB becomes conserved, and we end

up with QB ̸= 0 (final) when ȧ = 0. The only way to avoid generating QB ̸= 0 is to couple the axion as a(cX OX + cV OV ) with

cX +2cV = 0. Then the axion velocity only biases Q1 −Q2 violated by −2OX +OV , which is orthogonal to QB .

We formulate this process by an algebraic matrix equation with the entries of the matrix encod-

ing the various SM processes and the source vector nS corresponding to the axion coupling. The only

condition for baryogenesis is that the source charge vector nS should not be fully orthogonal to the

charge vector of the baryon number violating process, i.e., a baryon number violating process needs

to be involved either directly in the axion coupling or in the subsequent equilibration of the asymme-

try. Our formalism correctly accounts for two important technical points: i) the transport equation,

which describes the equilibration process, is independent of the choice of field basis related by field

redefinitions and ii) the charge vectors of the involved processes are a priori not linearly independent.

In particular, point i) implies that performing a field rotation mapping the axion coupling to one op-

erator (e.g., the electroweak sphaleron aW W̃ ) to another (such as the lepton current a∂µ JµL ) does not

change the dynamics of baryogenesis. Such operations, if performed correctly, can therefore never

change the condition for baryogenesis, and hence the resulting baryon asymmetry should be given in

a form invariant under this transformation.♮3 Also, if marginally relevant processes are involved, we

have to track the time-evolution of the baryon asymmetry in order to determine its final value, but our

condition remains as a necessary condition for successful baryogenesis.

As a concrete example we apply this formalism to baryogenesis around the electroweak phase tran-

asymmetry, although it has nothing to do with baryon number violation.
♮3A similar point was noted in Ref. [22]. Our analysis extends this result to non-equilibrium situations, which in particular

arise when marginally relevant processes are involved in the generation of the baryon asymmetry.
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sition, invoking the original Peccei-Quinn axion and an Affleck-Dine type mechanism to trigger the

axion motion (see Ref. [21]). In this case, a notable subtlety arises because the charge vectors of the up-

Yukawa, the down-Yukawa and the strong sphaleron and not linearly independent. As a consequence,

the generated charge asymmetries in principle backreact on the axion equation of motion,♮4 though in

the parameter space of interest this is not of phenomenological importance.

As a second example, we consider high-scale baryogenesis invoking the lepton-number violating

Weinberg operator as well as a coupling to the lepton current or to W̃ W during reheating (see Ref. [16]).

Since the electroweak sphaleron comes into equilibrium only when the Weinberg operator drops out of

equilibrium, the final baryon asymmetry (obtained by numerically solving the appropriate differential

equation) is suppressed compared to the equilibrium solution (see also Ref. [24]). We point out that,

in the presence of the lepton-number violating Weinberg operator, the couplings to the lepton current

and to W̃ W are not equivalent. This is a consequence of the invariance of the transport equation under

field rotations.

In addition, by deriving a general condition for the axion coupling to trigger successful baryogen-

esis, we show that other couplings such as the coupling of the axion to gluons, aG̃G , which itself pre-

serves baryon and lepton number, can account for the present baryon asymmetry both in electroweak-

scale [21] and high-scale baryogenesis.♮5

The remainder of this paper is organized as follows. In Sec. 2 we derive the transport equation

describing the time evolution of chemical potentials in the presence of an axion coupling to a set of

operators (see Appendix B for details). Without making any assumptions on the particle content and

operator involved, we lay out the framework to compute the equilibrium solution and the final asym-

metries. We explicitly demonstrate the invariance of the transport equation under field rotations which

seemingly change the axion coupling and discuss backreaction of the induced chemical potentials on

the axion equation of motion (see Appendix C for details). In Sec. 3 we specify the relevant Standard

Model (SM) processes as well as their equilibration temperatures, extending the discussion in Ref. [26]

by including the renormalization group running of the Yukawa couplings. Sections 4 and 5 are dedi-

cated to two concrete examples of baryogenesis around the electroweak phase transition and reheat-

ing, respectively. We conclude in Sec. 6.

2 Transport equation and basis independence

2.1 Transport equation

In this section, we discuss the general structure of the transport equation without specifying a partic-

ular system. We take a rather general attitude and derive several properties that hold for any transport

♮4The backreaction to the axion is correctly taken into account in Refs. [21, 23] in the case where the axion couples to the

strong Chern-Simons term, aGG̃ . Our formalism generalizes this to an arbitrary transport equation with an arbitrary axion

couplings.
♮5Soon after we uploaded our paper on the arXiv, Ref. [25] appeared, independently also pointing out that aGG̃ can source

the B −L asymmetry in the presence of the Weinberg operator.
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equation in a homogeneous and isotropic system. Starting from the current equation and symmetry

properties, which follow immediately from the Lagrangian of a given system, we invoke linear response

theory to obtain a simple linear algebra system describing the equilibrium solution for all chemical po-

tentials. Some concrete examples will be considered in Secs. 4 and 5, with a particular focus on the

resulting asymmetries in the total baryon number. For the convenience of readers, we summarize our

definitions of indices and symbols in Appendix. A.

Current equation. Our starting point is the following operator equation:

∂µ Jµi (x) =∑
α

nα
i Oα(x) . (2.1)

Here Jµi is the current corresponding to a particle species i (with i = 1, · · · , N ) and the operator Oα

encodes e.g., the anomalous contribution F F̃ or Yukawa interactions. For each Oα, there exists a vector

nα
i that specifies the charge of each species i involved in the process of Oα (see Sec. 3 for details on

these operators in the SM). For conserved currents, the right-hand side of Eq. (2.1) vanishes.

Transport equation. We can derive a transport equation by taking the expectation value of both sides

of this equation. As usual, we assume that the chemical equilibration associated with the current equa-

tions is much slower than typical scatterings. This justifies the approximation of kinetic equilibrium

for the system, and hence the deviation from the chemical equilibrium can be characterized by slowly

varying chemical potentials µi for each charge J 0
i . Let qi be a charge density of species i defined by

qi (t ) ≡ 1

vol(R3)

∫
d3x

〈
J 0

i (t ,x)
〉= 〈

J 0
i (t ,0)

〉
. (2.2)

Throughout this paper, we assume homogeneity and isotropy of the system. We use this property in

the second equality. The connection to the chemical potential is given by

qi (t ) = giµi (t )
T 2

6
, (2.3)

where T is the temperature of the ambient plasma and the multiplicity is gi = 1,2 for a chiral fermion

and a complex scalar, respectively. We assume µi ≪ T for all i throughout this paper. Note that one

should introduce different chemical potentials for each species which are distinguishable by any of the

relevant interactions.

The left-hand side of Eq. (2.1) gives

1

vol(R3)

∫
d3x ∂ · 〈Ji (t ,x)〉 = q̇i (t ) . (2.4)

One may evaluate the right-hand side by computing the linear response of the system to a small per-

turbation µi /T ≪ 1. As can be seen from Eq. (2.1), an operator α involves nα
i charges for each species

i . Therefore, the expectation value of Oα is given by

1

vol(R3)

∫
d3x 〈Oα(t ,x)〉 =−Γα

∑
j

nα
j

µ j

T
, (2.5)

5



where

Γα ≡ TGρ
α(ω,0)

2ω

∣∣∣∣
ω=0

, Gρ
α(ω,p) ≡

∫
d4x e iωx0−ip·x 〈[Oα(x),Oα(0)]〉 . (2.6)

at the linear response.♮6 See Appendix. B for the derivation and a more precise definition of correlators.

Γα represents the rate per unit time-volume for Oα. For later convenience, we also define the rate per

unit time by

γα ≡ Γα

T 3/6
. (2.7)

Therefore the transport equation corresponding to the current equation (2.1) can be expressed as

q̇i =−∑
j
Γi j

µ j

T
, Γi j ≡

∑
α
Γαnα

i nα
j . (2.8)

Conserved quantities. In general, this matrix Γi j can have vanishing eigenvalues. Let {n A
i } be a set

of eigenvectors with zero eigenvalues. The presence of these eigenvectors indicates that, if one pumps

up a chemical potential as
∑

i n A
i J 0

i , it does not induce any chemical reactions. Therefore this set cor-

responds to the conserved charges in this system. One can see this by multiplying this vector from the

left to both sides of Eq. (2.8), leading to

0 =∑
i

n A
i q̇i −→ qA = const. , qA ≡∑

i
n A

i qi , (2.9)

which is equivalent to ∑
i

n A
i gi

µi

T
= cA , (2.10)

with cA being a constant. Here a constant cA sets the conserved charge A of this system as qA = cAT 3/6.

Interaction basis. In general, some charge vectors can be expressed as a linear combination of the

others. One may choose a complete set of vectors nα
i (associated with Oα) that are linearly indepen-

dent, which we denote as {nα̂
i }. For later convenience, we denote the rest of the charge vectors as nα∆

i

which can be expressed as a linear combination of {nα̂
i }. Now the set of {nα̂

i } and {n A
i } forms a com-

plete basis of the chemical potential space. Note here that the vector spaces spanned by {nα̂
i } and {n A

i }

are orthogonal because 0 = ∑
i nα̂

i n A
i for any α̂ and A. Since the sets of basis vectors {nα̂

i } and {n A
i } are

not orthonormal, we define dual basis vectors {n̄α̂
i } and {n̄ A

i } respectively such that
∑

i n̄α̂
i nβ̂

i = δα̂β̂ and∑
i n̄ A

i nB
i = δAB . Note that we also have 0 = ∑

i n̄α̂
i n A

i = ∑
i n̄ A

i nα̂
i = ∑

i n̄α̂
i n̄ A

i because the vector spaces

♮6This Γα is the linear response coefficient of interaction processes to a chemical potential. Regarding sphaleron processes,

one may alternatively define Γ by the diffusion constant per unit volume of Chern-Simons number. The latter one is twice

larger than the former one by a fluctuation dissipation relation. The difference comes from the average between the forward

and backward sphaleron rates [23].
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spanned by {nα̂
i } and {n A

i } are orthogonal. For notational brevity, we introduce a collective notation

{nX
i } ≡ {nα̂

i ,n A
i } and {n̄X

i } ≡ {n̄α̂
i , n̄ A

i } with∑
i

n̄X
i nY

i = δX Y ,
∑

X=α̂,A
n̄X

i nX
j = δi j . (2.11)

We denote the number of the basis vectors {nα̂
i } ({n A

i }) as Nα̂(NA). By definition, we have N = Nα̂+NA .

For later convenience, we further divide the basis vectors nα̂
i into {nα̂⊥

i } ≡ {nα̂
i |

∑
i n̄α̂

i nα∆
i = 0 for all α∆}

and {n
α̂∥
i } ≡ {nα̂

i |
∑

i n̄α̂
i nα∆

i ̸= 0 for some α∆}. The latter set {n
α̂∥
i } involves a linear dependent relation

with nα∆
i as nα∆

i = ∑
α̂∥ U T

α∆α̂∥
n
α̂∥
i with U T

α∆α̂∥
̸= 0. Note that the dual vector n̄α̂

i is related to a conserved

charge in the case where the interaction α̂ is turned off if α̂ ∈ {α⊥}. In this case the conserved charge is

qα̂ =∑
i n̄α̂

i qi and the corresponding chemical potential is µα̂ =∑
i gi n̄α̂

i .♮7

2.2 Transport equation including an axion

Now we shall include a coupling to an axion. In particular, we will provide a general transport equation

in the presence of a non-vanishing velocity of the axion by assuming that the change of the axion veloc-

ity is much slower than the typical interactions in the ambient plasma (see Appendix. B for the details

of derivation and assumptions). As an aside, we show that the resulting transport equation is invariant

under field redefinitions associated with charges in the current equation, which seemingly change the

coupling to the axion.

Coupling to the axion. Before discussing the coupling to the axion, let us briefly recall the derivation

of (2.1). Let {Φ} be a set of fields in the action S and consider a U(1)k transformation: {Φ′} = {e iθkQkΦ}.

The current equation follows if the path-integral fulfills∫ [
dµ′]F [{Φ′}]e i S[{Φ′}] =

∫ [
dµ

]
F [{Φ}]e i S[{Φ}]+∫

d4x iθk
(
∂·Jk−∑

αnα
k Oα

)+i R(θk ) (2.12)

=
∫ [

dµ
]

F [{Φ}]e i S[{Φ}]
[

1+
∫

d4x iθk

(
∂ · Jk −

∑
α

nα
k Oα

)
+O (θ2

k )

]
, (2.13)

with [dµ] being a measure of the path-integral and F [{Φ}] being a functional of {Φ} invariant under the

U(1)k transformation.♮8 Here R in the first equation involves terms at a higher order in θk . Differenti-

ating with respect to θk and taking θk = 0, we obtain the current equation (2.1).

Now we are ready to couple the current equation (2.1) to a homogeneous axion field a(t ) with a de-

cay constant f . There are two types of (classically) shift-symmetric couplings. One is a direct coupling

with the current:

La =−a

f
∂ · Jk = ȧ

f
J 0

k + (total derivative) . (2.14)

♮7These conserved charges provide the physical intuition behind distinguishing between linearly independent and depen-

dent basis vectors, namely
∑

i n̄α̂i nα∆i = 0 and
∑

i n̄α̂i nα∆i ̸= 0, respectively. A linearly dependent basis vector implies a reduced

number of conserved charges when we turn off its corresponding interaction.
♮8We take F [{Φ}] invariant under the U(1)k transformation just for simplicity. If F [{Φ}] is charged under this, we get the

anomalous Ward-Takahashi identity associated with the commutator [Qk ,F ].
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After integration by parts, this coupling can be regarded as an external chemical potential. The other is

an indirect coupling to the current with an operator Oβ appearing in the current equation:

La =−a

f
Oβ , (2.15)

at linear order in a/ f . The second coupling respects the classical shift symmetry of a, if one can rewrite

it as (a/ f )Oβ̂ = (a/ f )
∑

i n̄β̂

i ∂· Ji by reversing the transformation in Eq. (2.12) at linear order in a/ f ♮9 or if

it is a total derivative of some other operator Oβ = ∂ ·Kβ (e.g., W W̃ = ∂ ·KWS).♮10 More general couplings

can be generated from a linear combination of the two couplings in Eqs. (2.14) and (2.15), and hence

these two are sufficient for our discussion. These shift-symmetric couplings with the axion modify the

transport equation as follows:

q̇i =−∑
j
Γi j

µ j

T
+ ȧ/ f

T
Si . (2.16)

In the following, we discuss the source term Si for each case.

Axion source terms. Let us start with the direct coupling to the current, given by Eq. (2.14). As already

mentioned, this coupling can be regarded as an external chemical potential of (ȧ/ f )J 0
k . Such an exter-

nal chemical potential gives rise to a shift of µk 7→ µk − ȧ/ f , indicating µk = ȧ/ f at equilibrium. This

observation implies the following form for the transport equation:

q̇i =−∑
j
Γi j

(
µ j

T
− ȧ/ f

T
δ j k

)
for the axion coupling

ȧ

f
J 0

k . (2.17)

This means that the source term in Eq. (2.16) is given by

Si =
∑

j
Γi jδ j k for the axion coupling

ȧ

f
J 0

k . (2.18)

as expected.

Next we move on to the coupling with an operator −(a/ f )Oβ [see Eq. (2.15)]. In linear response,

this interaction introduces a bias on the processes involving this operator. Therefore, we expect

1

vol(R3)

∫
d3x

〈
Oα(t ,x)|a/ f

〉=−Γα
∑

j
nα

j

µ j

T
+δαβΓα

ȧ/ f

T
, (2.19)

♮9If we keep the nonlinear part appearing in the transformation (2.12), the equality should be (a/ f )O
β̂
=∑

i n̄
β̂
i (a/ f )∂· Ji +

R({n̄
β̂
i a/ f }). However, throughout the main text, we assume that the axion mass originating from this coupling is negligible

and the typical time scale of axion motion is much slower than 1/T . Under these approximations, one may always rotate

away a constant term in the axion, and also expand the resulting equations in ȧ/( f T ). These are the underlying reasons why

we may use transport equations at linear order in the axion field. Since we restrict ourselves to this case in this paper anyway,

we can drop the nonlinear part of a/ f in this discussion.
♮10The latter case could be broken quantum mechanically by the instanton. This is why we said “classically” shift symmetric.
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where the expectation value with a superscript of a/ f implies the presence of the axion coupling. We

show that this relation indeed holds in Appendix. B by means of linear response theory. In the deriva-

tion of the transport equation from Eq. (2.1), the expectation value of the right-hand side should be

replaced with Eq. (2.19). Hence, the transport equation becomes

q̇i =−∑
α

nα
i Γα

(∑
j

nα
j

µ j

T
− ȧ/ f

T
δαβ

)
for the axion coupling − a

f
Oβ , (2.20)

implying that the corresponding source term in Eq. (2.16) is given by

Si =
∑
α

nα
i Γαδαβ for the axion coupling − a

f
Oβ . (2.21)

For a more general coupling, it is convenient to introduce a source vector nα
S such that

Si ≡
∑
α
Γαnα

i nα
S . (2.22)

Then we obtain, e.g., nα
S = δαβ for the coupling of −(a/ f )Oβ, and nα

S = nα
k for −(a/ f )

∑
βnβ

k Oβ or

−(a/ f )∂ · Jk . If the axion couples to a current JQ (= ∑
nQ

i Ji ) where nQ
i is its charge vector, the source

vector is given by nα
S =∑

i nQ
i nα

i .

Basis independence. So far, we have seen how the shift-symmetric couplings of the axion given in

Eqs. (2.14) and (2.15) give rise to the source terms in the transport equation. However, there are sub-

tleties in this computation because the coupling to the axion has redundancies in its description owing

to the current equations and the conserved charges.

As an illustration, let us consider a theory with −(a/ f )∂ · Jk . One may compute the source term

of this coupling and then obtain Eq. (2.18). Instead, one may perform a field rotation associated with

the charge J 0
k , which yields −(a/ f )

∑
i nα

k Oα at linear order in a/ f [see Eq. (2.12)].♮11 The transport

equation computed in this field basis should be the same as the original transport equation sourced by

−(a/ f )∂ · Jk . In the following, we directly confirm this basis independence of the axion coupling in the

transport equation. In other words, we will prove that the source vector nα
S does not depend on these

redundancies of the axion-coupling related to a field rotation.

The fundamental building block of the independence under such basis transformations is an equiv-

alence between −a∂· Jk and −a
∑
αnα

k Oα. Once we show this, other more complicated transformations

are just given by considering linear combinations of these operators. Hence, a proof for these two cou-

plings is sufficient. For the coupling of −(a/ f )∂ · Jk , the source term is given in Eq. (2.18):

Si =
∑

j
Γi jδ j k =∑

α
Γαnα

i nα
k . (2.23)

♮11Also, one may consider other transformations such as a field rotation associated with a conserved charge. Then, one can

replace the coupling with a
∑

i ̸=k n A
i ∂ · Ji . Moreover, one could perform a field rotation associated with other charges and

then rewrite this coupling in a more complicated form. All these transformations of a field basis (which we simply refer to as

‘field rotations’ in this paper) give exactly the same transport equation.
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On the other hand, the source term for −(a/ f )
∑
βnβ

k Oβ can be obtained from Eq. (2.21) by multiplying

nβ

k and summing over β. This in the end gives

Si =
∑
β

nβ

k

∑
α

nα
i Γαδαβ =

∑
α
Γαnα

i nα
k , (2.24)

which coincides with Eq. (2.23). Therefore these two couplings yield exactly the same transport equa-

tions as expected. This proves that the transport equation is invariant under such field rotations, i.e.,

the phenomenology of the axion couplings is basis independent.

2.3 Asymmetry generation

In this section, we discuss how the axion induces a non-vanishing asymmetry. Assuming that the equi-

libration is faster than the axion dynamics, we first sketch how to obtain an equilibrium solution of

chemical potentials for a given set of conserved charges {cA} in the presence of non-vanishing ȧ. Then,

we derive a condition for the couplings to the axion so that the non-vanishing velocity ȧ yields an

asymmetry for a specific charge. We finally discuss how this dynamics gives rise to a friction term for

the axion, and point out a special case where this friction term vanishes identically.

Equilibrium solution. Now we sketch how to obtain the equilibrium solution for a given set of con-

served charges {cA} in the presence of a source term. An equilibrium solution is defined by q̇i = 0 for all

i . By multiplying n̄α̂
i from the left to both sides of Eq. (2.16) we find the following set of equations :

∑
i

n̄α̂
i Si

ȧ/ f

T
=∑

i , j
n̄α̂

i Γi j
µ j

T
−→ ∑

β

Sα̂βnβ

S

ȧ/ f

T
=∑

β̂

Γα̂β̂

∑
j

nβ̂

j

µ j

T
. (2.25)

Here we define

Γα̂β̂ ≡
∑
i , j

n̄α̂
i Γi j n̄β̂

j =∑
γ

Uα̂γΓγU T
γβ̂

, Sα̂β ≡
∑

i
n̄α̂

i Γβnβ

i =Uα̂βΓβ . (2.26)

with

Uα̂β ≡
∑

i
n̄α̂

i nβ

i . (2.27)

Note that, if all the vectors {nα
i } are linearly independent, i.e., α̂ = α, the matrix becomes diagonal,

Γαβ = Γαδαβ, Sαβ = Γαδαβ, because Uαβ =
∑

i n̄α
i nβ

i = δαβ.

Since the matrix Γα̂β̂ is invertible,♮12 we obtain the following equation in matrix notation [together

with the conservation equations (2.10)], which determines the equilibrium solution:

(MX i )

(
µi

T

)
=

∑
β̂,γΓ

−1
α̂β̂

Sβ̂γnγ

S
ȧ/ f

T

cA

 , (MX i ) ≡
( (

nα̂
i

)(
gi n A

i

)) . (2.28)

♮12Suppose that a vector v α̂ satisfies 0 = ∑
α̂ v α̂Γ

α̂β̂
. The positivity of Γα implies that 0 = ∑

α̂ v α̂Uα̂β. By restricting β to β̂,

the matrix U
α̂β̂

is invertible and hence v α̂ = 0. It follows that Γ
α̂β̂

is invertible.
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Here α̂ = 1, · · · , Nα̂, A = 1, · · · , NA , i = 1, · · · , N , and X runs through α̂ and A. cA and µi represent the

NA and N dimensional vectors, respectively. (nα̂
i ) is an Nα̂×N matrix, a (gi n A

i ) is NA ×N matrix, and

hence MX i is an N×N matrix. Multiplying an inverse matrix from the left,♮13 we obtain the equilibrium

solution: (
µi

T

)
eq

= (
M−1

i X

)∑
β̂,γΓ

−1
α̂β̂

Sβ̂γnγ

S
ȧ/ f

T

cA

 . (2.29)

where M−1
i X is the inverse matrix of MX i defined in Eq. (2.28). Note that, if nγ

S = cA = 0 for all A and γ,

the solution is a trivial one, µi = 0 for all i . This formula is useful when we calculate, e.g., the resulting

present-day baryon asymmetry.

Asymmetry generation. Here we derive the condition to produce an asymmetry in a specific charge.

Suppose that we are interested in generation of a certain charge qC , whose effective chemical potential

is given by

µC =∑
i

gi nC
i µi . (2.30)

Inserting Eq. (2.29), we can estimate the charge qC in the presence of the source term nα
S and non-

vanishing conserved charges cA :

µ
eq
C

T
=

((
gi nC

i

)T
)(

M−1
i X

)∑
β̂,γΓ

−1
α̂β̂

Sβ̂γnγ

S
ȧ/ f

T

cA

 , (2.31)

where (gi nC
i )T is a 1×N matrix. In other words, this gives the condition on nα

S and cA to obtain non-

vanishing qC . In particular, in the case with vanishing conserved charges cA = 0 for all A, we get non-

vanishing qC if the vector nγ

S fulfills

(nγ

S ) ̸⊥
( ∑

i ,α̂,β̂

gi nC
i M−1

i α̂ Γ
−1
α̂β̂

Sβ̂γ

)
≡ vC

γ . (2.32)

If all the vectors nα
i are linearly independent, this condition is further simplified as

(nγ

S ) ̸⊥
(∑

i
gi nC

i M−1
iγ

)
. (2.33)

These general formulae will prove useful when we discuss the condition to generate the baryon asym-

metry in Secs. 4 and 5.

The physical intuition behind this formula is the following: The C PT -violating motion of the axion

biases the processes encoded in the source vector nα
S such that they induce non-vanishing chemi-

cal potentials µi for the particles involved in these processes. Meanwhile other processes (encoded

♮13We provide a proof that the N ×N matrix MX i is invertible. Suppose that a vector v i satisfies 0 =∑
i MX i v i . By definition,

we have
∑

i Mα̂i n̄
β̂
i = δ

α̂β̂
which is non-zero. Hence, v i can be expressed as a linear combination of n A

i , i.e., v i = ∑
A n A

i xA .

Now, 0 =∑
i MX i v i is rewritten as 0 =∑

A xA(
∑

i n A
i gi n A′

i ). The positivity of gi implies that 0 =∑
A xAn A

i . By multiplying n̄ A′
i

and summing over i , we find xA = 0 for all A. It follows that MX i is invertible.
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in M−1
i α̂ Γ

−1
α̂β̂

Sβ̂γ) try to wash-out these chemical potentials. This competition determines the equilib-

rium solution. In order to generate the charge qC (which could be e.g., baryon number), we need a

qC -violating operator. The only way to obtain a vanishing qC in the equilibrium solution is by choos-

ing specific couplings such that the qC -violating operator is not involved in this equilibration process.

Eq. (2.32) or Eq. (2.33) indicate this specific coupling. After the decoupling of the qC -violating interac-

tions, the non-zero value of qC freezes out and becomes a conserved charge. From this it is clear that,

for C -genesis, we in particular do not have to couple the axion to the qC -violating operator directly.

This opens up a variety of couplings successful in creating qc .

Backreaction to the axion. So far, we have assumed that the production of asymmetries does not

affect the dynamics of the axion. Here we discuss the backreaction to the equation of motion for the

axion, and derive the condition under which we can neglect it. Since we have already proven the in-

variance under field rotations, the coupling to the current can be rewritten as the coupling to a linear

combination of operators Oα. Hence, it is sufficient to discuss the case with La = −(a/ f )
∑
αnα

S Oα.

The equation of motion for the homogeneous mode of the axion then becomes

0 = ä +V ′(a)+ 1

f

∑
α

nα
S

〈
Oα|a/ f

〉= ä +V ′(a)+∑
α

nα
S
Γα

f T

(
nα

S
ȧ

f
−∑

j
nα

j µ j

)
, (2.34)

where the axion potential is V (a). In the second equality, we have used Eq. (2.19).

Let us assume that the equilibration for the chemical potentials is much faster than the axion dy-

namics. Under this approximation, we can insert the equilibrium solution given in Eq. (2.29) in the last

term of Eq. (2.34). Throughout this paper, we are interested in the case where there are no primordial

asymmetries for all the conserved quantities, i.e., cA = 0 for all A. In this way, we can evaluate the last

term in Eq. (2.34), which defines the effective dissipation rate for the axion as

∑
α

nα
S
Γα

f T

(
nα

S
ȧ

f
−∑

j
nα

j µ
eq
j

)
=:

∑
α,β

nα
S γ

eff
a,αβnβ

S ȧ , (2.35)

implying

γeff
a,αβ =

Γα

f 2T

(
δαβ−

∑
i ,γ̂,ρ̂

nα
i M−1

i γ̂ Γ
−1
γ̂ρ̂Sρ̂β

)
= 1

f 2T

(
Γαδαβ−

∑
γ̂,ρ̂

ST
αγ̂Γ

−1
γ̂ρ̂Sρ̂β

)
. (2.36)

In the second equality, we have used nα
i = ∑

β̂U T
αβ̂

nβ̂

i ,
∑

i nβ̂

i M−1
i γ̂ = δβ̂γ̂, and the definition of Sγ̂α =

Uγ̂αΓα in Eq. (2.26). If this rate is much slower than the typical interaction rate for chemical equilibra-

tion processes, the assumption of fast equilibration is justified a posteriori.

We remark that there is a special case where the effective dissipation,
∑
αβnα

S nβ

Sγ
eff
a,αβ, vanishes

identically. Let us see when this happens. As shown in Appendix. C, the condition where the effective

dissipation term vanishes is given by∑
αβ

γeff
a,αβnα

S nβ

S = 0 iff nα∆
S =∑

α̂∥
U T
α∆α̂∥n

α̂∥
S , (2.37)
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where we use the classification of charge vectors into linearly (in)dependent vectors, denoted by the su-

perscripts α∆,α∥,α⊥, as introduced around Eq. (2.11). For instance, if the axion only couples to the op-

erators whose charge vectors are linearly independent with respect to all other interactions, i.e, nα
S ̸= 0

only if α ∈ {α̂⊥}, the right-hand condition is trivially fulfilled and hence the effective friction term van-

ishes. The non-vanishing effective friction term arises only if the axion couples to an operator whose

charge vector lies in the span of the charge vectors of other interactions, i.e, nα
S ̸= 0 forα ∈ {α̂∥,α∆}. Still,

in this case, we could have a cancellation among the source vectors because the corresponding charge

vectors are linearly dependent, and if the cancellation occurs, the effective friction term vanishes. The

condition of nα∆
S = ∑

α̂∥ U T
α∆α̂∥

n
α̂∥
S takes into account when this cancellation happens. If the condition

(2.37) is fulfilled, the constant motion of the axion is never stopped by the asymmetry generation. This

means that a non-vanishing ȧ together with µ
eq
i is a non-trivial equilibrium solution even after the

inclusion of the backreaction.

We can roughly understand its physical reason as follows. Let us take the limit of V (a) → 0 to get

insight into the nature of this property. As we will see below, the above non-trivial equilibrium solution

exists if we get a new conserved charge in the limit of V (a) → 0. By multiplying the current equation

(2.1) by n̄α̂
i and taking a summation over i , we obtain

∑
i n̄α̂

i ∂µ Jµi =∑
βUα̂βOβ =Oα̂+∑

α∆ Uα̂α∆Oα∆ . This

implies Oα̂ =∑
i n̄α̂

i ∂µ Jµi −
∑
α∆ Uα̂α∆Oα∆ . Using this equation, we can rewrite the equation of motion for

the axion as

d

dt

(
f ȧ +∑

α̂,i
nα̂

S n̄α̂
i qi

)
=∑

α∆

(∑
α̂∥

n
α̂∥
S Uα̂∥α∆ −nα∆

S

)〈
Oα∆ |a/ f

〉
(2.38)

Now it is clear that, if the condition (2.37) is satisfied, we have a new conserved charge that is a summa-

tion of the axion shift charge f ȧ and
∑
α̂,i nα̂

S n̄α̂
i qi . The presence of this new charge in principle allows

an equilibrium solution with both charges, f ȧ and
∑
α̂,i nα̂

S n̄α̂
i qi , non-vanishing, which implies ȧ ̸= 0 in

equilibrium. However, if the condition (2.37) is violated, this new charge should vanish in equilibrium.

This means that there must exist a process driving the axion velocity to zero, which is nothing but a

non-zero effective friction term.

3 Transport equation in the Standard Model

In this section, we review the transport equation within the SM in the symmetric phase, before dis-

cussing the coupling to the axion in the subsequent sections.

3.1 Standard Model interactions and charge vectors

Let us first specify the number of chemical potentials required to describe the system. The SM consists

of the right-handed lepton e f , the left-handed lepton L f , the right-handed up-type quark u f , the right-

handed down-type quark d f , the left-handed quark Q f , and the Higgs H , where the index f runs from

1 to N f with the number of flavors being N f = 3. The vector of chemical potentials hence has 5N f +1
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components:(
µi

)= (
µe1 ,µe2 ,µe3 ,µL1 ,µL2 ,µL3 ,µu1 ,µu2 ,µu3 ,µd1 ,µd2 ,µd3 ,µQ1 ,µQ2 ,µQ3 ,µH

)
. (3.1)

The SM transport equation is written by means of this chemical potential vector:

q̇i =−∑
α
Γαnα

i

∑
j

nα
j

µ j

T
. (3.2)

Here α runs over the SM interactions relevant for the chemical equilibrium, which are the electroweak

sphaleron, the strong sphaleron, the lepton Yukawa, the up-type quark Yukawa, and the down-type

quark Yukawa.

As we are interested in the evolution of the chemical potential in the early Universe, we should

take into account the effect of the expansion of the Universe. Denoting H as the Hubble parameter, we

rewrite the transport equation Eq. (2.16) by the replacement of q̇i → q̇i +3H qi . Assuming the radiation-

dominated era, we obtain Ṫ =−HT and

H =
√

g∗π2

90

T 2

Mpl
, (3.3)

where g∗ (= 106.75) is the effective degrees of freedom of relativistic particles. The transport equation

is now written as♮14

− d

dlnT

(µi

T

)
=− 1

gi

∑
α

nα
i
γα

H

[∑
j

nα
j

(µ j

T

)
−nα

S

(
ȧ/ f

T

)]
, (3.4)

where we have included an axion source term. When the prefactor in the right-hand side becomes

larger than of order unity, the square bracket in the right-hand side is driven to be zero within of order

one Hubble time. It is thus convenient to define an equilibration temperature, below which a given

interaction is in equilibrium within the time-scale of the Hubble expansion.

Let us focus on an interaction β in the right-hand side of Eq. (3.4). Multiplying nβ

i and taking a

summation over i , we obtain

− d

dlnT

(∑
i

nβ

i

µi

T

)
=−∑

i

1

gi

(
nβ

i

)2 γβ

H

[∑
j

nβ

j

(µ j

T

)
−nβ

S

(
ȧ/ f

T

)]
+ . . . , (3.5)

where the dots represent the other interaction terms. Then the quantity
∑

i nβ

i µi /T does not change

much by the interaction β if ∑
i

1

gi

(
nβ

i

)2
γβ < H . (3.6)

We define the equilibration temperature of the interaction β by the threshold of this condition.♮15

♮14This is not the case before the reheating completes. We implicitly assume that the reheating temperature is much higher

than 1013 GeV throughout this paper for simplicity.
♮15Ref. [26] defines the equilibration temperature of the weak and strong sphaleron processes by 6γW S = H and 4γSS = H ,

respectively. These are equivalent to our definitions. However, they define those of Yukawa interactions by γi /gL = H , where

gL is the degrees of freedom of left-handed lepton (quark) for lepton (quark) Yukawa interaction. This is different from ours

by a factor of 7/2 for the lepton Yukawa and 18/4 for the quark Yukawa.
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Interaction Weinberg WS SS Ye Yµ Yτ

Γα/T 4 κW
m2

νT 2

v4
EW

1
2κWSα

5
2

1
2κSSα

5
3 κYe y2

e κYe y2
µ κYe y2

τ

Tα [GeV] 6.0×1012 2.5×1012 2.8×1013 1.1×105 4.7×109 1.3×1012

Interaction Yu Yc Yt Yd Ys Yb

Γα/T 4 κYu y2
u κYu y2

c κYt y2
t κYd y2

d κYd y2
s κYd y2

b

Tα [GeV] 1.0×106 1.2×1011 4.7×1015 4.5×106 1.1×109 1.5×1012

Table 1: A summary of the rate per unit-time volume Γα and the corresponding equilibration temperature Tα for the SM

interactions and L-violating interaction by the dimension five Weinberg operator [see Eq. (5.3)]. See the main text for the

explicit values of the numerical coefficients κα. The differences with respect to Ref. [26] are discussed in the main text.

In the following, we give the rate per unit time-volume Γα, the charge vector nα
i , and the equili-

bration temperature Tα for each interaction, see Tab. 1. It is important to include the renormalization

group (RG) flow of the parameters to evaluate these quantities, which we have done using SARAH [27].

Before going to the details of the interactions, we comment on the differences of our calculation

of the equilibration temperature with respect to Ref. [26]. As explained in footnote ♮15, we include the

factor of
∑

i

(
nβ

i

)2
/gi in the definition of the equilibration temperature of Yukawa interactions rather

than 1/gL , the latter of which is used in Ref. [26]. We also take into account the renormalization-group

running of the Yukawa (as well as gauge) couplings, not only for top Yukawa but also the other Yukawas.

This is quite important especially for the bottom Yukawa, where Tb decreases by an order of magnitude.

We also use updated sphaleron rates following Ref. [28].

Electroweak sphaleron. The electroweak sphaleron involves all the left-handed fermions, which are

charged under SU(2)W. The corresponding charge vector, nWS
i , is defined so that∑

i
nWS

i µi =
∑

f

(
µL f +3µQ f

)
. (3.7)

The sphaleron rate per unit time-volume in SU(Nc ) gauge theory with N f vector fermions and NH

complex scalars is given by [28–33]

2Γsphal ≃ 0.21

(
Nc g 2T 2

m2
D

)(
ln

mD

γ
+3.0410

)
N 2

c −1

N 2
c

(Ncα)5 T 4, (3.8)

γ= NcαT

(
ln

mD

γ
+3.041

)
, (3.9)

m2
D = 2Nc +N f +NH

6
g 2T 2, (3.10)

where g (≡ p
4πα) is a gauge coupling constant. Using m2

D = (11/6)g 2
2 T 2 in the SU(2) weak sector of

the SM, we thus estimate the rate as

ΓWS = κWS

2
α5

2T 4 , (3.11)
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Figure 2: Equilibration temperatures for individual SM interactions, Tα. Each dashed line indicates the range from 10Tα to

Tα, within which one can expect non-trivial effects due to partial equilibration. The solid arrows (starting from the vertical

lines) indicate that the interactions are in equilibrium for T < Tα. At the top of the figure, we also show the decoupling

temperature of lepton number violating interaction via the dimension five Weinberg operator as a vertical line, above which

it is in equilibrium [see Eq. (5.5))]. The dashed line starts from Tα/10 in this case, as this interaction is weaker for lower

temperature.

where κWS ≃ 24 for T = 1012 GeV.♮16 Comparing the rate per unit time, γWS
∑

i (nWS
i )2/gi = 36ΓWS/T 3, to

the Hubble parameter, one may estimate the equilibration temperature as

TWS ≃ 2.5×1012 GeV. (3.12)

Strong sphaleron. The strong sphaleron involves both left- and right-handed quarks, which are charged

under SU(3)C. The charge vector, nSS
i , is given so that∑
i

nSS
i µi =

∑
f

(
2µQ f −µu f −µd f

)
. (3.13)

Substituting m2
D = 2g 2

3 T 2 into Eq. (3.8), we can estimate the rate per unit time-volume as

ΓSS = κSS

2
α5

3T 4 , (3.14)

where κSS ≃ 2.7×102 for T = 1013 GeV. Comparing the rate per unit time, γSS
∑

i (nSS
i )2/gi = 24ΓSS/T 3,

to the Hubble parameter, we get the equilibration temperature:

TSS ≃ 2.8×1013 GeV. (3.15)

♮16This sphaleron rate is about 1.3 times larger than the one reported in Ref. [34]. If one use the latter rate, TWS is estimated

as 1.9×1012 GeV.

16



Lepton Yukawa. In general, the lepton Yukawa is an N f ×N f matrix, Y f f ′
e . If the effect of the neutrino

mass can be neglected, one may redefine the leptons fields so that the lepton Yukawa becomes diag-

onal, i.e., (Y f f ′
e ) = diag(ye , yµ, yτ). Let us take this field basis and denote the corresponding chemical

potentials as µe f and µL f . The charge vector, nY f f
e

i , is given so that∑
i

nY f f
e

i µi =−µe f +µL f −µH . (3.16)

The rate per unit time-volume is estimated as

Γ
Y f f

e
= κYe (α2) y2

e f
T 4 , (3.17)

where we have made the dependence of κYe onα2 explicit, which arises from taking into account 2 ↔ 2

scattering processes with single gauge boson emission/absorption (among others). The prefactor κYe

is estimated in Ref. [26] as κYe (α2) ≃ 1.7×10−3. From this, we obtain the equilibration temperature of

the lepton Yukawa for each flavor:

Tye ≃ 1.1×105 GeV, Tyµ ≃ 4.7×109 GeV, Tyτ ≃ 1.3×1012 GeV, (3.18)

where we have used
∑

i (nY f f
e

i )2/gi = 7/4.

Quark Yukawa. Since there exist two N f ×N f matrices corresponding to the up-type and down-type

quark Yukawas, we cannot diagonalize them simultaneously. This is the origin of the well-known CKM

matrix which leads to flavor changing processes. At very high temperature, only the top Yukawa is

in equilibrium, and other quark Yukawa interactions start to become efficient as the Universe cools

down. As we discuss in the subsequent Sec. 3.2, special care about the quantum coherence of different

flavors is required in order to describe this process properly. As a result, we have to take an appropriate

field basis in each temperature regime. These effects have been investigated in the context of flavored

leptogenesis [35–38]. Below, let us just neglect these subtleties for the moment, and estimate a typical

size of transport coefficients.

The charge vector for the up-type quark Yukawa, nY f f ′
u

i , is given by:∑
i

nY f f ′
u

i µi =−µu f +µQ f ′ +µH . (3.19)

In an appropriate field basis of quarks, the transport coefficient is dominated by its diagonal part, which

is estimated as

Γ
Y f f

u
= κYu (α2,α3) y2

u f
T 4 , (3.20)

where κYu is again estimated in Ref. [26] as κYu (α2,α3) ≃ 1.0×10−2 for T ≃ 1012 GeV, 1.2×10−2 for T ≃
109 GeV, and 1.5×10−2 for T ≃ 106 GeV, respectively. We estimate it as κYu ≃ 8.0×10−3 for T ≃ 1015 GeV

from the running of α3. Again the dependence of κYu on α2 and α3 is made explicit. As an indicator, let

us estimate the corresponding equilibration temperature for the diagonal part:

Tyu ≃ 1.0×106 GeV, Tyc ≃ 1.2×1011 GeV, Tyt ≃ 4.7×1015 GeV, (3.21)
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where we have used
∑

i (nY f f
u

i )2/gi = 3/4. The equilibration temperature of the top Yukawa is compara-

ble to the maximal temperature allowed by the constraints on the tensor-to-scalar ratio [39].

The charge vector for the down-type quark Yukawa, n
Y f f ′

d

i , is given by:

∑
i

n
Y f f ′

d

i µi =−µd f +µQ f ′ −µH . (3.22)

Again, in an appropriate field basis, the transport coefficient is dominated by its diagonal part, which

is estimated as

Γ
Y f f

d
= κYd (α2,α3) y2

d f
T 4 , (3.23)

where κYd ≃ κYu [26]. As an indicator, we evaluate the equilibration temperature for the diagonal part:

Tyd ≃ 4.5×106 GeV, Tys ≃ 1.1×109 GeV, Tyb ≃ 1.5×1012 GeV, (3.24)

where we have used
∑

i (n
Y f f

d

i )2/gi = 3/4.

3.2 Conserved quantities and decoupling

As we have seen in the previous section, some interactions in the SM may not be efficient in the early

Universe. Therefore, we expect that the number of (approximately) conserved quantities depends on

the temperature of the ambient plasma. In Secs. 4 and 5, we discuss the generation of baryon asym-

metry around T ≳ 102 GeV and T ≳ 1013 GeV respectively. In the following, we summarize conserved

quantities for these two cases. We also mention the quantum coherence from different flavors.

T ≳≳≳ 102 GeV. At the temperature right before the electroweak phase transition, all the SM interac-

tions are in equilibrium. Without loss of generality, we can take a basis of chemical potentials so that

the transport coefficients for the up-type quark Yukawa become diagonal (Γ
Y f f ′

u
) = κYu y2

u f
T 4δ f f ′ while

those for the down-type quark Yukawa have off-diagonal elements. The unitarity of the CKM matrix

implies Γ
Y f 1

d
+Γ

Y f 2
d

+Γ
Y f 3

d
= κYd y2

d f
T 4. As can be seen from Eqs. (3.7), (3.13), (3.16), (3.19), and (3.22),

we have 17 charge vectors in this basis. Out of 17, 12 charge vectors are linearly independent since we

have the following 5 relations among the charge vectors:

nSS
i = n

Y 11
u

i +n
Y 22

u

i +n
Y 33

u

i +n
Y 11

d

i +n
Y 22

d

i +n
Y 33

d

i , n
Y 11

d

i +n
Y 22

d

i +n
Y 33

d

i = n
Y 31

d

i +n
Y 12

d

i +n
Y 23

d

i ,

n
Y 11

d

i +n
Y 22

d

i = n
Y 12

d

i +n
Y 21

d

i , n
Y 22

d

i +n
Y 33

d

i = n
Y 23

d

i +n
Y 32

d

i , n
Y 11

d

i +n
Y 33

d

i = n
Y 13

d

i +n
Y 31

d

i . (3.25)

Therefore, the charge vectors of interactions span a 12-dimensional subspace out of 16, which indi-

cates the presence of 4 conserved quantities. The 4 charge vectors orthogonal to the charge vectors of
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interactions correspond to U(1)Y , U(1)B−L , U(1)L1−L2 , U(1)L2−L3 :

(nQY

i ) =
(
−1,−1,−1,−1

2
,−1

2
,−1

2
,

2

3
,

2

3
,

2

3
,−1

3
,−1

3
,−1

3
,

1

6
,

1

6
,

1

6
,

1

2

)
,

(nQB−L

i ) =
(
−1,−1,−1,−1,−1,−1,

1

3
,

1

3
,

1

3
,

1

3
,

1

3
,

1

3
,

1

3
,

1

3
,

1

3
,0

)
,

(n
QL1−L2
i ) = (1,−1,0,1,−1,0,0,0,0,0,0,0,0,0,0,0) ,

(n
QL2−L3

i ) = (0,1,−1,0,1,−1,0,0,0,0,0,0,0,0,0,0) . (3.26)

The set of (linearly independent) 12 charge vectors and 4 conserved charge vectors (3.26) forms a com-

plete basis of the 16-dimensional chemical potential space.

T ≳≳≳1013 GeV. In Sec. 5, we discuss the B−L asymmetry generation from the dimension five Weinberg

operator, which gives the origin of the neutrino masses. Since the Weinberg operator is efficient above

T ∼ 1013 GeV, we are interested in the properties of the SM transport equation at this high temperature

regime. In this regime, many of the SM interactions are not efficient, and only the following interactions

are relevant: the top Yukawa and the strong sphaleron are efficient; the electroweak sphaleron, the

bottom and tau Yukawa are marginal.

Let us briefly mention an appropriate field basis to treat the quantum coherence from different

flavors. For T ∼ 1013 GeV, the relevant quark Yukawa interactions are only the top and bottom Yukawas,

and hence we can take a field basis of quarks which completely diagonalizes both the up/down-type

Yukawa matrices: yt u3Q3 · H and ybd 3Q3H †. Aside from these top and bottom Yukawa interactions,

no interactions distinguish different flavors. Therefore, we expect that charges for Q3, u3, and d3 in

this field basis would differ from other quarks while the charges for the first and second generation

quarks are the same. We should take this field basis since otherwise we need to take into account the

coherence of different flavors which is beyond the formalism developed in this paper as we see below.

The subtleties arise when one would like to use another field basis d ′
f which does not diagonalize the

Yukawa interactions. As an illustration, let us suppose that we take the field basis of the third generation

down-type quark where the bottom Yukawa is not diagonal, i.e., ybd 3Q3H † with d3 = ∑
f U3 f d ′

f . As

explained above, we expect a different charge density for a particular linear combination of d ′
f , i.e.,

d3 =∑
f U3 f d ′

f . Therefore we need to describe the evolution of “charges” among different flavors for d ′
f

because Qd3 =
∫
x

∑
f , f ′ U †

f 3U3 f ′d ′†
f d ′

f ′ ≡
∫
x

∑
f , f ′ U †

f 3U3 f ′Qd ′
f f ′

. Our transport equation is not applicable

to this d ′
f basis because we assume that the charge densities do not develop coherence among different

flavors. A sophisticated formalism to deal with this quantum coherence has been developed in the

context of flavored leptogenesis. See Refs. [35–38] for more details.

Now we are ready to discuss conserved quantities. As explained, in this temperature regime, the

first and second generation left-handed leptons are indistinguishable. The same statement holds for

the the first and second generation left-/right-handed quarks. One may take common chemical po-

tentials for them, i.e., µL1 = µL2 = µL12 , µQ1 = µQ2 = µQ12 , µu1 = µu2 = µu12 , and µd1 = µd2 = µd12 . The

first and second generation right-handed leptons are decoupled from all the interactions relevant for
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their asymmetry production, and hence their corresponding charges Qe f with f = 1,2 become sepa-

rately conserved quantities. Therefore, we can focus on the chemical potentials of 10 species, i.e., µi

with i = τ,L12,L3,u12, t ,d12,b,Q12,Q3, H . The multiplicity factor is given by gi = 1,4,2,6,3,6,3,12,6,4

respectively. The charge vectors of each interaction in this basis are

(nWS
i ) = (0,2,1,0,0,0,0,6,3,0) , (nSS

i ) = (0,0,0,−2,−1,−2,−1,4,2,0) , (nYτ
i ) = (−1,0,1,0,0,0,0,0,0,1) ,

(nYt

i ) = (0,0,0,0,−1,0,0,0,1,1) , (nYb

i ) = (0,0,0,0,0,0,−1,0,1,−1) . (3.27)

These linearly independent vectors span a 5-dimensional subspace out of 10. The remaining 5 vectors

orthogonal to Eq. (3.27) correspond to U(1)Y , U(1)B−L , U(1)u12−d12 , U(1)L12−2L3 , and U(1)B12−2B3 :

(nQY

i ) =
(
−1,−1

2
,−1

2
,

2

3
,

2

3
,−1

3
,−1

3
,

1

6
,

1

6
,

1

2

)
, (nQB−L

i ) =
(
−1,−1,−1,

1

3
,

1

3
,

1

3
,

1

3
,

1

3
,

1

3
,0

)
,

(n
Qu12−d12
i ) = (0,0,0,1,0,−1,0,0,0,0) , (n

QL12−2L3

i ) = (−2,1,−2,0,0,0,0,0,0,0) ,

(n
QB12−2B3

i ) =
(
0,0,0,

1

3
,−2

3
,

1

3
,−2

3
,

1

3
,−2

3
,0

)
. (3.28)

The set of 5 charge vectors (3.27) and conserved charge vectors (3.28) forms a complete basis of the

10-dimensional space of chemical potentials.

4 Spontaneous B +L-genesis before the electroweak phase transition

Since the B +L symmetry is violated by the electroweak sphaleron within the SM, it is tempting to dis-

cuss the possibility where the present-day baryon asymmetry is generated via this process. At high

temperature but below TWS, the electroweak sphaleron is efficient and could source the B +L asym-

metry. After the electroweak symmetry breaking, its rate per unit time is exponentially suppressed and

B +L becomes an approximately conserved quantity. Therefore, if we could generate the B +L asym-

metry right before the electroweak phase transition, the resulting asymmetry can explain the present

baryon density. The minimal scenario in this context is electroweak baryogenesis, which is unfortu-

nately excluded by the observed Higgs mass and the lack of the sufficient C P-violation in the CKM

matrix. However, as is known in the literature, the presence of an axion can reopen the possibility of

baryogenesis at the electroweak phase transition [19, 21, 40, 41].

In this section, we consider spontaneous B+L-genesis prior to the electroweak transition. Suppose

that the axion, which couples to the SM particles with (classically) shift symmetric couplings, has a non-

vanishing velocity around the electroweak phase transition. Though we do not specify the mechanism,

one could for instance consider the coherent axion rotation initiated by a higher dimensional explicit

breaking term [21, 42] or the onset of coherent axion oscillations. As demonstrated in Sec. 2.2, the

non-vanishing velocity of the axion biases the chemical potentials. Consequently, the B +L asymmetry

is generated by the B +L-violating electroweak sphaleron, which can account for the present baryon

density - even if the axion is not directly coupled to the electroweak sphaleron. We clarify the condition

of the coupling to the axion in order to generate the B +L asymmetry. We will see that couplings to the

20



axion which have seemingly nothing to do with B +L current, e.g., the coupling to the strong sphaleron

aGG̃ , can generate the sufficient B +L asymmetry as shown in Ref. [21].

4.1 Basic properties of the transport equation

Reduction of chemical potentials. As discussed in Sec. 3.2, all SM interactions are in equilibrium

around the electroweak phase transition. This yields four independent conserved quantities, namely

QY ,QB−L , QL1−L2 , and QL2−L3 . Since we are interested in a situation where they have no primordial

asymmetries, we have cY = cB−L = cL1−L2 = cL2−L3 = 0 [see Eq. (2.10)]. In order to reduce the number

of species in the chemical potential vectors, it is convenient to implement the last two conditions from

the beginning. If we do not have primordial asymmetries in QL1−L2 and QL2−L3 , leptons in different

flavors have the same properties.♮17 We can take common chemical potentials, i.e., µe f = µe , µL f = µL

for f = 1, · · · , N f .

As we have seen in Sec. 3.2, the charge vectors of the SM interactions involve 5 non-trivial lin-

early dependent relations among the charge vectors (3.25). If the axion couples to operators Oα̂⊥ ,

which are not involved in these relations, we can simplify the equilibrium solution (2.29) as µeq
i =∑

α̂⊥ M−1
i α̂⊥

nα̂⊥
S ȧ/ f where the actual value of the transport coefficients does not matter. On the other

hand, if the axion couples to operators involved in these relations Oα̂∥ or Oα∆ , the equilibrium solution

cannot be simplified in this way, rather we have µeq
i = ∑

α̂⊥,β̂∥,γM−1
i α̂∥
Γ−1
α̂∥β̂∥

Sβ̂∥γnγ

S ȧ/ f . Here the matrix∑
β̂∥ Γ

−1
α̂∥β̂∥

Sβ̂∥γ does depend on the actual value of the transport coefficients. This explicit dependence

should be dominated by the smallest interaction among linearly dependent relations because we have∑
β̂∥ Γ

−1
α̂∥β̂∥

Sβ̂∥γ→ δα̂∥γ once one of them is switched off. Therefore, while we need to keep a value of the

smallest transport coefficient, we can take others to be infinite at the end of computations. Since we

restrict ourselves to a quark-flavor independent axion coupling, i.e., the axion can only couple to the

entire up/down-type quark Yukawa, the relation among the strong Sphaleron and quark Yukawas in

Eq. (3.25) is quite important. The first generation up/down-type Yukawa interactions are the small-

est couplings among them. Hence, in order to estimate the equilibrium solution at leading order,

we can take common chemical potentials for the second and third generation right-handed quarks,

µu23 = µu2 = µu3 and µd23 = µd2 = µd3 , while those for the first generation take different values. More-

over, we can take µQ =µQ1 =µQ2 =µQ3 since they are related by α= Y 3 f
d and Y 2 f

d that are controlled by

the second and third generation down-type Yukawa couplings.

As a result, we can reduce the number of species in the chemical potential µi from 16 to 8 as i =
e,L,u1,u23,d1,d23,Q, H . The corresponding multiplicity factor is gi = 3,6,3,6,3,6,18,4 respectively.

♮17For a lepton-flavor dependent axion coupling, this is not the case. We restrict ourselves to a lepton-flavor independent

axion coupling throughout this paper for simplicity.
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One may readily read off the charge vectors in this basis from Eqs. (3.7), (3.13), (3.16), (3.19), and (3.22):

(nWS
i ) = (0,3,0,0,0,0,9,0) , (nSS

i ) = (0,0,−1,−2,−1,−2,6,0) , (nYe

i ) = (−1,1,0,0,0,0,0,−1) ,

(n
Yu1
i ) = (0,0,−1,0,0,0,1,1) , (n

Yu23

i ) = (0,0,0,−1,0,0,1,1) ,

(n
Yd1
i ) = (0,0,0,0,−1,0,1,−1) , (n

Yd23

i ) = (0,0,0,0,0,−1,1,−1) . (4.1)

Here we have nSS
i = n

Yu1
i +2n

Yu23

i +n
Yd1
i +2n

Yd23

i . Two conserved quantities corresponding to QY and

QB−L provide

(nQY

i ) =
(
−1,−1

2
,

2

3
,

2

3
,−1

3
,−1

3
,

1

6
,

1

2

)
, (nQB−L

i ) =
(
−1,−1,

1

3
,

1

3
,

1

3
,

1

3
,

1

3
,0

)
. (4.2)

Transport matrix. Here we provide explicit forms of matrices Γα̂β̂ and Sα̂β that are useful in obtaining

equilibrium solution. Throughout this section, we choose the complete basis of the charge vectors for

interactions as nα̂
i with α̂ = WS,Ye ,SS,Yu23 ,Yd1 ,Yd23 . Together with n A

i with A = QY ,QB−L , they form a

complete basis, and it is straightforward to compute its dual basis n̄X
i . From this, we obtain the inverse

matrix of MX i in Eq. (2.28) as

(M−1
i X ) =



22
237 − 55

79 − 13
79 0 15

79
30
79 − 5

79 − 3
79

25
237

33
158 − 4

79 0 − 9
158 − 9

79
3

158 − 7
79

7
79 − 13

79 − 206
237 2 61

79
122
79

6
79 − 5

237
7

79 − 13
79

31
237 −1 − 18

79 − 36
79

6
79 − 5

237
5

79
2

79 − 23
237 0 − 58

79
42
79 − 7

79
19

237
5

79
2

79 − 23
237 0 21

79 − 37
79 − 7

79
19

237
6

79 − 11
158

4
237 0 3

158
3

79 − 1
158

7
237

1
79 − 15

158
9

79 0 − 39
158 − 39

79
13

158 − 4
79


, (4.3)

and also transport matrices Γα̂β̂ and Sα̂β in Eq. (2.26) as

(Γ
α̂β̂

) =



ΓWS
ΓYe

ΓSS +ΓYu1
−2ΓYu1

−ΓYu1
−2ΓYu1

−2ΓYu1
4ΓYu1

+ΓYu23
2ΓYu1

4ΓYu1
−ΓYu1

2ΓYu1
ΓYd1

+ΓYu1
2ΓYu1

−2ΓYu1
4ΓYu1

2ΓYu1
ΓYd23

+4ΓYu1


, (Sα̂β) =



ΓWS
ΓYe

ΓSS ΓYu1
ΓYu23

−2ΓYu1
ΓYd1

−ΓYu1
ΓYd23

−2ΓYu1


.

(4.4)

Here ΓYu23
and ΓYd23

in this matrix may be expressed as functions of ΓYu f
and ΓYd f

with f = 2,3 because

we have taken common chemical potentials for the second and third generation right-handed quarks.

As explained, the actual values of the transport coefficients only matter if the axion couples to an oper-

ator whose charge vector belongs to the set of linearly dependent charge vectors. Moreover, to evaluate

the equilibrium solution at leading order in this case, we only need to keep the smallest interactions to

be finite while taking the others to infinity at the end of the computation. Therefore, the precise values

of ΓYu23
and ΓYd23

are not important as long as ΓYu1
,ΓYd1

≪ ΓYu23
,ΓYd23

, which is always fulfilled in our

case because of yu1 , yd1 ≪ yu2 , yu3 , yd2 , yu3 . One can check this explicitly starting from the full 16×16

matrices and taking yu1 , yd1 ≪ yu2 , yu3 , yd2 , yu3 at the end of the computation.
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4.2 Equilibrium solution including the axion

Now we are ready to discuss the equilibrium solution for the chemical potentials µi in the presence

of an axion with non-vanishing ȧ. From this, we get the condition of the axion coupling in order to

generate a baryon asymmetry. We also discuss the condition so that the axion is not stopped by the

backreaction.

Condition for baryogenesis. The B +L asymmetry is given by

qB+L =µB+L
T 2

6
with µB+L = 3

(
µe +2µL

)+µu1 +µd1 +2
(
µu23 +µd23

)+6µQ . (4.5)

The equilibrium solution for the chemical potentials µi is given by Eq. (2.29), with the matrices Mi X ,

Γα̂β̂ and Sα̂β given in Eqs. (4.3) and (4.4). Let’s suppose for simplicity that we do not have any primor-

dial asymmetries for qy or qB−L , i.e., cQy = cQB−L = 0. The baryon asymmetry can thus be expressed as

a linear combination of the source terms appearing on the right-hand side of Eq. (2.28), incorporating

the couplings to the axion. A non-zero baryon asymmetry is generated as long as the source vector is

not orthogonal to the direction in α-space which is subject to baryon number changing interactions,

as derived in Eq. (2.32). As mentioned, we assume that the axion couples to the SM particles in a flavor

independent way, which means that the source vectors fulfill nYu
S = n

Yu1
S = n

Yu23
S and nYd

S = n
Yd1
S = n

Yd23
S .

Inserting the expressions in Eqs. (4.3) and (4.4) we obtain the condition for generating a B +L asymme-

try: (
nWS

S ,nYe
S ,nSS

S ,nYd
S ,nYu

S

)
̸⊥ vB+L

γ (4.6)

with

vB+L
γ ≃ 6

79

(
24,−22,

−3(7ΓYd1
+5ΓYu1

)

ΓYu1
+ΓYd1

,
18ΓYd1

ΓYu1
+ΓYd1

,
−18ΓYu1

ΓYu1
+ΓYd1

)
(4.7)

The appearance of the interaction rates for the strong sphaleron and up/down-type Yukawas in the last

three entries in the first line is due to the linear dependence between the respective charge vectors,

as discussed above. Here we have used the fact that ΓYu1
,ΓYd1

≪ ΓSS,ΓYu23
,ΓYd23

. From Eq. (2.31), the

equilibrium solution for the B +L asymmetry is now immediately obtained as

µ
eq
B+L =∑

γ
vB+L
γ nγ

S

ȧ

f
. (4.8)

To give some concrete examples, the coupling to the electroweak sphaleron, (nα
S ) = (1,0,0,0,0), or

a direct coupling to the B +L current [see below Eq. (2.22)],

(nα
S ) =∑

i
nQB+L

i (nα
i )

= (nα
e )+ (nα

L )+ 1

3
(nα

u +nα
d +nα

Q ) = (6,0,0,0,0) , (4.9)
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clearly satisfy the condition for generating a baryon asymmetry. This is not surprising since both oper-

ators violate B +L. By performing a B +L rotation of the SM fermions, the coupling to the electroweak

sphaleron can be rewritten as the coupling to the B +L current. The above two charge vectors nα
S coin-

cide up to an overall factor reflecting the invariance under this field rotation.

According to the condition above, a coupling to the strong sphaleron (nα
S ) = (0,0,1,0,0), the lepton

Yukawa (nα
S ) = (0,1,0,0,0), and the up/down-type quark Yukawas (nα

S ) = (0,0,0,0,1), (0,0,0,1,0) will

also generate a baryon asymmetry. The coupling to the strong sphaleron aGG̃ is particularly interesting

because it is present in QCD axion models. These examples are more surprising since these operators

do not violate B +L. However, they generate an asymmetry for the left-handed leptons/quarks, which

can then be converted into a baryon asymmetry by the electroweak sphaleron.

More generally, this result explicitly demonstrates that a generic shift-symmetric coupling of an

axion to SM particles typically generates a baryon asymmetry - in fact there is only one particular linear

combinations of operators which, when coupled to the axion, does not source a baryon asymmetry.

This is because, unless we choose a very specific coupling such that the electroweak sphaleron is not

involved in achieving the equilibrium with ȧ ̸= 0, the baryon asymmetry is generated. Since there

is no reason for this specific coupling to be realized, we conclude that the generation of the baryon

asymmetry is a generic consequence of the axion coupling to the SM particles if the homogeneous

axion velocity is non-vanishing at the electroweak phase transition.

Backreaction to the axion. Let us briefly discuss the effective friction term (2.36) for the axion.♮18

As shown in Eq. (2.37), the effective friction term vanishes identically if the axion couples to the the

electroweak Chern-Simons term or the lepton Yukawa:

γeff
a,WS = γeff

a,Ye
= 0. (4.10)

On the other hand, the charge vectors for the strong sphaleron and the up/down-type quark Yukawas

are linearly dependent: nSS
i = n

Yu1
i +2n

Yu23

i +n
Yd1
i +2n

Yd23

i . Hence, if the axion couples to these operators,

the effective friction term becomes non-zero (for γeff
a,SS see also Ref. [21, 23]):

γeff
a,SS ≃

1

f 2T

1

Γ−1
Yu1

+Γ−1
Yd1

, γeff
a,Yu

= γeff
a,Yd

≃ 1

f 2T

9

Γ−1
Yu1

+Γ−1
Yd1

. (4.11)

Here again we have used ΓYu1
,ΓYd1

≪ ΓSS,ΓYu23
,ΓYd23

. One can see that all of them have a similar value,

i.e., γeff
a,SS ∼ γeff

a,Yu/d
∼ κYu y2

uT 3/ f 2. By comparing it with the Hubble parameter, we get the following

condition for neglecting the backreaction:

f 2

T
≳ 106 GeV. (4.12)

Restricting the discussion to below the Peccei-Quinn breaking scale, T / f ≲ 1, this implies that the

backreaction can be neglected for f ≳ 106 GeV.

♮18Throughout this paper, we assume that the SM particles are in equilibrium. This, however, implicitly assumes that the

tachyonic instability of the gauge field via the Chern-Simons coupling aW W̃ is suppressed. In our case, this assumption is

fulfilled because the typical axion velocity we have in mind is small, ȧ/ f T ∼ 10−10, and the non-abelian gauge field acquires

the magnetic mass term from the ambient plasma (see e.g. [43]).
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5 Spontaneous B −L-genesis around the reheating epoch

In this section, we consider an example of spontaneous baryogenesis at T ∼ 1013 GeV, i.e., during a

much earlier epoch than the previous example in Sec. 4. It is well-known that the SM left-handed neu-

trinos are massive, which cannot be explained within the dimension four operators of the SM. A simple

way to explain the neutrino masses is to introduce the dimension five Weinberg operator (suppressing

species indices) as

Lν =− mν

2v2
EW

(L ·H)2 +H.c. , (5.1)

where mν is the mass of the left-handed neutrino and vEW ≃ 174GeV is the Higgs vacuum expecta-

tion value. This operator provides effective masses for the left-handed neutrinos after the electroweak

symmetry breaking, and may be obtained from integrating out heavy right-handed neutrinos. Being

a dimension five operator, the Weinberg operator becomes more effective at high temperatures. As it

violates lepton number, it (with the help of an axion) can be a source of B −L asymmetry in the early

universe.

An overview of our B−L-genesis scenario in this section is as follows. We introduce an axion and its

shift symmetric coupling to the SM sector, e.g., aW W̃ or aGG̃ . Suppose that the axion develops a non-

vanishing velocity before the Weinberg operator decouples from equilibrium. The chemical potentials

for the SM particles are then biased toward nonzero values via the shift-symmetric couplings. As a

result, a B−L asymmetry is generated by the lepton number violating Weinberg operator. As we will see

shortly, the lepton number violating interaction decouples at the temperature of order 1013 GeV. If the

axion keeps moving until this moment, the produced B −L asymmetry is never washed out afterwards,

and is eventually converted to the baryon asymmetry of the present universe.

More explicitly, the baryon asymmetry in the present-day Universe, YB (= 9×10−11 from observa-

tion [44]), is given in terms of the final B −L asymmetry as

YB = qB

s
= T 3

6 s

µB

T
= CsphT 3

6 s

µB−L

T
≃ 10−3 µB−L

T
(5.2)

where s = 2π2/45g∗T 3 denotes the entropy of the thermal bath with g∗,0 = 106.75 counting the effective

degrees of freedom, and Csph = 28/79 indicates the sphaleron conversion factor translating the B −L

asymmetry into a baryon asymmetry at the electroweak phase transition.

In this section, we compute the resulting B−L asymmetry well after the decoupling of the Weinberg

operator. We also clarify the condition of the coupling to the axion so that the B − L asymmetry is

generated. We will see, for instance, the coupling to the strong sphaleron, which at first glance has

nothing to do with B −L or B +L charges, can produce a sufficient B −L asymmetry.

5.1 Transport equation including the Weinberg operator

Weinberg operator. Here we summarize the basic properties of the Weinberg operator (5.1). We as-

sume that it is flavor-universal for simplicity. Then the rate per unit volume is also flavor-blind and is
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estimated as

ΓW = κW
m2
νT 6

v4
EW

. (5.3)

where κW ∼ 3× 10−3. We define the decoupling temperature of the lepton number violating process

mediated by the flavor-universal Weinberg operator, TW, by looking at the coefficient of the transport

equation for the total lepton number density:

− d

dlnT

(
2
µL1 +µL2 +µL3

3T
−2

µH

T

)
=−∑

i

1

gi

(
nW

i

)2 3γW

H

(
2
µL1 +µL2 +µL3

3T
−2

µH

T

)
+ . . . , (5.4)

We thus define the decoupling temperature by 5γW = H . It is calculated as

TW ≃ 6×1012 GeV×
(

0.05eV

mν

)2

. (5.5)

Note that the lepton number violating interaction is in thermal equilibrium when the temperature is

higher than TW. On the other hand, the other (SM) interactions α (the sphalerons and the Yukawa

interactions) are in thermal equilibrium when the temperature is lower than Tα. This is the reason why

we refer to TW as the decoupling temperature as opposed to the term equilibration temperature used

for the other interactions.

Transport equation. We are interested in the transport equation around the temperature of T ∼ TW ∼
1013 GeV. As we discussed in Sec. 3.2, we can focus on the chemical potentials of 10 species at such a

high temperature„ i.e., µi with i = τ,L12,L3,u12, t ,d12,b,Q12,Q3, H . We further assume that there is no

initial charge asymmetry between u12 and d12, or cu12−d12 = 0, in this section. It allows us to combine

u12 and d12 as q12. In summary, the chemical potentials of our interest are µi with

i = τ, L12, L3, q12, t , b, Q12, Q3, H , (5.6)

and the multiplicity factor is gi = 1,4,2,12,3,3,12,6,4 respectively. The charge vectors of the relevant

interactions are♮19

(nWS
i ) = (0,2,1,0,0,0,6,3,0) , (nSS

i ) = (0,0,0,−4,−1,−1,4,2,0) , (nYτ
i ) = (−1,0,1,0,0,0,0,0,1) ,

(nYt

i ) = (0,0,0,0,−1,0,0,1,1) , (nYb

i ) = (0,0,0,0,0,−1,0,1,−1) ,

(nW12
i ) = (0,2,0,0,0,0,0,0,2) , (nW3

i ) = (0,0,2,0,0,0,0,0,2). (5.7)

These linearly independent vectors span a 7-dimensional subspace out of 9. Note that all the charge

vectors nα
i are linearly independent, and hence the axion does not have any friction term in equilib-

rium. The remaining 2 vectors orthogonal to Eq. (5.7) correspond to U(1)Y and U(1)B12−2B3 :

(nQY

i ) =
(
−1,−1

2
,−1

2
,

1

6
,

2

3
,−1

3
,

1

6
,

1

6
,

1

2

)
, (n

QB12−2B3

i ) =
(
0,0,0,

1

3
,−2

3
,−2

3
,

1

3
,−2

3
,0

)
. (5.8)

♮19We should note that there are three lepton number violating interactions though we combine two of them into a single

charge vector nW12
i . The interaction rate should be then given by ΓW12 = 2ΓW3 = 2ΓW.
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These vectors form a complete basis of the 9-dimensional chemical potential space. Here that U (1)B−L

is no longer a conserved charge because of the Weinberg operator. The transport equation of our sys-

tem is given by Eq. (3.4), which we show here again for reader’s convenience:

− d

dlnT

(µi

T

)
=− 1

gi

∑
α

nα
i
γα

H

[∑
j

nα
j

(µ j

T

)
−nα

S

(
ȧ/ f

T

)]
, (5.9)

with the charge vectors nα
i defined above.

Since the bottom/tau Yukawa couplings and the electroweak sphaleron are only marginally relevant

at T ∼ 1013 GeV, we may further ignore them when we discuss the equilibrium solutions in Sec. 5.2.

These interactions are however fully included in our numerical results in Secs. 5.3 and 5.4.

5.2 Equilibrium solution including the axion

In this subsection, we discuss the equilibrium solution to get a rough idea of the B − L asymmetry

generation in our system. Our primary goal here is to derive a condition for the axion source vector nα
S

to obtain a non-zero B −L asymmetry in equilibrium.

In this subsection, we ignore the bottom and tau Yukawa interactions in order to simplify our anal-

ysis. The right-handed tau lepton τ then plays no role and hence we omit it. The right-handed bottom

quark b can be combined with q12 (we denote them as q) by assuming that there is no initial asymme-

try between b and q12. We can also combine L12 and L3 as L by again assuming that there is no initial

asymmetry between them, since we take the lepton number violating process as flavor-universal. Thus,

the chemical potentials of our interest reduce to µi with

i = L, q, t , Q12, Q3, H , (5.10)

and the multiplicity factors are gi = 6,15,3,12,6,4 respectively. The charge vectors of the relevant in-

teractions are

(nWS
i ) = (3,0,0,6,3,0) , (nSS

i ) = (0,−5,−1,4,2,0) ,

(nYt

i ) = (0,0,−1,0,1,1) , (nW
i ) = (2,0,0,0,0,2), (5.11)

and the conserved charges are QY and QB12−2B3 with their charge vectors

(nQY

i ) =
(
−1

2
,

1

15
,

2

3
,

1

6
,

1

6
,

1

2

)
, (n

QB12−2B3

i ) =
(
0,

2

15
,−2

3
,

1

3
,−2

3
,0

)
. (5.12)

As the electroweak sphaleron is only marginally relevant, we may further ignore it. In such a case the

baryon number QB is also conserved, whose charge vector is

nQB

i =
(
0,

1

3
,

1

3
,

1

3
,

1

3
,0

)
. (5.13)

The B −L charge vector in this basis is expressed as

nQB−L

i =
(
−1,

1

3
,

1

3
,

1

3
,

1

3
,0

)
. (5.14)
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In this case, all the charge vectors of the interactions are linearly independent, and hence we can di-

rectly apply Eq. (2.33) as a condition for the source vector nα
S to generate a non-zero B −L asymmetry.

The condition reads

(nWS
S ,nSS

S ,nYt
S ,nW

S ) ̸⊥ 1

174
(92,−114,270,−345), (5.15)

if the electroweak sphaleron is in equilibrium, and

(nSS
S ,nYt

S ,nW
S ) ̸⊥ 3

44
(−3,18,−23), (5.16)

if the electroweak sphaleron is decoupled, respectively. Accordingly, the B −L asymmetry is given by

µ
eq
B−L

T
=

(
46

87
nWS

S − 19

29
nSS

S + 45

29
nYt

S − 115

58
nW

S

)
ȧ/ f

T
, (5.17)

if the electroweak sphaleron is in equilibrium, and

µ
eq
B−L

T
=

(
− 9

44
nSS

S + 27

22
nYt

S − 69

44
nW

S

)
ȧ/ f

T
, (5.18)

if the electroweak sphaleron is out of equilibrium, respectively. Here we have assumed cY = cB12−2B3 = 0

for the former case and cY = cB12−2B3 = cB = 0 for the latter case.

The conditions (5.15) and (5.16) tell us that, in the presence of the Weinberg operator, it is difficult

not to produce the B −L asymmetry once the axion has shift-symmetric couplings to the SM particles

which are relevant at that temperature. In order not to produce the B −L asymmetry, the axion has to

couple to the operators in a specific form such that its source vector is orthogonal to the right hand

side of Eq. (5.15) or (5.16). There is no reason for this to be the case, and hence we conclude that

the generation of the B −L asymmetry is a rather generic consequence of the axion shift-symmetric

couplings to the SM particles if the homogeneous axion velocity is non-vanishing around 1013 GeV.

So far we have studied the equilibrium solutions. In the next section, we study three concrete sce-

narios numerically, without assuming equilibrium. First, we study the scenario that the axion couples

to the divergence of the B−L current, a scenario often considered in the context of spontaneous baryo-

genesis.♮20 Second, we study the coupling aW W̃ , which is also studied in Refs. [16, 18, 20]. As one can

see from Eq. (5.15), it can produce the B−L asymmetry if the electroweak sphaleron is efficient enough.

In reality, however, the electroweak sphaleron is only marginally relevant when the Weinberg operator

is efficient (or T ≳ 1013 GeV). Thus, the resultant B −L asymmetry is expected to be suppressed com-

pared to the above estimation based on the full equilibration of the electroweak sphaleron. We will

study this suppression factor numerically below. We also clarify an issue in Refs. [16,18] and its relation

to the basis independence. Finally, we study the coupling aGG̃ , which might be the most non-trivial

♮20Here we consider the B −L current, not the lepton current, to match with Ref. [16], which does not incorporate the elec-

troweak sphaleron in the transport equation. We have numerically checked, however, that the final B−L asymmetry is almost

the same for these two cases (the lepton current case tends to be slightly more suppressed). This is because the axion directly

couples to the Weinberg operator in both cases which gives the dominant source of the B −L asymmetry generation.
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scenario. We can see from Eqs. (5.15) and (5.16) that a nonzero B −L asymmetry is generated even if

the axion couples only to the strong sphaleron or the top Yukawa coupling, which by them self cannot

generate baryon nor lepton asymmetry. Below we numerically confirm that it is also the case without

assuming equilibrium.

5.3 Numerical results

Now we study the B −L-genesis at T ∼ 1013 GeV by solving the full transport equation (5.9) numerically.

Although we have ignored the bottom and tau Yukawa interactions in the previous Sec. 5.2, we fully

take them into account in our numerical code. Thus the chemical potentials of our interest are µi with

i = τ, L12, L3, q12, t , b, Q12, Q3, H , (5.19)

and we have solved the transport equation (5.9) for them by assuming that there is no asymmetry at

the end of the reheating,

µi (T = TR ) = 0, (5.20)

where TR is the reheating temperature.

The axion acts as an external force in Eq. (5.9). We consider two types of the axion dynamics. For

the first case, we simply take

ȧ/ f

T
= η0, (5.21)

with η0 being a constant. We also consider a more realistic case that the axion starts to oscillate har-

monically around its potential minimum at T = Tosc, and decays at T = Tdec. An oscillating scalar field

scales as

φ̇= v(t )sin
(
mφt

)
, v̇ =−3H

2
v. (5.22)

Therefore, we parametrize the axion dynamics assuming radiation domination as

ȧ/ f

T
= η0

(
T

Tosc

)1/2

sin

[(
Tosc

T

)2

−1

]
Θ [(Tosc −T ) (T −Tdec)] , (5.23)

where we have taken the axion mass as ma = 2H(T = Tosc) and Θ is the Heaviside theta function. Here

η0 parametrizes the initial velocity of the axion. The final B −L asymmetry is proportional to η0 since

the transport equation is linear. Note that Tosc ≳ TW ≳ Tdec is needed for the B −L-genesis since other-

wise either the produced asymmetry is washed out after the axion decay (for Tdec ≫ TW ), or no asym-

metry is produced (for Tosc ≪ TW ).

Below we show our numerical results of the resulting B −L asymmetry for three shift-symmetric

couplings: a∂µ JµB−L where JµB−L is the B−L current, aW W̃ and aGG̃ . Since the lepton number violating

process is well-decoupled at the end of our numerical computation (that is T = 1010 GeV), it can be

directly translated to the baryon asymmetry in the present universe. We fix TR and η0 as

TR = 1015 GeV, η0 = 10−9 , (5.24)
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and the SM parameters as

g2 = 0.55, g3 = 0.60, yτ = 1.0×10−2 yt = 0.49, yb = 6.8×10−3 , mν = 0.05eV, (5.25)

in our numerical results below. For the oscillating axion case, we fix the model parameters as

Tosc = 1013 GeV, Tdec = 1011 GeV, (5.26)

in this subsection. The dependence of the final B −L asymmetry on these parameters is studied in the

next subsection.

B−L current. First, we consider the shift-symmetric coupling to the B −L current: (a/ f )∂µ JµB−L .

This type of coupling is probably most common in the context of the spontaneous baryogenesis, since

it can be understood as a pure shift of the chemical potential of the lepton number charge as we saw in

Sec. 2.2. The purpose to study this coupling here is two-fold. First, we demonstrate how our formalism

applies to this most common example. Second, we highlight a difference between this coupling and

the coupling to the electroweak sphaleron aW W̃ , which we study next.

Since this coupling shifts the chemical potential of the quarks and leptons, the axion source vector

is given by

nα
S =∑

i
nQB−L

i nα
i =−nα

τ −nα
L12

−nα
L3
+ 1

3

(
nα

q12
+nα

t +nα
b +nα

Q12
+nα

Q3

)
. (5.27)

From Eq. (5.7), it is given as

(nα
S ) = (0,0,0,0,0,−2,−2), (5.28)

where the ordering of the interactions isα= WS,SS,Yτ,Yt ,Yb ,W12,W3. Note that it has non-zero entries

only for the Weinberg operators. This is due to the fact that they are the interactions that violate the

B −L symmetry, and hence enter into the B −L current equation. With this information, we can solve

Eq. (5.9) numerically. The results are shown in the left panel of Fig. 3. We can see from Eq. (5.2) that for

parameters in the ball-park of Eq. (5.24), a sufficient amount of the B −L asymmetry is produced from

this coupling.

Electroweak sphaleron. Next, we consider the shift-symmetric coupling to the electroweak sphaleron:

(a/ f )W W̃ . The axion source vector in this case is given by

nα
S = (1,0,0,0,0,0,0), (5.29)

where the ordering of the interactions is α= WS,SS,Yτ,Yt ,Yb ,W12,W3.

We show our numerical result in the right panel of Fig. 3. It can be seen that, although this coupling

can produce the B −L asymmetry, the amount of the B −L asymmetry is quite different from the cou-

pling to the B −L current. In particular, the final B −L asymmetry is suppressed by O (10) (notice the

different y-axis normalizations n the two panels of Fig. 3) for both the constant case and the oscillation
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ȧ/fT : constant
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Figure 3: The time evolution of the B −L asymmetry produced from the shift-symmetric coupling (a/ f )∂µ J
µ
B−L (left panel)

and (a/ f )W W̃ (right panel) for constant ȧ/( f T ) (solid) and oscillating ȧ/( f T ) (dashed).

case with Tosc = 1013 GeV and Tdec = 1011 GeV. This suppression can be understood as follows. The

Weinberg operator is only the source of the B −L violation in our scenario, and hence it has to be effec-

tive to produce the B −L asymmetry. At the same time, the axion source term which in the current case

is the electroweak sphaleron has to be effective to produce the B −L asymmetry. As we saw in Secs. 3.1

and 5.1, however, the latter is at most only marginally relevant when the former is effective and vice

versa, resulting in the suppression of the resulting B −L asymmetry.

Here we comment on Ref. [16]. They started from the same coupling (a/ f )W W̃ as we do. They

performed a chiral rotation of the leptons to remove this anomalous coupling, and wrote down the

Boltzmann equation by assuming that the chemical potential of the lepton number charge is biased by

the axion in the rotated basis. This treatment is, however, not entirely correct in the presence of the

Weinberg operator, since the operators W W̃ and the divergence of the lepton current are equivalent

only when there is no additional source of the lepton number violation.♮21 In other words, once one

performs a chiral rotation to remove the anomalous coupling, the axion couples both to the lepton

current and the Weinberg operator. Its couplings are such that the final expression of the source vector

is still Eq. (5.29), i.e., the same as the original coupling (a/ f )W W̃ , which follows from our general proof

of the basis independence in Sec. 2.2. Thus, the coupling (a/ f )W W̃ should not be interpreted as a

pure shift of the chemical potential of the lepton number charge. This subtlety is of phenomenological

importance since the final B −L asymmetry can be quite different in the case of (a/ f )W W̃ compared

to, e.g., (a/ f )∂µ JµB−L , particularly for the case in which the weak sphaleron is only marginally relevant

at the decoupling of the B −L violating process as we saw above.

In a similar spirit, it was noted in Ref. [18] that there can be a strong suppression in baryon asym-

metry for the case in which the weak sphaleron is not efficient at the decoupling of the B −L violating

process. By using the same chiral rotation as Ref. [16] and discussing spontaneous baryogenesis, it was

♮21This was also noted in Ref. [45], based on explicitly examining the Boltzmann equations in these two particular field bases.

In our formalism, this invariance is automatic for any basis transformations by definition as we have shown.
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Figure 4: The time evolution of the B − L asymmetry produced from the shift-symmetric coupling (a/ f )GG̃ for constant

ȧ/( f T ) (solid) and oscillating ȧ/( f T ) (dashed).

argued that this chiral rotation should not be performed if the weak sphaleron is not efficient. Here

we emphasize that one can however always perform the chiral rotation without specifying a state with

which one takes an expectation value. As the transport equation is basis independent, a non-vanishing

velocity of the axion just biases the weak sphaleron after we perform the chiral rotation completely.

To understand whether this bias on the weak sphaleron in the B +L current is transferred to the B −L

asymmetry, we need to know how all the relevant SM interactions are involved in attaining equilibrium

with ȧ ̸= 0, and hence the chiral rotation, which leaves the transport equation unchanged, does not

help us to understand this property.

Strong sphaleron. Finally we consider the axion coupling to the strong sphaleron: (a/ f )GG̃ . The

axion source vector in this case is given by

nα
S = (0,1,0,0,0,0,0), (5.30)

where the ordering of the interactions is α= WS,SS,Yτ,Yt ,Yb ,W12,W3.

In Fig. 4, we show our numerical result. A sizable amount of the B − L asymmetry can be pro-

duced from the coupling to the strong sphaleron. At first sight, it might be surprising since the strong

sphaleron has nothing to do with the B −L nor B +L symmetry. It is nevertheless easily understood

as follows. First of all, we have to use the Weinberg operator to create the B −L asymmetry since it is

the only source of B −L violation. Since the Higgs and the leptons are involved in the Weinberg op-

erator, the chemical potentials of the Higgs and/or the leptons have to be biased to create the B −L

asymmetry. In our case, the axion coupling (a/ f )GG̃ first introduces a bias to the chemical potentials

of the quarks. This bias in the quark sector can be transferred into the Higgs sector by, e.g., the top and

bottom Yukawa couplings, and the lepton sector by, e.g. the electroweak sphaleron. Once the Higgs

and/or the leptons have a bias in their chemical potentials, the B −L asymmetry is created through the

lepton number violating process. In short, a bias in a certain sector is eventually transferred to all the
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Figure 5: The final B −L asymmetry produced for different values of the axion decay temperature Tdec. The axion oscillation

temperature is taken as Tosc = 1013 GeV in the left panel, and Tosc = 1014 GeV in the right panel.

other sectors once we have a sufficient variety of the interactions. It is essentially what we have seen in

Sec. 5.2.

5.4 Dependence on axion model parameters

In the previous Sec. 5.3, we have fixed the axion model parameters as Tosc = 1013 GeV and Tdec =
1011 GeV. In this subsection, we briefly discuss the dependence of the final B −L asymmetry on these

parameters.

Dependence on axion decay temperature. First we study the dependence of the final B −L asymme-

try on the axion decay temperature Tdec. In Fig. 5, we plot the final B −L asymmetry for different values

of Tdec. The axion oscillation temperature is Tosc = 1013 GeV in the left panel, and Tosc = 1014 GeV in the

right panel, respectively.

As is clear from the figure, the final B −L asymmetry does not depend on Tdec for Tdec ≲ 1013 GeV.

This is reasonable since the lepton number violating process decouples around this temperature, and

the B −L asymmetry is conserved irrespective of the axion dynamics afterwards. For Tdec ≳ 1013 GeV,

the final B−L asymmetry is an oscillating function of Tdec, following the axion oscillation. In particular,

not only the first oscillation but also the later oscillations affect the final B −L asymmetry, especially

for the coupling a∂µ JµB−L with Tosc = 1014 GeV. This is because, in this case, the axion dynamics is

directly coupled to the lepton number violating process that is quite effective at high temperatures

and hence the chemical potentials can track (part of) the axion oscillations. Nevertheless, the final

B − L asymmetry on average is within roughly an order of magnitude from the asymptotic value for

Tdec ≪ 1013 GeV.

Dependence on axion oscillation temperature. Next we study the dependence of the final B − L

asymmetry on the axion oscillation temperature Tosc. In Fig. 6, we plot the final B−L asymmetry for dif-
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Figure 6: The final B −L asymmetry produced for different values of the axion oscillation temperature Tosc. The axion decay

temperature is taken as Tdec = 1011 GeV.

ferent values of Tosc. We focus on the asymptotic value of the final B−L asymmetry for Tdec ≪ 1013 GeV

here, and hence the axion decay temperature is taken as Tdec = 1011 GeV.

We can roughly divide the parameter space into two regimes: Tosc ≲ 1013 GeV and Tosc ≳ 1013 GeV.

In the former regime, Tosc ≲ 1013 GeV, the final B −L asymmetry is an increasing function of Tosc. This

is understood from the fact that the lepton number violating process decouples at T ∼ TW ∼ 1013 GeV,

and hence its effect is suppressed by γW /H afterwards. Indeed, the B −L asymmetry depends roughly

linearly on Tosc in this regime, which is consistent with the above reasoning since γW /H ∝ T . In the

latter regime, Tosc ≳ 1013 GeV, the final B −L asymmetry is a decreasing function of Tosc. This property

is easy to understand for the couplings aW W̃ and aGG̃ since these interactions are not in equilibrium,

and hence the produced B −L asymmetry is suppressed by γWS/H and γSS/H for the first oscillation in

this regime. A larger value of Tosc (for fixed η0) thus translates to a smaller value of the axion velocity

when the axion couplings become effective. The situation is more tricky for the coupling a∂µ JµB−L . In

this case, the axion source term is effective even for the first oscillation since the axion directly couples

to the lepton number violating process that is more effective for higher temperature. Still, the final B−L

asymmetry is suppressed for a larger value of Tosc. This is because the interaction is strong enough

so that µB−L follows (part of) the axion dynamics, as one can also anticipate from the right panel of

Fig. 5. Since the axion oscillates a lot, the produced B −L asymmetry is cancelled in the course of the

oscillation, resulting in the suppression shown in Fig. 6.

6 Conclusion

Axion-like particles not only solves the strong C P problem but also has an ability to account for several

cosmological issues such as inflation, the dark matter, and the baryon asymmetry of the universe. In

particular, the axion(-like particle) is likely to be in a motion in the early universe, providing a source

of the C PT symmetry violation. If the axion is coupled to the SM, this C PT violation is transferred to
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the SM sector and, with the help of a baryon number violating process, can be the origin of the baryon

asymmetry of the present universe, referred to as spontaneous baryogenesis [12, 13]. In this paper,

we have developed a formalism that systematically accounts for spontaneous baryogenesis by an ax-

ion with general (classically) shift-symmetric couplings to the SM sector. It consists of charge vectors

nα
i that characterize charges of particles that are involved in a given operator Oα, and a source vector

nα
S that encodes couplings of the axion to the operators Oα. Assuming thermal equilibrium, the final

baryon asymmetry is obtained by solving simple linear algebraic equations [see Eq. (2.31)]. Our formal-

ism is also ready for numerical implementation so that the final baryon asymmetry is easily computed

even without assuming equilibrium [see Eq. (3.4)]. Equipped with this formalism, we have revealed

several aspects of spontaneous baryogenesis on both the theoretical and the phenomenological side.

On the theoretical side, we have shown that the transport equation and hence the final baryon

asymmetry are invariant under a field rotation involving the axion (see Sec 2.2). The explicit form of

the axion coupling depends on the choice of the field basis. For instance, an anomalous coupling to the

SU(2) Chern-Simons term, aW W̃ , can be eliminated by a chiral rotation of the leptons. The axion then

couples to the divergence of the lepton current, a∂µ JµL , and (if present) to other lepton number violat-

ing operators such as the dimension-five Weinberg operator (L ·H)2. Since the chiral rotation is merely

a field redefinition, physical quantities should not depend on the choice of this field basis, which is

automatically satisfied in our formalism. Here we emphasize that the basis independence is not just

an academic exercise. Without accounting for this properly, one may be lead to a wrong estimation of

the final baryon asymmetry. For instance, one may be tempted to regard the coupling aW W̃ just as a

chemical potential of lepton number by a chiral rotation. This is, however, not appropriate in the pres-

ence of the Weinberg operator, since the axion also couples to the Weinberg operator after the chiral

rotation. Taking into account all the axion couplings properly which appear after this chiral rotation,

one ends up with exactly the same transport equation as originally obtained with just the aW W̃ cou-

pling. This demonstrates that the field redefinition never helps to understand the dynamical of spon-

taneous baryogenesis because it does not change the governing equation, namely transport equation.

As a result, we find the final baryon asymmetry originating from the coupling aW W̃ (in the presence

of the Weinberg operator) to be an order of magnitude smaller than the baryon asymmetry obtained

for a coupling to the lepton current if the weak sphaleron is only marginally efficient at the decou-

pling of the lepton number violating process (see Sec. 5.3). Since our formalism is basis-independent,

it automatically takes into account this sort of subtleties.

We have also discussed the backreaction of the SM processes to the dynamics of the axion. The

axion coupling to the SM operator may act as a friction term in the axion equation of motion, slowing

and eventually stopping the motion of the axion. In Sec. 2.3, we have derived a condition under which

the axion friction term identically vanishes. The condition essentially states that the friction term van-

ishes if one can define a new conserved charge from a combination of the axion shift symmetry and

the fermion rotation [see Eq. (2.37) for its precise definition]. The parameter space of the axion to ob-

tain the correct amount of the baryon asymmetry is less restricted if this condition is met, although a

non-zero friction term does not necessarily spoil the spontaneous baryogenesis.
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On the phenomenological side, we have derived a condition for the axion couplings to produce the

baryon asymmetry [see Sec. 2.3, in particular Eqs. (2.32) and (2.33)], which is invariant under a field

rotation involving the axion. It turns out that, once the axion has shift-symmetric couplings to the SM

sector, it is rather difficult not to produce the baryon asymmetry, as long as we have a baryon num-

ber violating process. In particular, the axion does not have to couple directly to the baryon number

violating operator. The physical intuition behind this is as follows. The axion coupling to one specific

operator generates a bias in the chemical potential of particles that are involved in that operator. This

bias is in general transferred to other particles via other interactions and eventually to the baryon num-

ber violating process, resulting in the production of the baryon asymmetry. As concrete examples, we

have considered baryogenesis at T ≳ 102 GeV in Sec. 4, and T ≳ 1013 GeV in Sec. 5, respectively, where

the baryon number violation is sourced by the electroweak sphaleron in the former case, and the elec-

troweak sphaleron together with the Weinberg operator in the latter case. We have derived a condition

of the baryon asymmetry production for these specific cases, and confirmed that the baryon asymme-

try is indeed a generic outcome of the axion shift-symmetric couplings. For instance, we have shown

for both cases that an axion coupling to the SU(3) Chern-Simons term, aGG̃ , ultimately leads to the

generation of a baryon asymmetry, although this operator itself has nothing to do with the U(1)B−L-

nor U(1)B+L-violation. Our findings open up a variety of new possibilities to produce the baryon asym-

metry of the universe from axion-like particles.

Along the way, we have summarized the basic properties of the SM transport equation in Sec. 3 as

they are required in Secs. 4 and 5. In particular, we have estimated the equilibration temperature of the

SM processes, i.e., the strong/electroweak sphaleron and Yukawa interactions, below which they are

effective (see Tab. 1 and Fig. 2). Our estimation improves Ref. [26] by including the RG running of the

Yukawa couplings in addition to the gauge couplings. It is important especially for the quark Yukawa

couplings as the strong interaction drives them to smaller values at high energy. This section may be

useful not only for the spontaneous baryogenesis but also for other baryogenesis scenarios such as the

flavored leptogenesis [35–38].
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A Definitions of symbols and indices

We summarize the definitions of symbols and indices in Tab. 2 and Tab. 3 for the reader’s convenience.

Symbol Definition Size Equation

Jµi current corresponding to a particle species i N

Oα operator for an interaction α Nα

nα
i vector that specifies the charge of each species i involved in

the process of Oα

Nα×N

n A
i vector that specifies the conserved charge A NA ×N

qi charge density of species i N Eq. (2.2)

µi chemical potentials for each charge qi N Eq. (2.3)

gi multiplicity or effective degrees of freedom N Eq. (2.3)

Γα interaction rate per unit time and volume Nα Eq. (2.6)

γα interaction rate per unit time (≡ Γα/(T 3/6)) Nα Eq. (2.7)

Γi j N ×N matrix form of interaction rates, (≡∑
αΓαnα

i nα
j ) N ×N Eq. (2.8)

qA conserved charge density for A, (≡∑
i n A

i qi ) NA Eq. (2.9)

cA conserved charge for A, (≡ qA/(T 3/6)) NA Eq. (2.10)

n̄α̂
i , n̄ A

i dual basis vectors Nα̂, NA Eq. (2.11)

a/ f axion field a(t ) divided by its decay constant f Eq. (2.14)

Si source term, (≡∑
αΓαnα

i nα
S ) N Eq. (2.16)

nα
S source vector, or charge vector that specifies the charge of

the axion involved in the process of Oα

Nα Eq. (2.22)

Γα̂β̂ Nα̂×Nα̂ matrix form of interaction rates, (≡∑
i , j n̄α̂

i Γi j n̄β̂

j ) Nα̂×Nα̂ Eq. (2.26)

Sα̂β Nα̂×Nα matrix form of interaction rates, (≡∑
i n̄α̂

i Γβnβ

i ) Nα̂×Nα Eq. (2.26)

Uα̂β matrix that represents linear dependence, (≡∑
i n̄α̂

i nβ

i ) Nα̂×Nα Eq. (2.27)

MX i matrix constructed from complete sets, (≡ (nα̂
i , gi n A

i )T ) N ×N Eq. (2.28)

qC a certain charge specified by a charge vector nC
i Eq. (2.30)

vC
α direction of source vector that results in qC = 0 Nα Eq. (2.32)

γeff
a,αβ matrix that represents the backreaction to the axion Nα×Nα Eq. (2.36)

κα numerical coefficient of interaction rate for α Nα Tab. 1

Tα equilibration temperature for an interaction α Nα Eq. (3.6)

α2, α3 fine structure constants for SU(2) and SU(3)

Table 2: Definitions of symbols
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Index Definition Length Example

µ Lorentz index, sometimes omitted 4 W W̃ ≡WµνW̃ µν

f flavor index N f (= 3)

i index for particle species N i = e, L, q , Q, . . .

α index for interactions Nα α= WS, SS, Yt , . . .

A index for conserved charges NA A =QY , QB−L , . . .

X collective index for α̂ and A Nα̂+NA

(= N )

α̂ index for a complete set of

linearly independent vectors nα
i

Nα̂

α∆ index for α other than α̂ Nα−Nα̂

α̂⊥ index for a set of vectors nα̂
i

that are orthogonal to nα∆
i for all α∆

α̂∥ index for α̂ other than α̂⊥

Table 3: Definitions of indices

B Derivation of transport equation

Here we provide an explicit derivation of the transport equation in the linear response for the sake

of completeness, in particular deriving Eqs. (2.5) and (2.19). We first derive the transport coefficients

without the coupling to an axion and then discuss how this coupling sources the bias in the transport

equation.

B.1 Transport equation without axion

We derive Eqs. (2.5) and (2.8) in the linear response, starting from the current equation of

∂ · Ji = ϵO
∑
α

nα
i Oα , (B.1)

without the shift-symmetric coupling to an axion such as Eqs. (2.14) and (2.15). We introduce a formal

parameter ϵ so as to make the “slow” relaxation explicit, which it a basic assumption of our derivation.

The following derivation is a slight extension of Ref. [46].

Density operator. In the following derivation, we adopt the Heisenberg picture where the density

operator ρ does not evolve with time. To derive the transport equation, we would like to perturb the

system with chemical potentials and see how the system relaxes to equilibrium. However, it is not easy

to spell out such a non-equilibrium state directly.

Instead, let us construct an equilibrium state that allows nonzero charge densities for broken sym-

metry. Suppose that we couple the system with external chemical potentials, i.e., µ(ext)
i Qi . We expect
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that the system attains a certain equilibrium state after a sufficiently long time, where the production

from the external chemical potential is balanced by the decay. Our first task here is to find out such

an equilibrium state in terms of operators. Instead of
∑

i µ
(ext)
i Qi , we introduce an operator

∫
d3x X

which is time independent in a certain limit and is identical to
∑

i µ
(ext)
i Qi in the limit that the charges

are conserved [i.e., ϵO → 0 in Eq. (B.1)]:

X (t ,x) ≡ ϵ
∫ t

−∞
dt ′ eϵ(t ′−t )

∑
i
µ(ext)

i J 0
i (t ′,x) . (B.2)

Note that we should take ϵ↘ 0 in the end of computation. Differentiating it with respect to t , one finds

its time-independence in the limit of ϵ↘ 0:

d

dt
X (t ,x) = ϵ∑

i
µ(ext)

i J 0
i (t ,x)−ϵ2

∫ t

−∞
dt ′ eϵ(t ′−t )

∑
i
µ(ext)

i J 0
i (t ′,x) → 0 for ϵ↘ 0. (B.3)

We take the following density operator as a functional of X , which is time independent and hence

commutes with the Hamiltonian:

ρ ≡ e−
1
T (H−∫

d3x X )

Tr
[

e−
1
T (H−∫

d3x X )
]

= e−
1
T (H−∑

i µ
(ext)
i Qi )+ϵO X

Tr
[

e−
1
T (H−∑

i µ
(ext)
i Qi )+ϵO X

] , (B.4)

where in the second line we use∫
d3x X (t ,x) =∑

i
µ(ext)

i

∫
d3x J 0

i (t ,x)−
∫ t

−∞
dt ′ eϵ(t ′−t )

∑
i
µ(ext)

i

∑
α

nα
i

∫
d3x ϵOOα(t ′,x) , (B.5)

and define

X ≡−∑
i ,α

µi

T
nα

i

∫ t

−∞
d4x ′ eϵ(t ′−t )Oα(x ′) , (B.6)

with

µi =µ(ext)
i . (B.7)

Here we introduced a new variable µi for later use.

Note that, at the leading order for ϵO , the charge densities can be expressed as

qi =µ(ext)
i

gi T 2

6
=µi

gi T 2

6
, (B.8)

for µi /T ≪ 1 with gi being the multiplicity factor.

In the Heisenberg picture, time evolution of any operator is given by the commutator with the

Hamiltonian, which is also true for the current ∂t J 0
i = i [H , J 0

i ]. An immediate consequence is that any

operator evaluated with ρ given in Eq. (B.4) does not evolve in time because the density operator com-

mutes with the Hamiltonian, which also holds for the current,
〈

J̇ 0
i

〉 = 0. Note that we introduce µ(ext)
i
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and the system is coupled to an external device that keeps producing qi . This observation implies that

our state ρ describes an equilibrium state where the production is balanced by the intrinsic decay of qi

driven by the breaking operator Oα. This structure can be easily seen if we expand the ρ with respect

to ϵO as follows:

ρ ≃ ρGC +
[

T
∫ 1

T

0
dτe−HτϵO X eHτ−〈X 〉C

]
ρC , (B.9)

where we also drop the higher-order terms such as ϵn
O(µi /T )m with n ≥ 1, m ≥ 2. An expectation value

with the subscripts ‘GC’ is taken by the grand canonical ensemble, 〈Oα〉GC = Tr (ρGCOα), and that with

‘C’ is for the canonical ensemble, 〈Oα〉C = Tr (ρCOα), where the grand canonical and canonical ensem-

bles are defined as

ρGC(t ) = e−(H−∑
i µ

(ext)
i Qi (t ))/T

Tr
[

e−(H−∑
i µ

(ext)
i Qi (t ))/T

] , ρC = e−H/T

Tr
[
e−H/T

] . (B.10)

The first and second terms in Eq. (B.9) correspond to the production by the external device and the

intrinsic decay respectively.

Now we decouple the system from the external device that is responsible for the production term.

Since we assume that the relaxation processes are slow, the charge densities can be still described by

just replacing the chemical potentials µi with the time dependent one, i.e., µi →µi (t ). That is, we take

µ(ext)
i /T → 0 with µi (contained in X and qi ) kept nonzero values. Then the system is no longer the

equilibrium and tends to relax into another equilibrium state via a non-trivial transport equation. The

underlying assumption of the transport equation is that the typical time scale of chemical equilibration

is much slower than other reactions. It is also assumed that the deviation from thermal equilibrium is

weak. This motivates us to expand ρ in a series of ϵO :

ρ ≃ ρC +
[

T
∫ 1

T

0
dτe−HτϵO X eHτ−〈X 〉C

]
ρC . (B.11)

Transport coefficients. By using the perturbative expansion (B.11), we obtain

〈Oα〉−〈Oα〉C ≃−ϵO
∑
j ,β

nβ

j

µ j

T

∫ t

−∞
d4x ′ eϵ(t ′−t )T

∫ 1
T

0
dτ

〈
Oα(x)

(
e−HτOβ(x ′)eHτ−〈

Oβ(x ′)
〉

C

)〉
C

=−ϵO
∑
j ,β

nβ

j

µ j

T

∫ t

−∞
d4x ′ eϵ(t ′−t )T

∫ 1
T

0
dτ

〈
Oα(x)

(
Oβ(t ′+ iτ,x′)−〈

Oβ(x ′)
〉

C

)〉
C

. (B.12)

In the second line, we have used the fact that eHτ can be regarded as a complex time-evolution operator.

Assuming that the correlation drops for t ′ →−∞, i.e., 〈Oα(x)Oβ(x ′)〉 → 〈Oα(x)〉〈Oβ(x ′)〉, the integrand

can be expressed as

〈
Oα(x)

(
Oβ(t ′+ iτ,x′)−〈

Oβ(x ′)
〉

C

)〉
C
=

∫ t ′

−∞
dt ′′

〈
Oα(x)

d

dt ′′
Oβ(t ′′+ iτ,x′)

〉
C

. (B.13)
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Rewriting the differentiation with respect to t ′′ as iτ, one may perform the τ integration explicitly,

which results in

〈Oα〉−〈Oα〉C ≃−ϵO
∑
j ,β

nβ

j µ j

∫ t

−∞
d4x ′ eϵ(t ′−t )

∫ t ′

−∞
dt ′′ i

〈[
Oα(x),Oβ(t ′′,x′)

]〉
C . (B.14)

Here we have used the Kubo-Martin-Schwinger relation:〈
Oα(x)Oβ(t ′′+ i /T,x′)

〉
C = Tr

[
ρCOα(x)e−H/T Oβ(t ′′,x′)eH/T ]= 〈

Oβ(t ′′,x′)Oα(x)
〉

C . (B.15)

Now we are ready to evaluate the transport coefficient at the leading order in the interactions and

µi /T . For later convenience, we define the spectral function for Oα by

Gρ

αβ
(x −x ′) ≡ 〈[

Oα(x),Oβ(x ′)
]〉

C , Gρ

αβ
(ω,p) ≡

∫
d4x e iωt−ip·xGρ

αβ
(x) . (B.16)

Inserting Eq. (B.16) into Eq. (B.14), we arrive at the following expression

ϵO
(〈Oα〉−〈Oα〉C

)=−ϵ2
O

∑
j ,β

nβ

j µ j lim
ϵ↘0

∫
dω

2π

1

ω− iϵ

1

iω
Gρ

αβ
(ω,0)|ϵO=0 +O (ϵ3

O) (B.17)

≃−ϵ2
O

∑
j

nα
j

µ j

T
lim
ω↘0

lim
ϵO↘0

T Gρ
α(ω,0)

2ω
. (B.18)

Here we keep the leading order expansion in ϵO , and we utilize the fact that the spectral function is

an odd function in ω, i.e., Gρ

αβ
(ω,0) = −Gρ

αβ
(−ω,0). In the second equality, we also use Gρ

αβ
(ω,0)/ω =

δαβGρ
α(ω,0)/ω. Therefore, we arrive at the following expression for the transport equation:

q̇i (t ) =−∑
j

∑
α
Γαnα

i nα
j

µ j (t )

T
, Γα ≡ ϵ2

O lim
ω↘0

lim
ϵO↘0

TGρ
α(ω,0)

2ω
, (B.19)

where we use ϵO
∑
αnα

i 〈Oα〉C = 〈∂ · Ji 〉C = 0. One can calculate Γα [or Gρ
α(ω,0)] by a diagrammatic

calculation in a finite-temperature field theory.

B.2 Source term from the axion

Now we turn on the shift-symmetry couplings with an axion. As discussed in the main text, the coupling

given in Eq. (2.14) just shifts the chemical potential as µk 7→µk − ȧ/ f . A more non-trivial one is a direct

coupling with the operator Oβ

Lint,β =−a

f
Oβ . (B.20)

In the following, we derive Eq. (2.19) by regarding a/ f as an external time-dependent field in the linear

response.
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Linear response. Let us first recall the basic formula of the linear response theory. Suppose that we

turn on Eq. (B.20) at tini. After tini, all the fields obey the Hamiltonian with an explicit time dependence

on the axion:

H̄(t ) = H + a(t )

f

∫
d3x Oβ(t ,x) for t > tini . (B.21)

Integrating the Heisenberg equation for Oα, we obtain

Oα(t ,x)|a/ f −Oα(tini,x) = i
∫ t

tini

dt ′
[
H̄(t ′),Oα(t ′,x)|a/ f

]
, (B.22)

where the operator with a subscript a/ f implies that it evolves under H̄(t ). Now we take an expectation

value with respect to (B.11):〈
Oα(x)|a/ f

〉−〈Oα(tini,x)〉

= i
∫ t

tini

dt ′
〈[

H(t ′),Oα(t ′,x)|a/ f
]〉+ a(t ′)

f
i
∫ t

tini

d4x ′ 〈[Oβ(t ′, x ′),Oα(t ′,x)|a/ f
]〉

. (B.23)

Here, we note that the canonical ensemble commutes with Hamiltonian and hence

i
∫ t

tini

dt ′
〈[

H(t ′),Oα(t ′,x)|a/ f
]〉

C = 0. (B.24)

This implies that the first term in the right-hand side of Eq. (B.23) is O (ϵO) can be rewritten as

i
∫ t

tini

dt ′
〈[

H(t ′),Oα(t ′,x)|a/ f
]〉≃ i

∫ t

tini

dt ′
〈[

H(t ′),Oα(t ′,x)
]〉

= 〈Oα(x)〉−〈Oα(tini,x)〉 , (B.25)

where we drop the cross term between a/ f and ϵO and keep the term at the linear order in a/ f and ϵO .

Substituting this into Eq. (B.23), we obtain the well-known formula of the linear response theory:

〈
Oα(x)|a/ f

〉−〈Oα(x)〉 ≃−i
∫ t

−∞
d4x ′ 〈[Oα(x),Oβ(x ′)

]〉
C

a(t ′)
f

=−i
∫ t

−∞
d4x ′Gρ

αβ
(x −x ′)

a(t ′)
f

, (B.26)

where we keep the term at the linear order in a/ f and µi /T . We also send the initial time tini to −∞.

In the previous section, we have estimated 〈Oα(t ,x)〉. This equation indicates how the axion coupling

changes the expectation value of Oα at the linear order in a/ f .

Source term from the axion. In order to derive the source term in the transport equation, we assume

the time evolution of axion is so slow that one may perform the gradient expansion a(t ′) ≃ a0− ȧ(t − t ′)
with a0 and ȧ constant. Roughly speaking, the axion mass is assumed to be much smaller than a typical

interaction rate in thermal plasma. Let us discuss the contributions from a and ȧ in the right-hand side

of Eq. (B.26) separately.
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We start with the time independent part of the axion field. One may express the right-hand side of

Eq. (B.26) as

−i
a0

f

∫ t

−∞
d4x ′Gρ

αβ
(x −x ′) =−a0

f
Pv

∫
dω

2π

1

ω
Gρ

αβ
(ω,0) , (B.27)

where ‘Pv’ represents the Cauchy principal value. The behavior of Eq. (B.27) is related to the mass of

the axion which depends on the structure of the current equations. Suppose that the charge vector

nβ

i associated with the coupling a0Oβ is not in the span of the charge vectors of all other operators.

In this case, one may rewrite this coupling as a0
∑

i n̄β

i ∂ · Ji . Since the axion field is now constant, this

coupling vanishes after integration by parts. This observation implies that Eq. (B.27) becomes zero in

this case. On the other hand, if the charge vector nβ

i can be expressed by a linear combination of other

charge vectors, one cannot rotate out the constant axion field a0. In this case, Eq. (B.27) is non-zero in

general. This implies a non-zero mass of the axion and hence breaking of its shift symmetry because

the expectation value of Oβ enters in the equation of motion for the axion. In the following, we assume

that the axion mass coming from this coupling is negligible for simplicity (see also footnote ♮9).

We move on to the contribution from the non-zero axion velocity, ȧ ̸= 0. The right-hand side of

Eq. (B.26) can be expressed as♮22

i
ȧ

f

∫ t

−∞
d4x ′Gρ

αβ
(x −x ′)(t − t ′) = ȧ

f

∫ t

−∞
dt ′

∫
dω

2π
e−iω(t−t ′)∂ωGρ

αβ
(ω,0)

= ȧ

f
lim
ϵ↘0

∫
dω

2πi

1

ω− iϵ
∂ωGρ

αβ
(ω,0)

= ȧ/ f

T
Γαδαβ . (B.28)

In the last line, we have used the definition of the transport coefficient in Eq. (B.19). Summing up all

the equations obtained so far, we can write down Eq. (B.26) as follows:〈
Oα(x)|a/ f

〉=−Γα
∑

j
nα

j

µ j

T
+ ȧ/ f

T
Γαδαβ , (B.29)

reproducing Eq. (2.19).

C Proof of the condition for vanishing backreaction

Here we provide an explicit proof of Eq. (2.37). Let us consider the axion coupling of (a/ f )
∑
αnα

S Oα.

The effective friction term (2.36) is given as

γeff
a,αβ =

1

f 2T

(
Γαδαβ−

∑
γ̂,ρ̂

ST
αγ̂Γ

−1
γ̂ρ̂Sρ̂β

)
. (C.1)

The inverse matrix, Γ−1
α̂β̂

, should not be confused with 1/Γα̂β̂. Let us recall that the interaction indices

α is composed of these for the basis vectors α̂ and the rest α∆ whose charge vector can be expressed

♮22For notational brevity, here we do not introduce a formal parameter ϵO . The definition of Γ should be understood as

Eq. (B.19).
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as a linear combination of the basis vectors. Furthermore, the basis vectors are classified into {nα̂⊥
i } ≡

{nα̂
i |

∑
i n̄α̂

i nα∆
i = 0 for all α∆} and {n

α̂∥
i } ≡ {nα̂

i |
∑

i n̄α̂
i nα∆

i ̸= 0 for some α∆}. By definition of Γα̂β̂ and Sα̂β

given in Eq. (2.26), we have Sα̂β̂⊥ = Γα̂δα̂β̂⊥ and Γα̂β̂⊥ = Γα̂δα̂β̂⊥ . Therefore the effective friction vanishes

if α→ α̂⊥ or β→ β̂⊥, i.e., γeff
a,α̂⊥β

= γeff
a,αβ̂⊥

= 0.

Now we move on to the converse statement of Eq. (2.37). One may express Γα̂β̂ as follows:

Γα̂β̂ = Γα̂δα̂β̂+
∑
α∆

Uα̂α∆Γα∆U T
α∆β̂

, (C.2)

where we use Uα̂β̂ = δα̂β̂. Note that Uα̂α∆ is non-zero only if α̂→ α̂∥ by definition. In the limit of Γα∆ = 0

for all α∆, one finds Γ−1
α̂β̂

= Γ−1
α̂
δα̂β̂ and Sα̂β = Γβδα̂β. Therefore, we get γeff

a,αβ = 0 for Γα∆ = 0. We would

like to understand how γeff
a,αβ changes in the presence of non-vanishing Γα∆ . For this purpose, it is

useful to consider the differential equation of γeff
a,αβ with respect to Γα∆ :

∑
α,β

nα
S

∂γeff
a,αβ

∂Γα∆
nβ

S =
[

nα∆
S − (

nS ·ST ·Γ−1 ·U )
α∆

]2 ≥ 0, (C.3)

where we use the following shorthanded notation (nS ·ST ·Γ−1·U )α∆ =
∑
β,γ̂,ρ̂ nβ

S ST
βγ̂
Γ−1
γ̂ρ̂

Uρ̂α∆ . We also use

that Γ−1
α̂β̂

is a symmetric matrix. One can see that the effective friction term in (C.1) is a monotonically

increasing function of Γα∆ .

Since γeff
a,αβ = 0 at Γα∆ = 0, the effective friction term also vanishes with a non-vanishing Γα∆ only if

the right-hand side of Eq. (C.3) is saturated for any Γα∆ . Hence, our goal is to understand the condition

of nα∆
S = (nS ·ST ·Γ−1·U )α∆ . By definition, one can show that the sectors {α̂⊥} and {α̂∥,α∆} are completely

decoupled, i.e., Γ−1
α̂⊥β̂

= Γ−1
α̂⊥β̂⊥

δβ̂⊥β̂ and Uα̂⊥α∆ = 0, and hence this condition can be rewritten as

∑
β∆

nβ∆
S

[
δβ∆α∆ −

∑
α̂∥,γ̂∥

Γβ∆U T
β∆α̂∥Γ

−1
α̂∥γ̂∥Uγ̂∥α∆

]
= ∑
β̂∥,γ̂∥

n
β̂∥
S Γβ̂∥Γ

−1
β̂∥γ̂∥

Uγ̂∥α∆ . (C.4)

We can further use the identity

Γα̂∥δα̂∥β̂∥ = Γα̂∥β̂∥ −Uα̂∥β∆Γβ∆U T
β∆β̂∥

(C.5)

and finally obtain ∑
β∆

[
nβ∆

S −∑
β̂∥

n
β̂∥
S Uβ̂∥β∆

][
δβ∆α∆ −

∑
α̂∥,γ̂∥

Γβ∆U T
β∆α̂∥Γ

−1
α̂∥γ̂∥Uγ̂∥α∆

]
= 0. (C.6)

In order to have nα∆
S = (nS ·ST ·Γ−1 ·U )α∆ for any Γα∆ , we need to find a solution to Eq. (C.6) which holds

for any Γα∆ . Hence, the only possible solution is

nβ∆
S −∑

β̂∥

n
β̂∥
S Uβ̂∥β∆ = 0, (C.7)

because δβ∆α∆ −
∑
α̂∥,γ̂∥ Γβ∆U T

β∆α̂∥
Γ−1
α̂∥γ̂∥

Uγ̂∥α∆ = δβ∆α∆ for Γα∆ = 0, which is invertible.

This completes the proof of the following statement:∑
α,β

nα
S nβ

Sγ
eff
a,αβ = 0 iff nα∆

S −∑
α̂∥

n
α̂∥
S Uα̂∥α∆ = 0. (C.8)
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