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Abstract We consider the MiNNLOPS method to consis-
tently combine next-to-next-to-leading order (NNLO) QCD
calculations with parton-shower simulations. We identify the
main sources of differences between MiNNLOPS and fixed-
order NNLO predictions for inclusive observables due to
corrections beyond NNLO accuracy and present simple pre-
scriptions to either reduce or remove them. Refined predic-
tions are presented for Higgs, charged- and neutral-current
Drell Yan production. The agreement with fixed-order NNLO
calculations is considerably improved for inclusive observ-
ables and scale uncertainties are reduced. The codes are
released within the POWHEG- BOX.

1 Introduction

Precision studies play a crucial role in the rich physics pro-
gramme at the large hadron collider (LHC). Not only do they
enable the accurate determination of standard-model (SM)
rates and parameters, but they also provide a valuable route to
the discovery of new-physics phenomena through small devi-
ations from the SM. Experimental analyses rely on parton-
shower simulations to generate fully exclusive events. There-
fore, in order to fully exploit the vast amount high-quality
data collected at the LHC, it is now paramount to include
highest-order perturbative information in event simulation.

The consistent combination of next-to-next-to-leading
order (NNLO) QCD calculations with parton-shower sim-
ulations (NNLO + PS) is one of the current challenges in
collider theory, and it is indispensable to provide the inter-
face between accurate theory predictions and precision mea-
surements. Four NNLO + PS methods [1–4], which rely
on different theoretical formulations, have been proposed in
the past decade. A good NNLO + PS method should attain
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NNLO accuracy for observables inclusive in the QCD radi-
ation beyond the Born level, while preserving the logarith-
mic structure (and accuracy) of the parton-shower simula-
tion after matching. While NNLO accuracy is guaranteed by
all existing methods, the kinematic constraints that each of
the above methods impose on the subsequent parton-shower
evolution may have consequences in terms of the logarithmic
accuracy of the final simulation. In Ref. [4] we have presented
the method MiNNLOPS, which has the following features:

• NNLO corrections are calculated directly during the gen-
eration of the events and without additional reweighting.

• No merging scale is required to separate different multi-
plicities in the generated event samples.

• The matching to the parton shower is performed accord-
ing to the POWHEG method [5] and preserves the lead-
ing logarithmic (LL) structure for transverse-momentum
ordered showers.1

In this article we investigate the sources of differences
between MiNNLOPS and fixed-order NNLO (f NNLO) QCD
predictions due to higher-order corrections beyond the nom-
inal perturbative accuracy. These differences affect inclusive
observables such as the total cross section or the rapidity dis-
tribution of a color-singlet produced in hadronic collisions.
We identify the main sources of such corrections, which stem
from:

1. Presence of higher-order terms (i.e. beyond NNLO) in
the matching formula;

1 For a different ordering variable, preserving the accuracy of the
shower is more subtle. Not only one needs to veto shower radiation
that has relative transverse momentum greater than the one generated
by POWHEG, but also one has to resort to truncated showers [5,6] to
compensate for missing collinear and soft radiation. Failing to do so
spoils the shower accuracy at leading-logarithmic level (in fact, at the
double-logarithmic level).
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2. Scale setting in the QCD running coupling and in the
parton distribution functions (PDFs);

3. Higher-order effects due to the parton shower recoil
scheme.

We introduce various prescriptions to either remove or reduce
these corrections. This leads to a significantly improved
agreement betweenMiNNLOPS predictions and f NNLO cal-
culations for inclusive observables. As a case study we focus
on 2 → 1 processes at the LHC, including Higgs boson
production as well as charged-current and neutral-current
Drell Yan (DY) production, and we present updated predic-
tions that supersede those given in Ref. [4]. The computer
codes with the implementation of the MiNNLOPS method
for 2 → 1 processes is released with this article within the
POWHEG- BOX framework [5,7,8].

2 MINNLOPS in a nutshell

The MiNNLOPS method [4] formulates a NNLO calculation
fully differential in the phase space �F of the produced colour
singlet F with invariant mass Q. It starts from a differential
description of the production of the colour singlet and a jet
(FJ), whose phase space we denote by �FJ:2

dσ

d�FJ
= B̄(�FJ) ×

{
�pwg(�pwg)

+
∫

d�rad�pwg(pT,rad)
R(�FJ,�rad)

B (�FJ)

}
, (1)

where B̄(�FJ) generates the first radiation, while the content
of the curly brackets describes the generation of the sec-
ond radiation according to the POWHEG method [5,7,8].
Here, B and R are the squared tree-level matrix elements
for FJ and FJJ production, respectively. �pwg denotes the
POWHEG Sudakov form factor [5] and �rad (pT,rad ) is the
phase space (transverse momentum) of the second radiation.
The POWHEG cutoff �pwg is used in the generation of the
second radiation and its default value is �pwg = 0.89 GeV.
The parton shower then adds additional radiation to Eq. (1)
that contributes beyond O(α2

S(Q)) at all orders in perturba-
tion theory. We refer to the explicit formulae of the original
publications [5,7,8].

The function B̄(�FJ) is the central ingredient of
MiNNLOPS. Its derivation [4] stems from the observation
that the NNLO cross section differential in the transverse
momentum of the color singlet (pT ) and in the Born phase

2 We note that this equation corresponds precisely to the one of a
POWHEG calculation for FJ production, but with a modified content
of the B̄(�FJ) function.

space �F is described by the following formula

dσ

d�Fd pT
= d

d pT

{
exp[−S̃(pT )]L(pT )

}
+ R f (pT )

= exp
[
−S̃(pT )

] {
D(pT ) + R f (pT )

exp[−S̃(pT )]
}

,

(2)

where R f contains terms that are non-singular in the pT → 0
limit, and

D(pT ) ≡ −dS̃(pT )

d pT
L(pT ) + dL(pT )

d pT
. (3)

S̃(pT ), defined in Eq. (24), represents the Sudakov form
factor, while L(pT ) contains the parton luminosities, the
squared virtual matrix elements for the underlying F produc-
tion process up to two loops as well as the NNLO collinear
coefficient functions and is given in Eq. (23) in Appendix A
(see Ref. [4] for further details). A crucial feature of the
MiNNLOPS method is that the renormalisation and factori-
sation scales are set to μR ∼ μF ∼ pT .

We introduce the NLO differential cross section for FJ
production

dσ
(NLO)
FJ

d�Fd pT
= αS(pT )

2π

[
dσFJ

d�Fd pT

](1)

+
(

αS(pT )

2π

)2 [
dσFJ

d�Fd pT

](2)

, (4)

where [X ](i) denotes the coefficient of the i-th term in the
perturbative expansion of the quantity X , which allows us to
rewrite Eq. (2) as

dσ

d�Fd pT
= exp[−S̃(pT )]

{
αS(pT )

2π

[
dσFJ

d�Fd pT

](1)

×
(

1 + αS(pT )

2π

[
S̃(pT )

](1)
)

+
(

αS(pT )

2π

)2 [
dσFJ

d�Fd pT

](2)

+
[

D(pT ) − αS(pT )

2π
[D(pT )](1)

−
(

αS(pT )

2π

)2

[D(pT )](2)

]

+regular terms of O
(
α3

S

)}
, (5)

where the expressions of the [D(pT )](i) coefficients are given
in Appendix A. The NNLO fully differential cross section is
then obtained upon integration over pT from scales of the
order of the Landau pole � to the kinematic upper bound
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(we will discuss how to deal with the Landau divergence and
integrate down to arbitrarily small pT in Sect. 3.2). Each term
of Eq. (5) contributes to the total cross section with scales
μR ∼ μF ∼ Q according to the power counting formula

∫ Q

�

d pT
1

pT
αm

S (pT ) lnn Q

pT
exp(−S̃(pT ))

≈ O
(

α
m− n+1

2
S (Q)

)
. (6)

This suggests that one can expand the last square bracket
and the ‘regular terms’ of Eq. (5), while neglecting terms
that, upon integration over pT , produce N3LO corrections or
beyond to any inclusive observable in �F. We can therefore
truncate the second line of Eq. (5) to third order in αS(pT )

D(pT ) − αS(pT )

2π
[D(pT )](1) −

(
αS(pT )

2π

)2

[D(pT )](2)

=
(

αS(pT )

2π

)3

[D(pT )](3) + O
(
α4

S(pT )
)

. (7)

The above considerations can be made at the fully differential
level on the �FJ phase space, which leads to the definition of
the B̄(�FJ) function as [4]

B̄(�FJ) ≡ exp[−S̃(pT )]
{

αS(pT )

2π

[
dσFJ

d�FJ

](1)

×
(

1 + αS(pT )

2π

[
S̃(pT )

](1)
)

+
(

αS(pT )

2π

)2 [
dσFJ

d�FJ

](2)

+
(

αS(pT )

2π

)3

[D(pT )](3)Fcorr(�FJ)

}
, (8)

where the factor Fcorr(�FJ) encodes the dependence of the
correction [D(pT )](3) upon the full �FJ phase space, as dis-
cussed in detail in Section 3 of Ref. [4].

3 Implementation and corrections beyond NNLO

The derivation of B̄(�FJ) in Eq. (8) relies on the fact that
the running coupling and the parton densities are evaluated
at scales μR ∼ μF ∼ pT . This is crucial to ensure that
we only neglect corrections that give rise to N3LO terms or
beyond in the integrated cross section when truncating the
expression in curly brackets in the B̄(�FJ) function at the
third order in αS(pT ) . This procedure introduces a sensitivity
of observables inclusive over QCD radiation to the small-pT

region. Specifically, one has to ensure that, when integrating
over pT , B̄(�FJ) is evaluated accurately down to sufficiently

low pT , until the Sudakov suppression makes it tend to zero
exponentially.

In practice, one meets the following problems:

1. The approximation in Eq. (7), while formally correct,
introduces a treatment of subleading corrections quite
different from f NNLO calculations that might lead to
numerically sizeable differences in specific processes
and in configurations where the pT of the colour singlet
is small. By avoiding the truncation of the series done
in Eq. (7) one may thus reduce the contamination from
higher-order corrections with respect to fixed order.

2. The parton densities are extracted from fits at a low scale
�PDF of the order of the proton mass and are effectively
frozen or cut off at this scale. Moreover, some PDF sets
contain an intrinsic charm component that requires �PDF

to be above the charm mass. In a MiNNLOPS calcula-
tion such scales are potentially too high for certain pro-
cesses, as one becomes sensitive to the PDF cutoff for
pT ∼ �PDF (pT ∼ 2 �PDF when scale variation is per-
formed). For DY production at Q ∼ MV for instance,
where MV is the invariant mass of the vector boson, these
scales are dangerously close to the peak of the pT dis-
tribution, and freezing the PDFs in Eq. (8) at �PDF may
cause undesired artefacts in some phase space regions.
One therefore needs a prescription to carry out the PDFs
evolution down to lower scales consistently.

3. One essential element of parton-shower algorithms is the
recoil scheme, i.e. the choice of how the kinematic recoil
of a new emission is distributed among the other particles
in the event. In many schemes also the kinematics of the
colour singlet is affected by the shower radiation. Thus,
the parton shower may change inclusive observables in
regions sensitive to infrared physics, for instance when
the singlet is produced with large absolute rapidity. One
may reduce these effects by choosing a recoil scheme that
affects less the kinematics of the colour singlet.

In the following, we will address each of the above points
in more detail.

3.1 Higher-order differences between MINNLOPS and f NNLO

MiNNLOPS and f NNLO calculations differ by terms beyond
their nominal accuracy. The integration of Eq. (8) over pT

reproduces the fully differential cross section up to O(α2
S).

However, this result is affected by the truncation of the D(pT )

function in Eq. (7). This can be easily understood by notic-
ing that after this truncation the integral does not reproduce
the exact total derivative that we started with in Eq. (2). The
truncated terms, although formally subleading, can be numer-
ically relevant in configurations in which pT is small. The
total derivative can be restored by avoiding the approxima-
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tion of Eq. (7). Therefore, we retain the option to generate
events without truncating the D(pT ) function by replacing
in Eq. (8)

(
αS(pT )

2π

)3

[D(pT )](3) → −dS̃(pT )

d pT
L(pT ) + dL(pT )

d pT

− αS(pT )

2π
[D(pT )](1) −

(
αS(pT )

2π

)2

[D(pT )](2) , (9)

where all ingredients are given in Appendix A. In practice this
is done by evaluating the full luminosity factor L(pT ) (see
Section 4 of Ref. [4] for its derivation), and by performing
its derivative numerically for each event. This prescription
considerably reduces the difference between MiNNLOPS

and f NNLO calculations, with the latter having perturbative
scales of the order of the invariant mass of the colour singlet.
These differences are strictly due to higher-order corrections
beyond NNLO, and the goal of the prescription in Eq. (9) is
to eliminate the main source of such subleading terms. This
does not mean, however, that the integration of Eq. (8) repro-
duces the f NNLO total cross section at μR = μF = Q, as the
scale setting in the MiNNLOPS approach is rather different
and fixed by the structure of pT resummation.

It is instructive to quantify the effect of this change. As
a case study we consider the rapidity distribution of the Z
boson in the setup detailed in Sect. 4. To this end, Fig. 1
compares MiNNLOPS predictions with untruncated, using
Eq. (9), and truncated, using Eq. (7), D(pT ) function at the
Les Houches Event (LHE) level with the f NNLO prediction
obtained with Matrix [9]. We clearly observe an improve-
ment in the agreement between MiNNLOPS and f NNLO
when using the untruncated prescription, both at the level
of the shape of the distribution and (even more notably) at
the level of the perturbative scale uncertainties, which are
now comparable between the two calculations. We recall [4]
that MiNNLOPS includes an additional scale variation in the
Sudakov form factor, which has a mild effect. This provides a
more reliable estimate of the perturbative uncertainties asso-
ciated with the matching procedure. The improvement in the
scale dependence can be understood by noticing that the
terms neglected in Eq. (7) are (although formally sublead-
ing) logarithmically enhanced and therefore become impor-
tant around the Sudakov peak of the pT distribution where
the bulk of the cross section originates from. The inclusion
of such terms through the prescription of Eq. (9) eliminates
this feature and results in a more reliable uncertainty band.
We notice a difference between the truncated results of Fig. 1
and the corresponding distribution shown in Ref. [4] in the
size of the uncertainty band. This is mainly due to the differ-
ent PDF set (NNPDF3.1 [10]) used in this article that comes
with a higher cutoff scale as well as the improved treatment

Fig. 1 Rapidity distribution of the Z boson. The plot compares the
MiNNLOPS prediction with untruncated (blue solid) and truncated
(black dotted) D(pT ) function at the LHE level with the NNLO predic-
tion obtained with Matrix (red, dashed). The lower panel shows the
ratio to the truncated prediction

of the PDF evolution adopted here, which is discussed in the
next section.

We employ the untruncated prescription of Eq. (9) as the
new default in the MiNNLOPS method and in all results
shown in the following.

3.2 Evolution of parton densities and scale setting

As a second aspect that affects MiNNLOPS predictions we
discuss the evolution of parton densities at low scales. To
ensure consistency of μF variations we would like to avoid
truncating the PDFs at their own infrared cutoff �PDF, but
rather carry out a consistent DGLAP evolution down to lower
scales. By doing this, we do not aim for a physically accu-
rate description of the pT spectrum below �PDF, but simply
ensure that Eq. (8) can be evaluated all the way down to suffi-
ciently small pT , where it becomes vanishingly small due to
the Sudakov suppression. This kinematic region will subse-
quently be corrected by the parton shower and hadronization
process. As a consequence, several prescriptions can be for-
mulated.

We read the PDFs (including the corresponding heavy
quark thresholds) from the LHAPDF [11] package and build
corresponding HOPPET grids [12], which facilitates an effi-
cient evaluation of all convolutions with the coefficient func-
tions. These HOPPET grids are a copy of the LHAPDF sets
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for μF � �PDF. Below this scale, we freeze the number
of active flavours to those of the PDF set at μF = �PDF,
and we carry out a DGLAP evolution down to lower scales
of μF ∼ � using HOPPET. This prescription allows us to
define a hybrid PDF set that can be evaluated consistently
also for small values of μF ∼ pT with the desired numer-
ical precision. For consistency, we adopt the same running
coupling as that provided by the PDF set via LHAPDF, with
the full heavy quark threshold information. The integral that
defines the Sudakov form factor S̃(pT ) given in Eq. (24)
is then evaluated exactly in numerical form. This numerical
prescription replaces the analytic formulae of S̃(pT ) given
in Ref. [4].

In the practical implementation of Ref. [4] we followed
a prescription to smoothly turn off the contribution of
[D(pT )](3) in Eq. (8) at large pT by introducing modified
logarithms

ln
Q

pT
→ L ≡ 1

p
ln

(
1 +

(
Q

pT

)p)
, (10)

where p is a free positive parameter. Larger values of p cor-
respond to logarithms that tend to zero at a faster rate at large
pT , while the limit pT → 0 remains unaffected. This pre-
scription modifies Eq. (8) by terms beyond accuracy, and it
has to be performed at the level of Eq. (2) in order to pre-
serve the total derivative (hence the total cross section). This
corresponds to:

• Setting the perturbative scales in the D(pT ) (or
[D(pT )](3)) function of Eq. (8) to

μR = K R Q e−L , μF = KF Q e−L . (11)

• Changing the lower integration bound of the Sudakov (24)
(the integrand is not modified directly) to

pT → Qe−L . (12)

• Multiply D(pT ) (or [D(pT )](3)) by the following Jaco-
bian factor:

D(pT ) → JQ D (pT ) , JQ ≡ (Q/pT )p

1 + (Q/pT )p . (13)

On the other hand, one has some freedom of setting the cor-
responding scales in the differential NLO cross section for
FJ production in Eq. (8), as long as they tend to pT at small
transverse momentum. We will discuss possible choices at
the end of this section.

In Eq. (11), K R,F are scale variation parameters that are
varied between 1/2 and 2 to estimate perturbative uncer-
tainties. As a way of smoothly approaching non-perturbative

scales at low pT , we introduce the alternative scale setting

μR = K R

(
Q e−L + Q0 g(pT )

)
,

μF = KF

(
Q e−L + Q0 g(pT )

)
, (14)

where g(pT ) is a damping function. The scale Q0 is a non-
perturbative parameter which has the role of regularising the
Landau singularity and as such it should be tuned together
with the hadronization model using experimental data. One
has some freedom in choosing g(pT ), and we explore the
options

g(pT ) = 1, g(pT ) = 1

1 + Q
Q0

e−L
. (15)

The difference between the two is that the second option fur-
ther suppresses the shift by Q0 at large transverse momen-
tum. This prescription is also consistently adopted in the
Sudakov form factor S̃(pT ), defined in Eq. (24), at the inte-
grand level. The modified Sudakov is then evaluated exactly
via a numerical calculation of the integral. As far as the
D(pT ) function is concerned, analogously to what has been
discussed for the modified logarithms in Eq. (13), the choice
in Eq. (14) requires the introduction of an additional factor
JQ0 (for the two choices in Eq. (15), respectively)

JQ0 ≡ Q e−L

Q e−L + Q0
, JQ0 ≡ Q e−L 1 − g2(pT )

Q e−L + Q0 g(pT )
,

(16)

which multiplies only the derivative of the luminosity.3 This
modifies Eq. (13) as

JQ D(pT ) → JQ

(
−dS̃(pT )

d pT
L(pT ) + JQ0

dL(pT )

d pT

)
,

(17)

where the scales are set as in Eq. (14) after taking the deriva-
tives in the right-hand-side of the above equation.

The scale Q0 > � smoothly freezes the coupling and
PDFs at low scales. We stress that this prescription does not
affect the double logarithmic terms in S̃(pT ), which ensures
that Eq. (8) still vanishes exponentially for pT → 0. With
this prescription to regularize the Landau pole, we can now
integrate safely all the way down to pT scales at which the
integrand vanishes, which is an essential requirement in order
for Eq. (2) to be NNLO accurate. This is because the contribu-
tion of the total derivative to the integral over pT must vanish

3 Since the lower bound of integration of the Sudakov form factor is
unchanged, its derivative simply amounts to Eq. (26) with the scale of
the coupling set as in Eq. (14).
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at the lower bound of integration. If this is not the case, one
introduces an additional systematic uncertainty due to the
truncation (or slicing) of the integral at scales where the inte-
grand is not vanishingly small. In this respect the scale Q0

is not a slicing parameter, as it simply acts by freezing the
coupling and the PDFs in the infrared region. At the same
time, this allows us to perform a consistent scale variation all
the way down to pT = 0, which would not be the case if a
slicing cutoff were introduced in the integral of Eq. (2). We
do not find a visible difference between the two options in
Eq. (15), and we therefore stick to the second of the two with
Q0 = 2 GeV as our default. We stress that, for differential
distributions sensitive to infrared dynamics (for instance the
transverse momentum of the Z boson in the peak region), the
Q0 parameter must be determined together with a tune of the
parton-shower hadronization model.

As a final step, we discuss the scale setting adopted in the
NLO FJ cross section in Eq. (8). The default prescription in
MiNLO′ and MiNNLOPS is to set the perturbative scales in
this term to

μR = K R pT , μF = KF pT , (18)

or, if the smooth freezing is introduced, to

μR=K R (pT + g(pT )Q0) , μF = KF (pT + g(pT )Q0) .

(19)

This ensures that in the small pT limit these scales match the
ones used in the Sudakov form factor and the D(pT ) function,
which are constrained by the structure of pT resummation,
hence guaranteeing a correct matching at small pT . However,
one can also choose to set the scales of the NLO calculation
as in Eqs. (11) and (14), such that at large pT the scales of the
MiNNLOPS predictions are of the order of the invariant mass
Q of the colour singlet. We employ Eq. (14) in the results
shown in this article. While this choice is more appropriate
for inclusive observables, the one in Eq. (19) is preferable
to obtain predictions in regimes where the colour singlet is
produced with large pT . Both options (14) and (19) are made
available to the user.

3.3 Impact of shower recoil scheme on kinematics of the
colour singlet

Another source of higher-order corrections in the final pre-
diction is given by the parton shower. Shower simulations
are expected to be accurate in configurations dominated by
soft and/or collinear radiation. Away from these limits the
corrections introduced by the shower evolution are sublead-
ing (higher order in nature) to the fixed-order description of
the hard scattering process.

Fig. 2 Rapidity distribution of the Z boson. The plot com-
pares MiNNLOPS predictions at LHE level (blue, solid) and after
showering using different recoil schemes in Pythia8 with the
option SpaceShower:dipoleRecoil 0 (black, dotted) and
SpaceShower:dipoleRecoil 1 (red, dashed). The lower panel
shows the ratio to the prediction at LHE level

As a consequence, the shower may lead to higher-order
corrections to physical observables that one would naively
expect to be largely insensitive to the showering process. As
an example, let us consider again the rapidity distribution of
the Z boson. This inclusive quantity should be nearly inde-
pendent of the infrared dynamics. However, if we compare
MiNNLOPS predictions for this quantity at the LHE level and
after showering with Pythia8 [13] (without hadronization)
in Fig. 2, we observe that the shower suppresses configura-
tions where the vector boson is produced at large absolute
rapidities. This effect can traced back to the default (black,
dotted line in Fig. 2) shower recoil scheme used by Pythia8
for initial-state radiation, which is global, i.e. the recoil of a
generated particle is shared among all particles in the final
state of the event. Naturally, this affects also the kinematics of
the Z boson and it is responsible for the behaviour observed
in Fig. 2.

This observation can be confirmed by choosing an alterna-
tive recoil scheme. In a large-Nc picture, one can for instance
share the recoil globally only for emissions off initial–initial
colour dipoles, while assigning it locally (i.e. entirely taken
from a single final state particle) for emissions off initial–final
colour dipoles (i.e. a colour line that connects an initial-state
and a final-state particle). This scheme is available within
Pythia8 via the flag SpaceShower:dipoleRecoil 1
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(cf. Ref. [14] for details). In this case, we expect the Z boson
to be less affected by the parton shower than in the default
recoil scheme. As an example let us consider the leading
order configuration q + q̄ → Z . If the quark lines emit a
real gluon (q + q̄ → Z + g), the recoil is taken from the Z
boson. One then is left with two initial–final and no initial–
initial colour dipoles. As a consequence, the emission of an
additional radiation will never affect the kinematics of the Z
boson. Conversely, an extra radiation from the q+g → Z+q
configuration will affect the Z boson if it is emitted off the
initial-state qg dipole. From the plot we indeed observe that
this less global version of the recoil scheme (red, dashed line
in Fig. 2) impacts the Z -boson kinematics very mildly.

We stress that the effects of the shower recoil scheme on
the rapidity distribution are by all means subleading and for-
mally beyond NNLO accuracy. On the other hand, the choice
of the recoil scheme can have consequences for the loga-
rithmic accuracy of a parton shower [15–17], which implies
that a comprehensive discussion about a given scheme must
take place in this context. Specifically, the alternative recoil
scheme that we have just discussed may arguably have con-
sequences for the description of the transverse-momentum
distribution of the Z boson, which in this scheme becomes
insensitive to some of the radiation emitted off the initial-
state quarks. In a transverse-momentum ordered shower
like Pythia8, this may result in next-to-leading logarith-
mic contributions to the Z transverse-momentum spectrum
being potentially mistreated (cf. Ref. [16] for details). Since
in this article we assume parton showers to be LL accu-
rate, this problem is strictly of subleading nature. However,
recent progress in formulating NLL accurate parton show-
ers [18,19] raises the question of whether the MiNNLOPS

method (in fact any of the available NNLO + PS methods [1–
4]) preserves the shower accuracy after matching. A study of
this type is beyond the scope of this article and left for future
work.

As far as the matching to NNLO QCD for the 2 → 1 pro-
cesses studied in this paper is concerned, we use the option
SpaceShower:dipoleRecoil 1 as the default for our
results so that shower effects on inclusive quantities are min-
imised.

4 Results for Drell Yan and Higgs boson production

In this section we compare the NNLO + PS predictions
obtained with MiNNLOPS to f NNLO results obtained with
the public code Matrix [9]. We consider the processes

pp → �+�− , pp → �−ν̄� , pp → �+ν� , and pp → H , (20)

for massless leptons � ∈ {e, μ}. The Higgs is produced on-
shell in the heavy-top approximation, while for the DY pro-
cesses the full off-shell effects are taken into account, includ-

ing Z -boson, W -boson, and photon (γ ∗) contributions. For
neutral-current DY we restrict the invariant mass of dilepton
pair to the Z -mass window

66 GeV ≤ M�+�− ≤ 116 GeV (21)

to avoid the photon singularity.
We consider 13 TeV LHC collisions. For the EW param-

eters we employ the Gμ scheme with the EW mixing angles
given by cos2 θW = mW

2/m Z
2 and α = √

2 GμmW
2

sin2 θW/π . The following values are used as input param-
eters: GF = 1.16639 × 10−5 GeV−2, mW = 80.385 GeV,
�W = 2.0854 GeV, m Z = 91.1876 GeV, �Z = 2.4952 GeV,
and m H = 125 GeV. With an on-shell top-quark mass of
mt = 173.2 GeV and n f = 5 massless quark flavours,
we use the corresponding NNLO PDF set with αS(m Z ) =
0.118 of NNPDF3.1 [10] for the DY results and the set
PDF4LHC15_nnlo_mc of PDF4LHC15 [20–23] for Higgs
boson production.

The reference f NNLO results of Matrix have been
obtained by setting the central scales to the invariant mass of
the produced color singlet, i.e.

μR = μF = Q, Q = M�+�− , M�−ν̄�
, M�+ν�

, m H , (22)

while the MiNNLOPS simulations are obtained using the
default setup discussed in Sect. 3. Scale uncertainties are
obtained by varying the renormalisation and factorisation
scales by a factor of two about their central value while
keeping 1/2 ≤ μR/μF ≤ 2. All MiNNLOPS results are
showered with Pythia8 [13], switching off hadronization
and underlying event.4 In all of the results that follow, the
NNLO prediction of Matrix is represented by a red, dashed
curve with a red band, while the MiNNLOPS prediction is
shown in blue, solid.

4.1 Neutral-current and charged-current Drell Yan
production

We start by discussing the total production rates of the
DY processes, reported in Table 1. We observe an excel-
lent agreement between the NNLO QCD prediction and the
MiNNLOPS result, which are consistent at the few-permille
level. We stress again that the two calculations use different
scale settings and are therefore expected to differ by effects

4 In the codes released with this paper, the POWHEG matching is per-
formed with the optiondoublefsr 1 [24]. This provides a symmetric
treatment of the q → qg and g → qq̄ final-state splittings in the defini-
tion of the starting scale of the shower. This ensures a proper treatment
of observables sensitive to radiation off such configurations. We have
checked explicitly that the observables considered within this paper are
unaffected by that option.
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Table 1 Total cross sections of the Drell Yan production processes. The number in brackets denotes the numerical uncertainty on the last digit

Process NNLO (Matrix) MiNNLOPS Ratio

pp → �+�− 1919(1)+0.8%
−1.1% pb 1926(1)+1.4%

−1.1% pb 1.004

pp → �−ν̄� 8626(4)+1.0%
−1.2% pb 8689(4)+1.7%

−1.5% pb 1.007

pp → �+ν� 11677(5)+0.9%
−1.3% pb 11755(5)+1.5%

−1.6% pb 1.007

Fig. 3 The rapidity distribution of the leptonic pair in neutral- (left plot) and charged-current (right plot) Drell Yan production. The lower panel
shows the ratio of the NNLO and the MiNNLOPS predictions to the latter

beyond NNLO. As one can see from Table 1, these differ-
ences are small and the central prediction of each calculation
lies within the perturbative uncertainty of the other. More-
over, we observe that the MiNNLOPS calculation features a
slightly larger scale uncertainty. This is due to the more con-
servative uncertainty prescription adopted in theMiNNLOPS

case, which involves varying the renormalisation scale μR

also in the Sudakov form factor ˜S(pT ), defined in Eq. (24).
This choice better reflects the perturbative uncertainty asso-
ciated with the MiNNLOPS matching procedure.

We continue by considering the rapidity distribution of the
leptonic system in Z/γ ∗ and W − production, shown in Fig. 3.
The considerations made above for the inclusive cross section
hold in this case as well, and we observe a very good agree-
ment between the MiNNLOPS and the f NNLO predictions
across the entire spectrum, with moderately larger perturba-
tive uncertainties in the MiNNLOPS case. In comparison to
the Z rapidity distribution presented in Ref. [4], we observe
that the shape of the new MiNNLOPS result is much closer to
the f NNLO prediction in the forward rapidity region. Each

of the aspects discussed in this article (reduced difference
due to higher-order terms with respect to f NNLO, improved
evolution of the PDFs and scale setting, choice of the shower
recoil scheme) plays a role in this improvement, as discussed
in the previous section. We note that our choice of using the
NNPDF3.1 PDF sets (instead of NNPDF3.0, which was used
in Ref. [4]) was motivated by the fact that the latter set is
more up to date, and this difference has no major impact on
the observed improvements. We have checked this explicitly
and it is also clear when noticing that the effects reported in
Figs. 1 and 2 add up (almost exactly) to the observed differ-
ences in the Z rapidity distribution of Ref. [4].

Finally, we show a sample of kinematic distribution of
the final-state leptons. For neutral-current DY production we
compare MiNNLOPS to f NNLO predictions for the rapidity
distribution and the transverse-momentum distribution of the
positively charged lepton in Fig. 4. Similarly, in the case of
W + production we show the same comparison for the miss-
ing transverse-momentum distribution and for the rapidity
distribution of the charged lepton in Fig. 5. We observe a
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Fig. 4 Rapidity distribution (left) and transverse momentum (right) of the positively charged lepton in neutral-current Drell Yan production. The
lower panel shows the ratio to the MiNNLOPS prediction

Fig. 5 Rapidity distribution of the charged lepton (left) and missing transverse momentum (right) in charged-current Drell Yan production. The
lower panel shows the ratio to the MiNNLOPS prediction

123
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Fig. 6 The rapidity distribution of the Higgs boson (left) and its transverse momentum (right). The lower panel shows the ratio of the NNLO and
the MiNNLOPS predictions to the latter

Table 2 Total cross sections of Higgs-boson production. The number
in brackets denotes the numerical uncertainty on the last digit

Process NNLO (Matrix) MiNNLOPS Ratio

pp → H 39.64(1)+10.7%
−10.4% pb 38.03(2)+10.2%

−9.0% pb 0.960

very good agreement between the two calculations for the
rapidity distributions, and for the region of the transverse-
momentum spectrum insensitive to shower effects. Con-
versely, the parton shower provides an improved descrip-
tion for pT,�+ (pmiss

T ) � 5 GeV and pT,�+ (pmiss
T ) � mV /2

where the cross section is sensitive to multi particle emis-
sions and therefore receives relevant corrections from the
parton shower that resums integrable, but large logarithmic
terms. The perturbative instability at the threshold is a well
known feature of fixed-order calculations [25]. It appears at
pT,�+ (pmiss

T ) ∼ mV /2, since at LO, where the leptons are
back-to-back and can share only the available partonic centre-
of-mass energy

√
ŝ = Q, the distribution is kinematically

restricted to the region pT,�+ (pmiss
T ) ≤ Q/2 and on-shell

configurations Q ∼ mV provide by far the dominant contri-
bution. The region pT,�+ (pmiss

T ) � mV /2 is filled only upon
inclusion of higher-order corrections, and the NNLO predic-
tions becomes effectively only NLO accurate, as indicated
by the enlarged uncertainty bands.

4.2 Higgs boson production

Table 2 gives the inclusive Higgs cross section at f NNLO
computed with Matrix and the one obtained with the
MiNNLOPS generator. As in the case of DY production, we
observe a good agreement between the two predictions that
are well compatible within the quoted scale uncertainties,
and they are closer than in the original setup of Ref. [4]. The
moderate numerical difference between the two results is due
to the different scale settings in the two calculations.

The rapidity distribution of the Higgs boson is shown in the
left plot of Fig. 6. TheMiNNLOPS and NNLO predictions are
in mutually good agreement within the perturbative uncer-
tainties. The right plot of Fig. 6 shows the Higgs transverse-
momentum distribution. This observable displays the effect
of the MiNNLOPS scale setting in Eq. (14) compared to the
one in the Matrix computation in Eq. (22). The two scales
differ significantly at low and moderate transverse momenta,
while they become identical at large transverse momentum
pT,H � m H , where the MiNNLOPS and Matrix predictions
are in full agreement. We recall that the scales of the differ-
ential NLO cross section for FJ production in Eq. (8) can
also be set to the transverse momentum as in Eq. (19). This
choice, used in the original publication [4], is more appropri-
ate in regimes where the Higgs boson (or the accompanying
QCD jets) are produced with large transverse momentum.
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5 Conclusions

In this article we have addressed a number of aspects of the
MiNNLOPS method, which combines NNLO QCD calcula-
tions with parton-shower simulations. As a case study we
have considered the production of a colour-singlet final state
in 2 → 1 reactions at the LHC.

We have identified the main sources of differences
between the MiNNLOPS prediction and f NNLO calcula-
tions, which are due to corrections beyond accuracy intro-
duced in the matching procedure. A number of prescriptions
has been presented to either remove or reduce the impact of
such corrections in the MiNNLOPS results, specifically:

• The MiNNLOPS formula has been refined to include
additional terms at all orders in the matching proce-
dure that reduce the subleading differences between
MiNNLOPS and f NNLO calculations.

• The evolution of the parton densities at small transverse
momentum has been improved, and the scale setting in
the coupling and PDFs has been consistently adjusted so
that at large transverse momentum it matches that of the
f NNLO calculation.

• We studied the impact of the parton-shower recoil scheme
on the kinematics of the colour singlet, and discussed how
this dependence can be reduced.

The new prescriptions for the MiNNLOPS matching proce-
dure have been used to obtain updated predictions for Higgs,
charged- and neutral-current Drell Yan production, finding a
significantly improved agreement between the MiNNLOPS

and f NNLO calculations for inclusive observables, with
commensurate scale uncertainties.

The prescriptions presented in this article do not affect the
performance of theMiNNLOPS method in terms of efficiency
and speed. The generation of fully exclusive NNLO + PS
events is merely 50% slower than the correspondingMiNLO′
calculation. The codes to obtain the results presented in this
article are released within the POWHEG- BOX framework.5
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A Explicit formulae for the evaluation of D( pT )

In this section we supplement the formulae given in Ref. [4]
with the ones required to calculate the untruncated variant
of the function [D(pT )](3) given in Eq. (9). The luminosity
factor is defined as [4]

L(pT ) =
∑
c,c′

d|MF|2cc′
d�F

∑
i, j

{(
C̃ [a]

ci ⊗ f [a]
i

)
H̃(pT )

(
C̃ [b]

c′ j ⊗ f [b]
j

)

+
(

G[a]
ci ⊗ f [a]

i

)
H̃(pT )

(
G[b]

c′ j ⊗ f [b]
j

)}
. (23)

Here MF is the Born matrix element for the production of
the colour singlet F, and f denotes the parton distribution
functions. Moreover, H̃ encodes the virtual corrections to
this process up to two loops, and C̃ and G are the coefficient
functions up to O(α2

S) (see Ref. [4] for details). The Sudakov
form factor S̃(pT ) is defined as

S̃(pT ) = 2
∫ Q

pT

dq

q

(
A(αS(q)) ln

Q2

q2 + B̃(αS(q))

)
, (24)

with

A(αS) =
( αS

2π

)
A(1) +

( αS

2π

)2
A(2) +

( αS

2π

)3
A(3) ,

B̃(αS) =
( αS

2π

)
B(1) +

( αS

2π

)2
B̃(2) , (25)

and its derivative reads

dS̃(pT )

d pT
= − 2

pT

(
A(αS(pT )) ln

Q2

p2
T

+ B̃(αS(pT ))

)
.

(26)

All coefficients of the above equations are defined in Section
4 and Appendix B of Ref. [4], including their scale depen-
dence. The above formulae are inserted into Eq. (9), where
the derivative of L(pT ) is evaluated numerically to ensure
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that the exact total derivative in Eq. (2) that we started our
derivation from is not modified. The numerical derivative of
L(pT ) is performed by evaluating Eq. (23) using a five-point
stencil discrete derivative calculated on a fine grid around
pT .

One last necessary ingredient is given by the first and
second order expansion of D(pT ) in powers of αS(pT ). Its
coefficients read

[D(pT )](1) = −
[

dS̃(pT )

d pT

](1)

[L(pT )](0) +
[

dL(pT )

d pT

](1)

,

[D(pT )](2) = −
[

dS̃(pT )

d pT

](2)

[L(pT )](0)

−
[

dS̃(pT )

d pT

](1)

[L(pT )](1) +
[

dL(pT )

d pT

](2)

,

(27)

where

[
dS̃(pT )

d pT

](1)

= − 2

pT

(
A(1) ln

Q2

p2
T

+ B(1)

)
,

[
dS̃(pT )

d pT

](2)

= − 2

pT

(
A(2) ln

Q2

p2
T

+ B̃(2)

)
,

[L(pT )](0) =
∑
c,c′

d|MF|2cc′
d�B

f [a]
c f [b]

c′ ,

[L(pT )](1) =
∑
c,c′

d|MF|2cc′
d�B

{
H (1) f [a]

c f [b]
c′

+
(

C (1) ⊗ f
)[a]

c
f [b]
c′ + f [a]

c (C (1) ⊗ f )
[b]
c′

}
,

[
dL(pT )

d pT

](1)

=
∑
c,c′

d|MF|2cc′
d�B

2

pT

{(
P̂(0) ⊗ f

)[a]
c

f [b]
c′

+ f [a]
c

(
P̂(0) ⊗ f

)[b]
c′

}
,

[
dL(pT )

d pT

](2)

=
∑
c,c′

d|MF|2cc′
d�B

2

pT

{(
P̂(1) ⊗ f

)[a]
c

f [b]
c′

+ f [a]
c

(
P̂(1) ⊗ f

)[b]
c′

+ H (1)
[
(P̂(0) ⊗ f )[a]

c f [b]
c′ + f [a]

c (P̂(0) ⊗ f )
[b]
c′

]

+ (C (1) ⊗ f )[a]
c (P̂(0) ⊗ f )

[b]
c′

+
(

P̂(0) ⊗ f
)[a]

c
(C (1) ⊗ f )

[b]
c′

+ f [a]
c (P̂(0) ⊗ C (1) ⊗ f )

[b]
c′

+
(

P̂(0) ⊗ C (1) ⊗ f
)[a]

c
f [b]
c′

− 2β0π

[
H (1) f [a]

c f [b]
c′ +

(
C (1) ⊗ f

)[a]
c

f [b]
c′

+ f [a]
c (C (1) ⊗ f )

[b]
c′

]}
. (28)

The scale dependence is implemented as in Appendix D of
Ref. [4], and in addition the above [D(pT )](1) and [D(pT )](2)

terms depend on the renormalisation and factorisation scale
factors K R and KF as

[D(pT )](1)(KF , K R) = [D(pT )](1) ,

[D(pT )](2)(KF , K R) = [D(pT )](2) − 2β0π

[
dL(pT )

d pT

](1)

ln
K 2

F

K 2
R

. (29)
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