

Rare top quark production in ATLAS tqy, tqZ and 4tops Paolo Sabatini on behalf of the ATLAS Collaboration

LHCP 2020 Conference Top Physics session 29/05/2020

Outline

The exceptional dataset collected in Run 2 paves the way to test the Standard Model at higher and higher precision.

.. but also to measure very tiny signals from rare processes.

Processes covered in this talk:

- → FCNC Top to qy coupling
- → Standard-Model tqZ production
- → Four-top quarks production

ATL-PHYS-PUB-2019-035

The tqy FCNC coupling

SM branching ratio t \rightarrow qy is tiny (10⁻¹⁴), possible deviations from BSM.

Observed in two final states:

- \rightarrow q \rightarrow ty in single top production
- → t \rightarrow qy in top pair production

NLO (QCD) EFT operators: • O_{uW}^{ij} , O_{uB}^{ij}

→ Right/Left-Handed couplings

Analysis strategy II

Large contribution from $e \rightarrow y$ fakes:

- → Estimation of Data/MC $e \rightarrow \gamma$ efficiency
- → Application is validated in a VR

Discriminant: Neural Network

- → Output used in the SR
- → A NN trained for each studied coupling

Phys. Lett. B 800 (2020) 135082

Results

Profile likelihood fit in Control and Signal regions.

Limits at 95% CL for different assumed couplings:
 >2x improvement than past results!

Observable	Vertex	Coupling	Obs.	Exp.
$C_{\rm uW}^{(13)*} + C_{\rm uB}^{(13)*}$	tuγ	LH	0.19	$0.22^{+0.04}_{-0.03}$
$C_{\rm uW}^{(31)} + C_{\rm uB}^{(31)}$	tuγ	RH	0.27	$0.27^{+0.05}_{-0.04}$
$C_{\rm uW}^{(23)*} + C_{\rm uB}^{(23)*}$	tcγ	LH	0.52	$0.57_{-0.09}^{+0.11}$
$C_{\rm uW}^{(32)} + C_{\rm uB}^{(32)}$	tcγ	RH	0.48	$0.59_{-0.09}^{+0.12}$
$\mathcal{B}(t \to q \gamma) [10^{-5}]$	tuγ	LH	2.8	$4.0^{+1.6}_{-1.1}$
$\mathcal{B}(t \to q \gamma) [10^{-5}]$	tuγ	RH	6.1	$5.9^{+2.4}_{-1.6}$
$\mathcal{B}(t \to q \gamma) [10^{-5}]$	tcγ	LH	22	27^{+11}_{-7}
$\mathcal{B}(t \to q \gamma) [10^{-5}]$	tcγ	RH	18	28^{+12}_{-8}

Limiting factors:

Stats, JER, Scale Factor on $p_T(\gamma)$, $\mu_{F/R}$ scales, modelling of tt and single-top processes.

7

The tZq production

h

Production of single-top associated with a Z-boson:

h

arXiv:2002.07546

Fit setup

SR and ttZ CRs based on output of Neural Network

→ Most important variables: m_{bj} , m_{top} , $|\eta(j)|$

Non-prompt leptons from HF (tW, tt and Z+jets):

- replacement method
- → free-floating normalisation in the fit

Results

Fitted fiducial cross-section:

 $\sigma_{tZq}(m_{ll} > 30 \text{ GeV}) = 97 \pm 13 \text{ (stat.)} \pm 7 \text{ (syst.) fb}$

Measured at 14% accuracy, dominated by statistical uncertainty.

Expected and observed significance: $>5\sigma$

Observation of the tZq production!

Limiting factors:

- Data statistics
- → Jet/ E_{T}^{miss} /lepton reco. and calib.
- → Luminosity
- Prompt-lepton modelling

Production of tttt

Standard Model process with $\sigma_{t\bar{t}t\bar{t}}^{\rm NLO~QCD+EW} = 12\pm20\%~{\rm fb}~$ [JHEP02(2018) 031]

Very sensitive to many BSM scenarios that strongly enhance the cross-sections

Latest ATLAS results using 2015/16 dataset [Phys. Rev. D 99 052009] → Observed (expected) limit on tttt cross-section @ 95% CL = $5.3 (2.1) \sigma_{t\bar{t}t\bar{t}}^{\text{NLO QCD}+\text{EW}}$

Background composition

Fake/Non-prompt leptons background composition

- Charge mis-identification [QmisID]
- → Non-prompt leptons originating from HF decay [HFe/µ]
- Non-prompt from photon conversion in material [MatCO]
- Non-prompt from virtual photons
 [Low-mass e⁺e⁻]

Non-prompt lepton background

Template method

- MC shapes assumed
- Normalisation fitted

Charge misidentification

Data-Driven method based on $Z \rightarrow e^+e^-$:

- → Efficiencies QmisID = Z (SS) / Z (OS)
- Apply efficiencies on OS to estimate SS

LHCP20 – P. SABATINI (IFIC)

Signal discrimination

A BDT is trained to separate signal from the total background.

Optimised to maximise the separation as Receiver-Operator-Characteristics curve integral.

ATLAS-CONF-2020-013 Fit to data Events / 0. **ATLAS** Preliminary - Data tītī Profile-likelihood fit in CRs and SRs. $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ 10^{4} ∎tŧ₩ ■tīZ SR ttH Q mis-id Post-Fit HF e Mat. Conv. Normalisations factors fitted: ΗF μ Low-mass e⁺e⁻ 10 Others ttt /// Uncertainty $NF_{t\bar{t}W}$ Parameter NF_{Mat. Conv.} NFLow Mee NF_{HF} e $NF_{HF \mu}$ $10^{2} =$ 1.6 ± 0.3 1.6 ± 0.5 0.9 ± 0.4 0.8 ± 0.4 1.0 ± 0.4 Value 10 The value of the tttt signal strength $\mu_{t\bar{t}\bar{t}\bar{t}}$ $\mu_{t\bar{t}t\bar{t}\bar{t}} = 2.0^{+0.4}_{-0.4}$ (stat.) $^{+0.7}_{-0.5}$ (syst.) = $2.0^{+0.8}_{-0.6}$ 10 Data / Pred. $\sigma_{t\bar{t}t\bar{t}\bar{t}} = 24^{+5}_{-5}(\text{stat.})^{+5}_{-4}(\text{syst.}) = 24^{+7}_{-6} \text{ fb}$ 0.5 -0.6 -0.4 -0.20.2 0.4 0.8 0 0.6 BDT score

Observed (expected) significance over background: → 4.3 (2.4) std. dev.

LHCP20 – P. SABATINI (IFIC)

ATLAS-CONF-2020-013 Fit to data Events ATLAS Preliminarv - Data tttt $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ ∏tī₩ ■tīZ Profile-likelihood fit in CRs and SRs. 60 BDT>0 Q mis-id ■ ttH Post-Fit HF e Mat. Conv. 50 Normalisations factors fitted: Low-mass e⁺e⁻ HF u Others ttt **Uncertaintv** $NF_{t\bar{t}W}$ Parameter NF_{Mat. Conv.} NFLow Mee NF_{HF} e $NF_{HF \mu}$ 30 1.6 ± 0.3 1.6 ± 0.5 0.9 ± 0.4 0.8 ± 0.4 1.0 ± 0.4 Value 20 The value of the tttt signal strength $\mu_{t\bar{t}\bar{t}\bar{t}}$ 10 $\mu_{t\bar{t}t\bar{t}\bar{t}} = 2.0^{+0.4}_{-0.4}$ (stat.) $^{+0.7}_{-0.5}$ (syst.) = $2.0^{+0.8}_{-0.6}$ 0 Data / Pred. 1.5 $\sigma_{t\bar{t}t\bar{t}\bar{t}} = 24^{+5}_{-5}(\text{stat.})^{+5}_{-4}(\text{syst.}) = 24^{+7}_{-6} \text{ fb}$ 0.5 0 16 18 20 22 12 Evidence!! Sum of b-tag scores Observed (expected) significance over background: → 4.3 (2.4) std. dev.

LHCP20 – P. SABATINI (IFIC)

Conclusions

An overview over ATLAS latest results on rare top quark processes is given.

FCNC tqy coupling

- → Production of single top quark via $q \rightarrow ty$ vertex
- Best limits on EFT operators and branching ratios

SM production of tZq

- → Sensitive to tZ coupling (but also to WZ)
- → Observation! Cross-section compatible with SM within 1σ

SM four top quarks production

- Same-sign dilepton and multilepton channel
- → Evidence of tttt significance of 4.3 (2.4) std. dev.
- * Cross-section compatible with SM within 1.7 σ

Backup

tqy – FCNC Summary

21

tqy – Systematics impact

JER

Prompt-photon modeling

$j \rightarrow \gamma$ estimation

- Data driven method
- → Iso/ID efficiencies on looser photon
- Applied to loose photon to tight

22

tqy – Background estimation

tZq – Control regions definition

	Commo	on selections	
	Exactly 3 leptons $p_{\rm T}(\ell_1) > 28 {\rm GeV}, p_{\rm T}(\ell_2)$ $p_{\rm T}({\rm jet})$	(e or μ) with $ \eta < 2.5$) > 20 GeV, $p_{\rm T}(\ell_3) > 20$ GeV) > 35 GeV	
SR 2j1b	CR diboson 2j0b	CR tī 2j1b	CR $t\bar{t}Z$ 3j2b
\geq 1 OSSF pair $ m_{\ell\ell} - m_Z < 10 \text{ GeV}$ 2 jets, $ \eta < 4.5$ 1 <i>b</i> -jet, $ \eta < 2.5$	$\geq 1 \text{ OSSF pair}$ $ m_{\ell\ell} - m_Z < 10 \text{ GeV}$ $2 \text{ jets, } \eta < 4.5$ 0 b-jets	\geq 1 OSDF pair No OSSF pair 2 jets, $ \eta < 4.5$ 1 <i>b</i> -jet, $ \eta < 2.5$	$\geq 1 \text{ OSSF pair}$ $ m_{\ell\ell} - m_Z < 10 \text{ GeV}$ $3 \text{ jets, } \eta < 4.5$ $2 \text{ b-jets, } \eta < 2.5$
SR 3j1b	CR diboson 3j0b	CR tī 3j1b	CR $t\bar{t}Z$ 4j2b
\geq 1 OSSF pair $ m_{\ell\ell} - m_Z < 10 \text{ GeV}$ 3 jets, $ \eta < 4.5$ 1 <i>b</i> -jet, $ \eta < 2.5$	$\geq 1 \text{ OSSF pair}$ $ m_{\ell\ell} - m_Z < 10 \text{ GeV}$ $3 \text{ jets, } \eta < 4.5$ 0 b-jets	\geq 1 OSDF pair No OSSF pair 3 jets, $ \eta < 4.5$ 1 <i>b</i> -jet, $ \eta < 2.5$	$\geq 1 \text{ OSSF pair}$ $ m_{\ell\ell} - m_Z < 10 \text{ GeV}$ $4 \text{ jets, } \eta < 4.5$ $2 \text{ b-jets, } \eta < 2.5$

tZq – non-prompt leptons

Events from tW, tt and Z+jets enter SR only with a "fake" lepton. Main source: non-prompt e/μ from heavy-flavour hadrons. MC-simulation with poor statistics \rightarrow how to enhance it?

arXiv:2002.07546

If b-jet too

tZq – Diboson control regions

tZq – tt control regions

tZq – ttZ control regions

tZq – Validation regions

tZq – Signal modelling in SR

tZq – Signal modelling in SR

tZq – Systematics impact

tZq – NN settings/training

A different NN trained in each signal region.

NeuroBayes Same input variables \rightarrow used the best 15

Variable	Ra	ınk	Definition	
	SR 2j1b	SR 3j1b		Forward+central jets
$m_{bi_{f}}$	1	1	(Largest) invariant mass of the b -jet and the untagged jet(s)	Torward Certifal Jets
m_{top}	2	2	Reconstructed top-quark mass	
$ \eta(\mathbf{j}_{\mathbf{f}}) $	3	3	Absolute value of the η of the j _f jet	Against VV
$m_{\rm T}(\ell, E_{\rm T}^{\rm miss})$	4	4	Transverse mass of the W boson	
<i>b</i> -tagging score	5	11	<i>b</i> -tagging score of the <i>b</i> -jet	Conword untoggod ist
H_{T}	6	_	Scalar sum of the $p_{\rm T}$ of the leptons and jets in the event	Forward unlagged jet
$q(\ell_W)$	7	8	Electric charge of the lepton from the W -boson decay	
$\eta(\ell_W)$	8	12	Absolute value of the η of the lepton from the W-boson decay	Against VV
$p_{\rm T}(W)$	9	15	$p_{\rm T}$ of the reconstructed W boson	
$p_{\mathrm{T}}(\ell_W)$	10	14	$p_{\rm T}$ of the lepton from the W-boson decay	
$m(\ell\ell)$	11	_	Mass of the reconstructed Z boson	Against VV/ttZ
$ \eta(Z) $	12	13	Absolute value of the η of the reconstructed Z boson	<u> </u>
$\Delta R(\mathbf{j}_{\mathrm{f}}, Z)$	13	7	ΔR between the j _f jet and the reconstructed Z boson	
$E_{ m T}^{ m miss}$	14	_	Missing transverse momentum	
$p_{\rm T}(j_{\rm f})$	15	10	$p_{\rm T}$ of the j _f jet	
$ \eta(\mathbf{j}_{\mathbf{r}}) $	-	5	Absolute value of the η of the j _r jet	
$p_{\mathrm{T}}(Z)$	-	6	$p_{\rm T}$ of the reconstructed Z boson	
$p_{\rm T}(j_{\rm r})$	-	9	$p_{\rm T}$ of the j _r jet	34

4tops – Signal discrimination

Input variables:

- → Leading lepton p_T
- → E^{miss}_T
- → Leading and sub-leading jet p_{T}
- → 6th highest jet p_T
- → Leading b-jet p_T
- → Sum over lepton and jet p_{T} (except leading)
- → ∑ ΔR_{II}
- → Max (ΔR_{bl})
- → Min (∆R_{bi})
- Sum of b-tagging score
- → Min (ΔR_{II})

Validation:

- Three-fold validation
- → 2 sets for the evaluation (input variables)
- → 1 set to test different configurations

Hyperparameters tested:

- Depth of the three
- Number of trees
- → Learning rate...

4tops – Systematics impact

Uncertainty source		$\Delta \mu$	
Signal modelling			
<i>tītī</i> cross section	+0.56	-0.31	
<i>tītī</i> modelling	+0.15	-0.09	
Background modelling			
$t\bar{t}W$ modelling	+0.26	-0.27	
<i>tīt</i> modeling	+0.10	-0.07	
Non-prompt leptons modeling	+0.05	-0.04	
<i>ttH</i> modelling	+0.04	-0.01	
$t\bar{t}Z$ modelling	+0.02	-0.04	
Charge misassignment	+0.01	-0.02	
Instrumental			
Jet uncertainties	+0.12	-0.08	
Jet flavour tagging (light-jets)	+0.11	-0.06	
Simulation sample size	+0.06	-0.06	
Luminosity	+0.05	-0.03	
Jet flavour tagging (b-jets)	+0.04	-0.02	
Other experimental uncertainties	+0.03	-0.01	
Jet flavour tagging (c-jets)	+0.03	-0.01	
Total systematic uncertainty	+0.69	-0.46	
Statistical	+0.42	-0.39	
Non-prompt leptons normalisation(HF, material conversions)	+0.05	-0.04	
$t\bar{t}W$ normalisation	+0.04	-0.04	
Total uncertainty	+0.82	-0.62	

4tops – Signal modelling in SR I

37

4tops – Signal modelling in SR II

4tops – ttt/ttZ uncertainties

The ttt process share similar features with the 4tops signal.

Modeling uncertainties:

- → Ad-hoc 100% on cross-section
- → ttt with 3b or ≥4b: 50%

Additional uncertainties on ttZ: → ttt with 3b or ≥4b: 50%

4tops – Non-prompt leptons unc.

QmisID

- Statistics of the Z mass peak fit
- → Fit range
- Discrepancy of MC/Data efficiencies

Non-prompt from HF (e/m)

- Normalisation from the fit
- Shape: Data/MC comparison in the regions with looser lepton definition

Material/virtual photon conversion

- Selecting $Z(\mu\mu)$ + γ events
- → Shape from Data/MC
- → Normalisation from the fit

4tops – Control regions

Region	Channel	N_j	N _b	Other requirements	Fitted variable
CRttbarCO2l	$e^{\pm}e^{\pm} e^{\pm}\mu^{\pm} $	$4 \le N_j < 6$	≥ 1	$M_{ee} @ CV \in [0, 0.1 \text{ GeV}]$	Mee@PV
				$200 < H_{\rm T} < 500 {\rm GeV}$	
CR1b3Le	eee eeµ	-	= 1	$100 < H_{\rm T} < 250 {\rm GeV}$	counting
CR1b3Lm	еµµ µµµ	-	= 1	$100 < H_{\rm T} < 250 {\rm GeV}$	counting
CRttW2l	$e^{\pm}\mu^{\pm} \mu^{\pm}\mu^{\pm} $	≥ 4	≥ 2	$M_{ee} @ CV \notin [0, 0.1 \text{ GeV}], \eta(e) < 1.5$	$\Sigma p_{\mathrm{T}}^{\ell}$
				for $N_b = 2$, $H_T < 500$ GeV or $N_j < 6$	-
				for $N_b \ge 3$, $H_T < 500$ GeV	

4tops – ttH ML results

Channel	Selection criteria
Common	$N_{\text{jets}} \ge 2 \text{ and } N_{b-\text{jets}} \ge 1$
2ℓSS	Two same-charge (SS) very tight (T*) leptons, $p_T > 20$ GeV
	No τ_{had} candidates
	$m(\ell^+\ell^-) > 12$ GeV for all SF pairs
	13 categories: enriched with $t\bar{t}H$, $t\bar{t}W$, $t\bar{t}$, mat. conv., int. conv.,
	split by lepton flavour, charge, jet and b-jet multiplicity
3l	Three loose (L) leptons with $p_T > 10$ GeV; sum of light-lepton charges = ± 1
	Two SS very tight (T*) leptons, $p_T > 15 \text{ GeV}$
	One OS (w.r.t the SS pair) loose-isolated (L*) lepton, $p_T > 10$ GeV
	No τ_{had} candidates
	$m(\ell^+\ell^-) > 12$ GeV and $ m(\ell^+\ell^-) - 91.2$ GeV > 10 GeV for all SFOS pairs
	$ m(3\ell) - 91.2 \text{ GeV} > 10 \text{ GeV}$
	7 categories: enriched with $t\bar{t}H$, $t\bar{t}W$, $t\bar{t}Z$, VV, $t\bar{t}$, mat. conv. int. conv.

Fitted NF for ttW XS: $\hat{\lambda}_{t\bar{t}W}^{2\ell \text{LJ}} = 1.56^{+0.30}_{-0.28}, \ \hat{\lambda}_{t\bar{t}W}^{2\ell \text{HJ}} = 1.26^{+0.19}_{-0.18}, \text{ and } \ \hat{\lambda}_{t\bar{t}W}^{3\ell} = 1.68^{+0.30}_{-0.28}.$