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Abstract

We present the results of a high statistics lattice calculation of hadronic form factors
relevant for D− and B−meson semi-leptonic decays into light pseudoscalar and vector
mesons. The results have been obtained by averaging over 170 gauge field configurations,
generated in the quenched approximation, at β = 6.0, on a 183 × 64 lattice, using the
O(a)-improved SW-Clover action. From the study of the matrix element < K−|Jµ|D0 >,
we obtain f+(0) = 0.78 ± 0.08 and from the matrix element < K̄∗0|Jµ|D+ > we obtain
V (0) = 1.08±0.22, A1(0) = 0.67±0.11 and A2(0) = 0.49±0.34. We also obtain the ratios
V (0)/A1(0) = 1.6 ± 0.3 and A2(0)/A1(0) = 0.7 ± 0.4. Our predictions for the different
form factors are in good agreement with the experimental data, although, in the case of
A2(0), the errors are still too large to draw any firm conclusion.
With the help of the Heavy Quark Effective Theory (HQET) we have also extrapolated the
lattice results to B-meson decays. The form factors follow a behaviour compatible with
the HQET predictions. Our results are in agreement with a previous lattice calculation,
performed at β = 6.4, using the standard Wilson action.
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1 Introduction

There is increasing evidence that quantitative calculations of weak decay amplitudes can
be obtained by lattice QCD simulations. Over the last few years, semi-leptonic decays
of heavy mesons have been studied on the lattice [1]–[7]. Among these, D−meson decays
provide a good test of the lattice method, since the relevant CKM matrix element is well
constrained by unitarity in the Standard Model, Vcs ≃ 0.975. The main advantage of the
lattice technique is that it is based on first principles only and it does not contain free
parameters besides the quark masses and the value of the lattice spacing, both of which
are fixed by hadron spectroscopy. Moreover, statistical and systematic errors in lattice
simulations can be systematically reduced with increasing computer resources.

In this work, we present a high-statistics study of pseudoscalar-pseudoscalar and pseu-
doscalar-vector semi-leptonic form factors, performed on the 6.4 Gflops APE machine, by
using the O(a)-improved Clover Action [8, 9], at β = 6.0, corresponding to an inverse
lattice spacing a−1 ∼ 2 GeV. Our prediction for the form factors, which govern the
D → K and D → K∗ amplitudes are given in the abstract and in table 3. The central
values are in remarkable agreement with the experimental results. However, in spite of the
large statistics, our predictions still suffer, in some cases, from large statistical errors. A
possible explanation for the errors’ size is the use of a “thinning” procedure, that will be
discussed in detail in sec. 3. This procedure was adopted because our computer memory
is not sufficient to store the necessary quark propagators.

Following the suggestion of ref. [5], we have also tried to extrapolate the form factors to
B → π, ρ decays, using the scaling laws predicted by the Heavy Quark Effective Theory
(HQET) [10]. The final results have large uncertainties, because the statistical errors
amplify in the extrapolation. It is reassuring that the present results are in good agreement
with those obtained, with the same method, in ref. [5], by using the standard fermion
Wilson action, at a smaller value of the lattice spacing, corresponding to β = 6.4. This
gives us confidence on the feasibility of the extrapolation. It should be noticed however,
that the form factors are obtained near q2 = q2max, where q2 is the momentum of the lepton
pair. In order to predict the form factors at all q2, on current lattices and in the range
of the heavy quark masses explored so far, we can only assume pole dominance (or any
other simple q2-dependence). This strongly biases the final results, e.g. the determination
of the form factors at q2 = 0. In this respect, the situation is not very different from the
quark model approach. In order to improve the accuracy of the predictions, it is necessary
to be able to work with heavier quark masses and to increase the range of q2. This can
only be achieved by going to larger lattices. The approach followed here indicates that
B−meson semi-leptonic decays will be a fruitful area of lattice investigations in the near
future.

2 Computation Details

Semi-leptonic decays (D → K,K∗; B → D,D∗; B → π, ρ) are described in terms of six
independent dimensionless form factors, four of which are important for decay rates into
light leptons (see e.g. [2]). For each form factor, the relevant information can be expressed
in terms of its value at q2 = 0 and its q2 dependence. In this section several details of our
calculation are given.
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Figure 1: The effective mass, defined as M(t)a = ln(C(t)/C(t + a)) as a function of t/a. MHl
P,V

and M ll
P,V refer to the heavy-light or the light-light pseudoscalar and vector mesons respectively.

C(t) is the generic, zero momentum two-point correlation function.

We have obtained our results, by averaging over 170 gauge field configurations, gener-
ated at β = 6.0, on a volume 183×64. On this set of configurations, we have computed the
quark propagators by using the O(a)-improved SW-Clover action [8, 9]. We have consid-
ered 3 different values of the Wilson hopping parameter for the light quarks, Kl = 0.1425,
0.1432 and 0.1440, and 4 different values for the heavy quarks, KH = 0.1150, 0.1200,
0.1250 and 0.1330. The values of K, corresponding to the zero quark mass and to the
strange quark mass (obtained by fixing the pion and the kaon pseudoscalar masses) are
Kcr = 0.14545(1) and Ks = 0.1435(2) respectively. The value of the charm quark mass,
obtained from the D−meson mass, corresponds to Kch = 0.1219(17). The inverse lattice
spacing, obtained by using the mass of the ρ−meson to set the scale, is a−1 = (1.95±0.08)
GeV. All two-point functions have been fitted in the interval t/a = 12 − 28 and 15 − 28
for light-light and heavy-light mesons respectively. In fig. 1, we give examples of the
effective mass, as a function of time, in the two cases. The statistical errors have been
estimated with the jacknife method, by decimating 10 configurations from the total set
of 170. Preliminary results obtained with a smaller set of gauge field configurations have
been reported in ref. [11].

To extract the form factors, we have computed two- and three-point correlation func-
tions and followed the procedure explained in ref. [5]. The matrix elements have been
computed using the pseudoscalar density as source for D and K mesons and the local
vector current for the K∗ meson1. For the weak current we have used the lattice im-

1Throughout this paper, K, K∗ and D are conventional names to denote the light pseudoscalar and vector
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proved local vector and axial vector currents, according to the definition of refs. [12, 13].
The corresponding renormalization constants, ZV and ZA, have been fixed to the values
ZV = 0.824 and ZA = 1.06, as determined non-perturbatively, using light quark correla-
tion functions [14, 15]. This choice will be justified below.

All matrix elements have been computed by inserting the D-meson source at a time
distance (tD − tK,K∗)/a = 28. The position of the light meson is fixed at the origin and
we have varied the time position of the weak current in the time interval tJ/a = 10 − 14.

To study the q2-dependence of the form factors, we have computed the matrix elements
in two different kinematical configurations: in the first case we have taken the D−meson
at rest, i.e. ~pD = ~0, and ~pK,K∗ ≡ 2π/La · (0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1) and (2, 0, 0);
in the second case we have chosen ~pD ≡ 2π/La · (1, 0, 0) and ~pK,K∗ ≡ 2π/La · (0, 0, 0),
(1, 0, 0), (−1, 0, 0), (0, 1, 0). We have therefore nine independent momenta. We have also
computed other correlation functions, which are equivalent under the cubic symmetry.
All such equivalent cases have been averaged together.

In order to extract the current matrix elements from the three-point functions, we have
used two different procedures, denoted by “analytic” and “ratio” methods, discussed in
detail in ref. [5]. Within the statistical errors, the above methods are expected to agree,
up to O(a) effects. In the present calculation, we find that the two methods yield slightly
different results, the differences varying between 2% and 8%. We have taken into account
these differences in the evaluation of the final error (see below).

In order to obtain the form factors at q2 = 0, for quark masses corresponding to the
physical D (B) and K (π) or K∗ (ρ) mesons, we have extrapolated the form factors, both
in masses and momenta. The following procedure has been used:

1) At fixed heavy quark mass and meson momenta, ~pK,K∗, the generic form factor F
(F = f+, A1, A2 and V ) has been extrapolated linearly in the light quark mass, to
values corresponding to the strange (D → K,K∗) or massless (D → π, ρ) quarks.

2) F has been extrapolated in the mass of the heavy meson, to the D− and B−meson
masses, using the dependence expected in the HQET (see eqs.(3) below). In order
to evaluate the stability of these results with respect to a different extrapolation,
we have also extrapolated F in the mass of the heavy meson MP according to the
“näıve” expression F = α + β/MP . The differences between the two methods are
discussed later on.

3) In order to obtain the form factors at q2 = 0, we have only used the points with
~pD = 0 and ~pK,K∗ = 2π/La · (1, 0, 0), which have been extrapolated by assuming
meson pole dominance, F (q2) = F (0)/(1 − q2/M2

t ). This reduces the uncertainty
of the extrapolation because, in most of cases, the point with ~pD = 2π/La · (0, 0, 0)
and ~pK,K∗ = 2π/La · (1, 0, 0) corresponds to the smallest q2. Mt is the mass of
the lightest meson exchanged in the t-channel. Thus, the vector and axial meson
masses have been used for the extrapolation of f+, V and A1,A2 respectively. Mt

has been computed on the lattice, over the same gauge field configurations, at the
same heavy and light quark masses used for the three-point functions. In order to
obtain the physicalD− and B−meson masses, we have fitted the vector-pseudoscalar
mass difference ∆M = MP ∗ −MP (and similarly for the axial and scalar cases) as
∆M = AM + BM/MP . The results, extrapolated to the strange and massless light

mesons and the heavy meson respectively.
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MD∗ MD∗∗ 1++ MD∗∗ 0++ MDs
∗ MDs

∗∗ 1++ MDs
∗∗ 0++

1.95 ± 0.01 2.29 ± 0.34 2.03 ± 0.19 2.05 ± 0.01 2.40 ± 0.34 2.13 ± 0.19

MB∗ MB∗∗ 1++ MB∗∗ 0++ MBs
∗ MBs

∗∗ 1++ MBs
∗∗ 0++

5.32 ± 0.01 5.99 ± 0.62 5.46 ± 0.32 5.46 ± 0.01 6.13 ± 0.62 5.60 ± 0.32

Table 1: Masses (in GeV) of the vector, axial and scalar excitations for the D and B mesons
as determined from our simulation. The experimental pseudoscalar masses MD and MB are
used as an input. These masses have been used to extrapolate the form factors to q2 = 0.

quarks, are reported in table 1. These values have been used to extrapolate the
form factors at q2 = 0. In this extrapolation, the precise value of Mt is relatively
unimportant. For example we have verified that, by using the vector meson mass in
all cases, the results change by only a few per cent.

The q2-dependence of 1/f+(q2) and 1/A1(q
2) is compared with the meson dominance

predictions in fig. 2. The values of the inverse form factors are given as a function of the
dimensionless variable q2/M2

t , for the values of the heavy and light hopping parameter,
KH = 0.1250 and Kl = 0.1432. The lines in the figures represent the pole dominance
expectations, with the pole masses computed on the lattice. In order to reduce the error
due to the extrapolation in q2, the values of the form factors at zero momentum transfer
have been obtained, by fitting only the point closest to q2 = 0, as explained above.
The other points give, however, important information on the q2-dependence of the form
factors. As shown in the figure, the q2 behaviour of the two form factors is compatible
with pole dominance predictions. Similar conclusions can be reached also for the form
factors V (q2) and A2(q

2). Notice that the axial form factors determined by using QCD
sum rules [16, 17] do to follow the pole dominance behaviour.

3 Main Sources of Errors

In this section, we briefly describe the main sources of error which are present in our
calculation, besides the quenched approximation.

3.1 The “Thinning” Procedure

“Thinning” means that, when computing the correlation functions, one uses only one
point out of Nth, in each spatial direction. In our case Nth = 3. Thus, for example, the
Fourier transform of the two-point correlation function is defined as

C(t, ~p) = NT

∑

~xT

e−i~p·~xT C(t, ~xT ) (1)

where xT = 0, 3, 6, ... in each direction and NT is a suitable normalization factor. This
procedure is necessary when, as in our case, the computer memory is not sufficient to store
the full quark propagators. There is a systematic error introduced by thinning, because we
cannot eliminate high momentum components in the correlation functions. For Nth = 3,
it is possible to show that, for each spatial direction, two higher momentum components
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Figure 2: 1/f+(q2) and 1/A1(q
2) as a function of the dimensionless variable q2/M2

t . The heavy
and light Wilson parameters correspond to KH = 0.1250 and Kl = 0.1432 respectively. The
lines represent the pole dominance approximation.

(p1 and p2), besides the smallest one (p0), give a contribution to the correlation function.
p1 and p2 are related to p0 by the simple relation:

pm = p0 +
2π

La
·
(

L

3

)

·m , m = 1, 2 (2)

The systematic error introduced by thinning is expected to be negligible at large time
distances, since the contribution of the unwanted higher energy states is exponentially
suppressed in time. On the other hand, the resulting signal may be noisier, because we
use a small sample of the lattice points.

In the case of the two-point correlation functions, we have been able to directly compare
“thinned” and “non-thinned” correlation functions, computed on the same set of gauge
configurations, and for momenta ~p = 2π/La · (0, 0, 0) and (1, 0, 0). For the pseudoscalar
and vector meson correlations, no observable statistical or systematic effect has been
detected. However, the statistical noise introduced by thinning may be larger, when we
compute three-point correlation functions, simply because, in the latter case, we have
to thin twice. Thus, the thinning procedure could be responsible for the quite large
statistical errors which have been found, in spite of the high statistical sample used in
this calculation. Another reason could be the small spatial volume of our lattice.

5



3.2 O(g2a) and O(a2) Effects

Using the Clover action, discretization errors are of O(g2a) and O(a2). In the case of light
quarks, these effects have been shown to be much smaller than in the case of the standard
Wilson action [12]. In the charm quark mass region, at β ∼ 6.0, however, discretization
errors may still be important also in the Clover case.

An estimate of the lattice artefacts can be obtained by comparing values of lattice
renormalization constants, computed from different matrix elements, in a non-perturbative
way [12]. In ref. [18], the renormalization constants of the local vector and axial vector
currents, V L

µ = ψ̄1γµψ2 and AL
µ = ψ̄1γµγ5ψ2, have been determined, at β = 6.0, as a

function of the quark masses, m1 and m2, using the Ward identity method [12, 14]. A
variation of about 10 − 15%, on the values of ZV and ZA, has been observed, for heavy
quark masses between mHa = 0.3 and 0.9, which is the range used in the present study.
The renormalization of the quark fields, proposed in ref. [19] in order to reduce O(mHa)
effects, enters, in our case, only at O(m2

Ha
2), since we are using an improved action and

improved operators [8, 9]. Since the effects that we have observed are linear in mHa,
the KLM correcting factor [19] is of no help in our case. We interpret the residual mass
dependence as an effect of O(αsa). Similar results have been observed by the UKQCD
Collaboration, which works with a Clover action, at β = 6.2 [6]. For the above reasons, we
have used, through this paper, the non-perturbative values of ZV and ZA, as determined
in refs. [14, 15], for light quark masses. A 10 − 15% of systematic error is then certainly
present in our final results, due to residual O(αsa) effects.

3.3 Extrapolations of the Form Factors

As explained in the previous section, the form factors, computed in a range of heavy
quark masses around the charm, must be extrapolated in 1/MP and q2, in order to obtain
predictions for the physical form factors at zero momentum transfer. There is also an
extrapolation in the light quark mass, but this is quite smooth and unlikely to be a source
of an important uncertainty, within the present statistical accuracy. The extrapolation of
the form factors in 1/MP is more delicate. There are arguments, based on HQET, which
allow the expansion of the form factors in inverse powers of the heavy meson mass MP .
On the basis of HQET, up to O(1/M2

P ) and up to logarithmic corrections, one expects
the following behaviour for the relevant form factors [10]:

f+

√
MP

= γ+ ×
(

1 +
δ+
MP

)

V√
MP

= γV ×
(

1 +
δV
MP

)

A1

√
MP = γ1 ×

(

1 +
δ1
MP

)

A2√
MP

= γ2 ×
(

1 +
δ2
MP

)

(3)

The expansions given in eqs. (3) are valid, in the limit of large heavy quark mass, at
fixed momentum ~p of the light meson (in the frame where the heavy meson is at rest)
when |~p| ≪MP . The above conditions are always satisfied for q2max, when the initial and
final mesons are both at rest. In our simulation, they are also satisfied for the points
corresponding to ~p = 2π/La · (1, 0, 0) (these have been used in order to obtain all our final
predictions).

In sec. 4, we show that the dependence of the form factors on the heavy meson mass,
MP , is compatible with the HQET predictions. In order to evaluate the stability of the
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results with respect to a different extrapolation, we have also used a “näıve” scaling law
of the form:

f+, V, A1, A2 = α×
(

1 +
β

MP

)

(4)

For D−mesons, we find that the differences between the different extrapolations, eq.(3) or
(4), are quite small (≤ 2%) and completely negligible with respect to the statistical errors.
The results for B−meson decays will be reported in sec. 4. In this case the differences
are larger, of the order of 10 − 20%, but still small with respect to the statistical errors,
which amplify in the extrapolation. Thus, we are not able to distinguish between the two
different behaviours.

We now turn the discussion to the q2 extrapolation. In the range of heavy quark
masses considered in this study, the q2-dependence of the form factors is compatible with
pole dominance predictions. This range corresponds approximately to a heavy meson
mass of the order of the D−meson mass and we also have points at q2 ∼ 0. Therefore,
as far as the D decays are concerned, the extrapolation to q2 = 0 does not represent
an important source of theoretical uncertainty. The extrapolation in 1/MP to the B-
meson mass results in momentum transfers close to the maximum one. In order to then
predict the form factors at small q2, we have been forced to assume pole dominance.
Since the range of the extrapolation is very large2, this strongly biases our final results,
e.g. the determination of the form factors at q2 = 0. In particular, we have used pole
dominance also in those cases, where it is in contradiction with the results of QCD sum
rules calculations [16, 17]. In order to improve the situation, it is necessary to be able to
work with heavier quark masses and to increase the range of q2. This can only be achieved
by going to larger lattices (at larger values of β).

3.4 The “Analytic” and “Ratio” Methods

In order to extract the weak current matrix elements from the three-point functions, we
used two different procedures, denoted by “analytic” and “ratio” methods. The two pro-
cedures are discussed in detail in ref. [5]. The “ratio” methods means that, at each fixed
time distance, we divide the three-point correlation function by the two relevant two-point
functions of the D and K(K∗) meson (with corresponding momentum) in order to cancel
the exponential time-dependence of the three-point correlation function. The “analytic”
method differs from the previous one because, instead of dividing by the two-point correla-
tion functions, computed at different momenta, we divide by the corresponding analytical
expressions, with the source matrix elements and the meson energies (computed from the
meson masses, see eqs.(6) and (8) below) taken from the fit of the two-point functions, at
zero momentum.

When both the initial and final mesons are at rest these two methods are practically
equivalent and lead to almost identical results. However, when the meson momenta are
different from zero, within the statistical fluctuations, the two methods are expected to
agree only up to O(a) effects.

At β = 6.2 and with a lattice volume 243 × 48, it was found that discretization
errors seem to be reduced, by using, for the two-point correlation functions, the “lattice”

2While the typical
√

q2 on our lattice is at most 1.6 GeV, the extrapolation in the heavy quark mass will

bring us to
√

q2 = 4.5 GeV (q2 = M2

B
− 2MB

√

M2
π + (2 π/18 a)2 +M2

π), and similarly for B → ρ.
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f+(0) V (0) A1(0)

analytic 0.81 ± 0.07 1.07 ± 0.21 0.66 ± 0.11

ratio 0.75 ± 0.06 1.09 ± 0.22 0.67 ± 0.11

A2(0) V (0)/A1(0) A2(0)/A1(0)

analytic 0.44 ± 0.34 1.63 ± 0.29 0.67 ± 0.43

ratio 0.52 ± 0.29 1.62 ± 0.29 0.79 ± 0.35

Table 2: Semi-leptonic form factors at zero momentum transfer for D → K and D → K∗

decays. The results have been obtained by using the method called “analytic” or “ratio” to
extract the form factors.

dispersion relation of a free boson

C̄(t, ~p) =
Z

2sinhE
e−Et, (5)

where

E =
2

a
arcsinh





√

sinh2(
ma

2
) +

∑

i=1,3

sin2(
pia

2
)



 (6)

and ~p is the momentum of the meson [20]. The same is true in our case. We have
verified this point, by studying the ratio R(t) = C(t, ~p)/C̄(t, ~p). C(t, ~p) is the two-point
correlation function of a meson with momentum ~p, as computed in our simulation. C̄(t, ~p)
is the expression in eq. (5), with Z and m taken from the fit of the zero momentum
correlation to C̄(t, ~p = ~0). At large time distances, we find that R(t) is close to one
(typically 1.05 ± 0.01). This compares favourably to the value 1.10 ± 0.02 in the case
where, instead of eq. (5), we use the standard expression

Ĉ(t, ~p) =
Z

2E
e−Et, (7)

with
E =

√

m2 + |~p|2. (8)

For this reason, in all our analysis, we have fitted the two point functions to C̄(t, ~p), as
defined in eq. (5).

Using C̄(t, ~p), the “ratio” and “analytic” methods yield slightly different results. In
order to exhibit the differences, we give in table 2 the corresponding sets of values for the
form factors f+(0), V (0), A1(0) and A2(0), as well as for the ratios V/A1 and A2/A1 at
zero momentum transfer, for the D → K and D → K∗ decays. From the entries in the
table one can see that the differences are larger for the decay in the pseudoscalar channel
and they are always between 2% and ∼ 8%3. In our final results, the differences between
the two methods have been added in quadrature with the statistical errors. Had we used
the standard expression Ĉ(t, ~p), we would had found larger differences between the “ratio”
and “analytic” methods, which in the worst case have been evaluated to be 11%, see also
ref. [5].

3 For the form factor A2, the difference is of the order of 15%. In this case, however, the statistical errors
are so large that the possibility of drawing any conclusion is prevented.
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Reference f+(0) V(0) A1(0)

EXP Average [21] 0.77 ± 0.04 1.16 ± 0.16 0.61 ± 0.05

LAT This work 0.78 ± 0.08 1.08 ± 0.22 0.67 ± 0.11
LMMS [3] 0.63 ± 0.08 0.86 ± 0.10 0.53 ± 0.03
BKS [4] 0.90 ± 0.08 ± 0.21 1.43 ± 0.45 ± 0.49 0.83 ± 0.14 ± 0.28
ELC [5] 0.60 ± 0.15 ± 0.07 0.86 ± 0.24 0.64 ± 0.16

UKQCD [6] 0.67+0.07
−0.08 1.01+0.30

−0.13 0.70+0.07
−0.10

LANL [7] 0.73 ± 0.05 1.27 ± 0.08 0.66 ± 0.03

SR BBD [16] 0.60+0.15
−0.10 1.10 ± 0.25 0.50 ± 0.15

QM WSB [22] 0.76 1.23 0.88
ISGW [23] 0.8 1.1 0.8

GS [24] 0.69 1.5 0.73

Reference A2(0) V(0)/A1(0) A2(0)/A1(0)

EXP Average [21] 0.45 ± 0.09 1.90 ± 0.25 0.74 ± 0.15

LAT This work 0.49 ± 0.34 1.6 ± 0.3 0.7 ± 0.4
LMMS [3] 0.19 ± 0.21 1.6 ± 0.2 0.4 ± 0.4
BKS [4] 0.59 ± 0.14 ± 0.24 1.99 ± 0.22 ± 0.33 0.7 ± 0.16 ± 0.17
ELC [5] 0.40 ± 0.28 ± 0.04 1.3 ± 0.2 0.6 ± 0.3

UKQCD [6] 0.66+0.10
−0.15 1.4+0.5

−0.2 0.9 ± 0.2
LANL [7] 0.44 ± 0.16 1.83 ± 0.09 0.74 ± 0.19

SR BBD [16] 0.60 ± 0.15 2.2 ± 0.2 1.2 ± 0.2

QM WSB [22] 1.15 1.4 1.3
ISGW [23] 0.8 1.4 1.0

GS [24] 0.55 2.0 0.8

Table 3: Semi-leptonic form factors for D → K and D → K∗ decays. The label EXP refers
to the experimental results and the labels LAT, QM and SR correspond to lattice, quark model
and sum rules calculations respectively.

4 Physics Results

4.1 D−Meson Decays

Our best estimates for the form factors and partial widths are those given in the abstract
and in tables 3 and 4. In these tables, we present our results, together with other cal-
culations and experimental determinations of the form factors. Our central values for
the four relevant form factors are in good agreement with the experimental data (typ-
ically to within less than 10%), although we still suffer, in some cases, from sizeable
statistical errors, especially in the case of A2. Considering that lattice calculations do
not contain free parameters, we find this agreement remarkable. We also observe (tables
3 and 4) that predictions from QCD sum rules calculations are in agreement with lat-
tice calculations and experimental determinations, whereas quark models fail to describe
the D → K∗ decay. Besides the results reported in the tables, we have also obtained
fπ
+(0)/fK

+ (0) = 1.02 ± 0.03.
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Reference Γ(D → K) Γ(D → K∗)
ΓL(D → K∗)

ΓT (D → K∗)

EXP Average [21, 25] 9.0 ± 0.5 5.1 ± 0.5 1.15 ± 0.17

LAT This work 9.1 ± 2.0 6.9 ± 1.8 1.2 ± 0.3
LMMS [3] 5.8 ± 1.5 5.0 ± 0.9 1.51 ± 0.27
ELC [5] 5.4 ± 3.0 ± 1.4 6.4 ± 2.8 1.4 ± 0.3

UKQCD [6] 7.0 ± 1.6 ± 0.4 6.0+0.8
−1.6 1.06 ± 0.16 ± 0.02

SR BBD [16] 6.4 ± 1.4 3.8 ± 1.5 0.86 ± 0.06

QM WSB [22] 8.8 9.7 0.92
ISGW [23] 8.5 9.2 1.09

GS [24] 7.1 − −
Reference Γ(D0 → π−) Γ(D0 → ρ−) Γ(Ds → φ)

EXP Average [26] 0.9+0.3
−0.2 – 4.0 ± 0.6

LAT This work 0.8 ± 0.2 0.6 ± 0.2 6.4 ± 1.1
LMMS [3] 0.5 ± 0.2 0.40 ± 0.09 4.4 ± 0.6
ELC [5] 0.5 ± 0.3 ± 0.1 0.6 ± 0.3 ± 0.1 –

UKQCD [6] 0.52 ± 0.18 ± 0.04 0.43 ± 0.11 –

SR Ball [17] 0.39 ± 0.08 0.12 ± 0.03 –

QM WSB [22] 0.72 0.68 7.9
ISGW [23] 0.38 0.46 –

Table 4: Semi-leptonic partial widths (in units of 1010s−1) for D → K, K∗, π, ρ and φ, using
Vcs = 0.975 and Vcd = 0.222. The ratio of the longitudinal to transverse polarization partial
widths for D → K∗ is also given. The experimental values of Γ(D0 → π−), and Γ(Ds → φ)
have been computed by taking the corresponding branching ratios and meson life-times from ref.
[26].
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Figure 3: Extrapolation of the form factors to the D- and B-meson masses (diamonds) using
the predictions of the HQET. The points corresponding to the lightest heavy quark mass have
not been used in the fits.

4.2 Extrapolation to B−Meson Decay

At the values of lattice spacing currently used in numerical simulations, we are unable
to study directly the b quarks. However, as discussed above, in order to obtain indirect
information on B−meson semi-leptonic decays, we can follow the strategy suggested in
ref. [5]: we study the form factors in the region of the charm quark mass and then
extrapolate the results to the bottom mass by using the scaling behaviour predicted by
the HQET, eqs. (3). In order to reduce the uncertainty due to the extrapolation, one
could also compute the form factors in the static limit, i.e. the limit in which the heavy
quark mass is infinite. This determination is not available yet.

Our results show that the dependence of the form factors on the heavy meson mass,
MP , is compatible with the HQET predictions, see eq.(3), as first observed in ref. [5].
This dependence is shown in fig. 3, where the four relevant form factors, extrapolated
to the chiral limit in the light quark mass, are given, as a function of 1/MP (crosses).
The form factors were computed with ~pD = 0 and ~pK,K∗ = 2π/La(1, 0, 0). The values
interpolated/extrapolated to the D and B meson masses (diamonds) are also given.

From the values of fig. 3, we can compute the form factors at q2 = 0. They have
been obtained by assuming the pole meson dominance behaviour, using the meson masses
given in table 1. The corresponding results are presented in table 5, labelled “b”, together
with the results of other theoretical determinations. As discussed earlier, in order to
evaluate the stability of these results with respect to a different extrapolation, we also
give the values (labelled as “a”) obtained with the näıve scaling laws, eq. (4). In the
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Reference f+(0) V(0) A1(0)

LAT This work “a” 0.29 ± 0.06 0.45 ± 0.22 0.29 ± 0.16
This work “b” 0.35 ± 0.08 0.53 ± 0.31 0.24 ± 0.12

ELC “a” [5] 0.26 ± 0.12 ± 0.04 0.34 ± 0.10 0.25 ± 0.06
ELC “b” [5] 0.30 ± 0.14 ± 0.05 0.37 ± 0.11 0.22 ± 0.05

SR Ball [17] 0.26 ± 0.02 0.6 ± 0.2 0.5 ± 0.1

QM WSB [22] 0.33 0.33 0.28
ISGW [23] 0.09 0.27 0.05

Reference A2(0) V(0)/A1(0) A2(0)/A1(0)

LAT This work “a” 0.24 ± 0.56 2.0 ± 0.9 0.8 ± 1.5
This work “b” 0.27 ± 0.80 2.6 ± 1.9 1.0 ± 3.1

ELC “a” [5] 0.38 ± 0.18 ± 0.04 1.4 ± 0.2 1.5 ± 0.5 ± 0.2
ELC “b” [5] 0.49 ± 0.21 ± 0.05 1.6 ± 0.3 2.3 ± 0.7 ± 0.2

SR Ball [17] 0.4 ± 0.2 – –

QM WSB [22] 0.28 1.2 1.0
ISGW [23] 0.02 5.4 0.4

Table 5: Semi-leptonic form factors for B → π and ρ. The label “a” refers to the näıve
extrapolation in 1/MP , eq. (3), and label “b” to the extrapolation given in eq. (4). To extrapolate
to zero momentum transfer we have used the masses of table 1. We have taken the ISGW form
factors, as extrapolated to q2 = 0, in ref. [17].

case of the D−meson the difference between the HQET scaling laws and näıve scaling
is immaterial. For the B−meson, the differences are smaller than the statistical errors
(typically 10 − 20%), so that we are not able to distinguish between the two behaviours.
We find reassuring, however, that the results for B−decays are in good agreement with
the results of ref. [5], where the standard fermion Wilson action and a smaller lattice
spacing, corresponding to β = 6.4, were used. Finally, we observe that we find values for
A1 and A2 smaller than those obtained by QCD sum rules, cf. table 5. The reason is
probably due to the fact that we have assumed pole dominance, whereas QCD sum rules
find that the axial form factors are flat in q2.

From the values of the form factor f+(0) given in table 5, and by assuming meson
dominance for the q2-dependence, we can give an estimate of the B → π decay rate. To
evaluate the errors, we have allowed the form factor to vary in all possible ways by one
σ within the statistical errors and to vary in all possible ways among the values obtained
with different extrapolations in 1/MP , i.e. fits “a” and “b”. We obtain

Γ(B → πlνl) = |Vub|2 (8 ± 4) × 1012s−1, (9)

that corresponds to the branching ratio

B(B → πlνl) = |Vub|2 (12 ± 6) (10)

when the value τB = (1.49 ± 0.12)× 10−12 sec. is used for the B−meson lifetime. On the
other hand, with our present accuracy, the errors on the form factors for the B → ρ decay
are still too large to get an estimate of the corresponding branching ratio. A accurate
determination of this quantity can only be achieved by working with heavier quark masses
and by going to larger lattices.

12



Acknowledgements

We thank R. Gupta, L. Lellouch, J. Nieves and C.T. Sachrajda for discussions. We
acknowledge the partial support by M.U.R.S.T. and by the EC contract CHRX-CT92-
0051. C.R.A. acknowledges the support by the EC Human Capital and Mobility Program,
contract ERBCHBICT941462.

References

[1] M.Crisafulli et al., Phys.Lett. 223B (1989) 90.

[2] V.Lubicz, G.Martinelli and C.T.Sachrajda, Nucl.Phys. B356 (1991) 310.

[3] V.Lubicz, G.Martinelli, M.McCarthy and C.T.Sachrajda, Phys.Lett. 274B (1992)
415.

[4] C.Bernard, A.El-Khadra and A.Soni, Phys.Rev. D43 (1992) 2140; D45 (1992) 869.

[5] A.Abada et al., Nucl.Phys. B416 (1994) 675.

[6] K.C. Bowler et al., the UKQCD collaboration, Edinburgh Preprint 94/546.

[7] T.Bhattacharya and R.Gupta, the LNAL collaboration, LAUR-94-3079.

[8] B.Sheikholeslami and R.Wolert, Nucl.Phys. B259 (1985) 572.

[9] G.Heatlie et al., Nucl.Phys. B352 (1991) 266.

[10] N.Isgur and M.B.Wise Phys.Rev. D42 (1990) 2388.

[11] A.Abada et al., Nucl.Phys. B(Proc.Suppl.)34 (1994) 477.

[12] G. Martinelli, C.T. Sachrajda and A. Vladikas, Nucl.Phys. B358 (1991) 212.

[13] G. Martinelli, C.T. Sachrajda, G. Salina and A. Vladikas, Nucl.Phys. B378 (1991)
591.

[14] G. Martinelli, S. Petrarca, C.T. Sachrajda and A. Vladikas, Phys. Lett. B311 (1993)
241.

[15] M. Paciello et al., Rome prep. 93/1034 (July 1994), to appear in Phys. Lett. B.

[16] P.Ball, V.M.Braun and H.G.Dosch Phys.Rev. D44 (1991) 3567.

[17] P.Ball, Phys.Rev. D48 (1993) 3190.

[18] M. Crisafulli et al., work in progress; see also A. Vladikas at Lattice 94 (Bielefeld,
September 27-October 1, 1994), to appear in the proceedings.

[19] A. Kronfeld, Nucl.Phys. B(Proc.Suppl.) 30 (1993) 444.

[20] L. Lellouch et al., the UKQCD collaboration, Southampton prep. SHEP 94/95-5.

[21] M.Witherell, XVI International Symposium on Lepton-Photon Interactions, Cornell
University, Ithaca, New York, USA, 10-15 August 1993, UCSB-HEP-93-06.

[22] M.Bauer, B.Stech and M.Wirbel, Z. Phys. C29 (1985) 637; C34 (1987) 103.

[23] N.Isgur, D.Scora, B.Grinstein and M.B.Wise, Phys.Rev. D39 (1989) 799; N. Isgur
and D. Scora Phys.Rev. D40 (1989) 1491.

13



[24] F.J. Gilman and R.R. Singleton, Phys. Rev. D41 (1990) 142.

[25] S.Stone, 5th International Symposium on Heavy Flavour Physics, Montreal, Canada,
6-10 July 1993.

[26] Review of Particle Properties, Phys. Rev. D50 (1994).

14








