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Abstract
Full detector simulation was among the largest CPU consumers in all CERN experiment software stacks for the first two 
runs of the Large Hadron Collider. In the early 2010s, it was projected that simulation demands would scale linearly with 
increasing luminosity, with only partial compensation from increasing computing resources. The extension of fast simula-
tion approaches to cover more use cases that represent a larger fraction of the simulation budget is only part of the solution, 
because of intrinsic precision limitations. The remainder corresponds to speeding up the simulation software by several 
factors, which is not achievable by just applying simple optimizations to the current code base. In this context, the GeantV 
R&D project was launched, aiming to redesign the legacy particle transport code in order to benefit from features of fine-
grained parallelism, including vectorization and increased locality of both instruction and data. This paper provides an 
extensive presentation of the results and achievements of this R&D project, as well as the conclusions and lessons learned 
from the beta version prototype.
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Introduction

With ever-increasing data acquisition rates and detector 
complexity, the experimental particle physics program 
is reaching the exascale in terms of the data produced. 
The high-luminosity phase of the Large Hadron Collider 
(LHC) will produce about 150 times more data than its 
first run [1]; hence, a proportional increase in computing 
requirements is expected. All steps in the data processing 
chain are expected to cope with the increased throughput, 
under the assumption of a flat computing budget.

Particle transport simulation is an essential component 
in all phases of a particle physics experiment, from detector 
design to data analysis. Its main role is trying to predict the 
detector response to the traversal of particles, which is a very 
complex task involving a large number of models. Among 
the most used particle transport libraries in high energy 
physics (HEP) are Geant4 [2], Fluka [3], and Geant3 [4]. 
Simulation is one of the most computationally demanding 
applications in HEP, utilizing more than half of the dis-
tributed computing resources of the LHC. The increasing 
demand for simulated data samples can be satisfied in part 
with approximate (so-called) fast simulation techniques, but 
accelerating the detailed simulation process remains essen-
tial for increasing simulation throughput.

The ambitious experiment upgrades are occurring in a 
context where computing technology is rapidly evolving. 
Since the historical approach to improve CPUs, increas-
ing the clock speed and shrinking the transistors, is now 
limited by quantum leakage, industry is exploring alter-
native solutions for the next technological breakthrough. 
The main hardware manufacturers now favor parallel (or 
vector) processing units as well as heterogeneous hardware 
solutions with accelerators such as GPUs, FPGAs, and 
ASICs, facilitating a performance boost for many domain-
specific applications. Most HEP applications are not opti-
mized for Single Instruction Multiple Data (SIMD) paral-
lelism or coprocessors and therefore do not make efficient 
use of these new resources.

The SIMD model utilizes specialized CPU vector regis-
ters to execute the same sequence of instructions in parallel 
for multiple data. The Single Instruction Multiple Threads 
(SIMT) model has the same concept as SIMD but the com-
mon code (kernel) is executed by multiple synchronous 
threads. The main practical difference between the two 
models is the length of the data vector: short in the case of 
SIMD, usually found on CPUs, and much longer in the case 
of SIMT, usually found on GPUs. Also, SIMD requires the 
strict alignment in a single register of all the data to be pro-
cessed, while each thread in SIMT processes data in its own, 
separate register. Vectorized applications are easier to port 
to coprocessors that implement the SIMT model.

The benefits of SIMD and SIMT have been demonstrated 
for applications featuring massive data parallelism, such as 
linear algebra and graphics. However, bringing these vector-
ization techniques to complex code with significant branch-
ing presents a different type of challenge. Particle transport 
simulation has many features hostile to SIMD, including 
sparse memory access into large data structures, deep con-
ditional branching, and long algorithmic chains and deep 
function call stacks per data unit (a track, representing a 
particle state) with poor code locality.

The GeantV simulation R&D project [5] aimed to exploit 
modern CPU vector units by re-engineering the simulation 
workflow implemented in Geant4 [2] and the associated 
data structures. The goal was to enhance instruction local-
ity by regrouping data (tracks) according to the tasks to be 
executed, rather than executing a sequence of tasks for the 
same track. The advantage of such an approach, besides 
the temporal locality, is that it enables new forms of data 
parallelism that were inaccessible before, such as SIMD 
and SIMT. Other computational workflows in HEP, such 
as reconstruction or physics analysis, could benefit from 
the same optimizations and it is expected that the lessons 
learned from the GeantV R&D can be applied to these areas.

The target of the GeantV prototype was to speed up par-
ticle transport simulation applications by a factor of 2–5 on 
modern CPUs [5], compared to Geant4 in similar conditions. 
Gains from SIMD and better instruction cache locality were 
foreseen, along with code and algorithm refactoring. To sup-
port multi- and many-core platforms, thread parallelism was 
supported starting with the very early versions of the proto-
type. Another design requirement of this study was to ensure 
portability to various hardware architectures. This entails 
keeping the same code and preserving the ability to migrate 
the data model representation in a device-friendly format.

Concepts and Architecture

Particle transport simulation is peculiar in terms of work-
flow and data access patterns. In most HEP event processing 
applications, the data lifetime is rather short: data is filtered 
and processed to produce results or derived quantities that 
are consumed by subsequent tasks. It is common for the 
same data to be used as constant input by several algorithms, 
but it is less common for that data to be recursively changed 
while being processed. The latter is the case for simulation, 
which follows the life cycle of a track, representing a particle 
traveling through the detector. The track is the central data 
object used by most of the transport algorithms: geometry 
computations, propagation in electric or magnetic fields, or 
physics processes affecting the associated particle. From a 
computational perspective, the track represents a state taken 
as input and modified subsequently by a sequence of tasks, 
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collaborating to perform a step that moves it from one point 
to another. There is a design choice in the ordering of indi-
vidual steps. In the traditional design, simulation engines 
perform consecutive steps on a single track until it completes 
its transportation. To enhance code locality, one can chose 
an alternative approach, grouping tracks undergoing similar 
stepping tasks (e.g. the same physics model actions). This 
requires deep changes in the track handling and step order-
ing compared to the classical approach, which is the basic 
direction taken by GeantV.

An important feature of simulation that drives the appli-
cation design is unpredictability: particle physics is stochas-
tic by nature, implying that the next physics process affecting 
a particle has to be chosen according to probability distri-
bution functions. One cannot generate a sequence of pro-
cesses in advance, because their probabilities are dependent 
on the material properties of the geometry location and the 
kinematic properties of the current track. Hence, the scalar 
(per track) data flow consists in a sequence of tasks which, 
depending on the previous one, cannot be known a priori.

The most convenient concept for handling the multitude 
of alternative algorithms is run-time polymorphism or vir-
tual inheritance. Moreover, the large diversity and complex-
ity of physics and geometry algorithms typically generate 
deep simulation call stacks and expensive branching logic, 
with a corresponding loss of computational efficiency.

The main GeantV concept is to change the focus from 
being data-centric to being algorithm-centric, making sim-
ulation SIMD- and SIMT-friendly. Instead of following a 
workflow from a track’s perspective, static processing stages 
are defined that handle track populations being processed 
by each stage. This change of viewpoint helps to enhance 
spatial and temporal instruction locality, at the price of using 
more memory and likely worse data caching. Bundling more 
work together also enables more fine-grained parallelism and 
favors deployment on heterogeneous computing resources.

Another important exploration in the context of simula-
tion is parallelism. Multi-threading parallelism is an impor-
tant lever for making use of the full processing power of 
modern CPUs. Even if most HEP workflows are embar-
rassingly parallelizable on input data (such as individual 
LHC collision events), most of our applications are mem-
ory-bound and simulation is not an exception. Event-level 
parallelism has already been used in production for several 
years in Geant4, with very good overall scaling performance 
in multi-threaded mode and rather small memory overhead 
coming from each additional thread. The only problem is 
that, while multi-threading allows effective use of many-core 
CPUs, it does not produce any increase in the throughput 
per thread.

Vectorization is one of the throughput-increasing 
acceleration techniques and becomes beneficial when the 
code produces a large percentage of SIMD instructions. 

Although compiler authors are striving to provide solu-
tions for automatic vectorization, in practice there are 
only a few kinds of problems for which auto-vectorization 
works out of the box. Auto-vectorization is more likely 
to be successful within confined data loops with reduced 
branching complexity and without any dependence on the 
input data. Since, in simulation, relatively few algorithms 
have natural internal loops, there are only limited ben-
efits from auto-vectorization. GeantV explores percolating 
track data into low-level algorithms, aiming to loop over 
this data internally. This approach requires being able to 
schedule reasonable data populations for each vectorized 
algorithm.

In this approach, data first needs to be accumulated into 
per-algorithm containers (“baskets” in GeantV jargon), 
before being processed. The algorithms need to expose a 
new interface to handle an input basket and provide imple-
mentations that handle the basket data in a vectorizable man-
ner. Note that the tracks coming from a single event may not 
suffice to fill baskets efficiently, given the complex branching 
of simulation code and the sheer variety of physics processes 
needed. One framework prerequisite is, therefore, to be able 
to mix tracks belonging to many concurrent events in the 
same processing unit.

Moving one level below, the requested track data has to 
be gathered and copied into the vector registers. For this 
to happen, the data are copied into arrays, each entry cor-
responding to the data of one track. In this scenario, the 
algorithm can be expressed as an easily-vectorized loop 
over C-like arrays. Scattering the algorithm output data to 
the original tracks completes the procedure and allows the 
processed tracks to be dispatched to subsequent algorithms. 
This schema requires a data transformation layer on top of 
each algorithm as shown in Fig. 1.

During this study, available vectorization techniques were 
thoroughly investigated in terms of programmability, per-
formance, and portability. The techniques evaluated include 
auto-vectorization, compiler pragmas, SIMD libraries, and 
compiler intrinsics. The conclusion was that the higher the 
control over vectorization performance, the lower the port-
ability and programmability. Assembly code or intrinsics are 
both difficult to write and maintain. On the other hand, auto-
vectorization and compiler pragmas do not guarantee vec-
torization as an outcome, and this is an effect that worsens 
with increasing algorithm complexity. Our preferred choice 
was to use SIMD libraries offering a high-level approach to 
vectorization via SIMD types and higher-level constructs, 
while keeping the complexity at a reasonable level and lever-
aging the portability of the library. It was decided to decou-
ple as much as possible the implementation of algorithms 
from the concrete SIMD libraries, leading to the creation 
of VecCore [6], an abstraction layer on top of SIMD types 
and interfaces, supporting both scalar and vector backends 
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(such as Vc [7], and UME::SIMD [8]). The scalar backend 
supports SIMT as well.

Software Design

GeantV transforms the scalar workflow into a vector one. 
Instead of handling one track at a time, algorithms can oper-
ate on baskets of tracks. Once a basket is injected in the 
algorithm, the vectorization problem is reduced to trans-
forming all scalar operations on track data into vector opera-
tions on basket data. To generate efficient SIMD instructions 
and to quickly load data into SIMD registers, the basket data 
needs to be transformed from an array of track structures 
(AOS) to a structure of arrays of track data (SOA). This 
copying operation is only necessary for the part of the track 
data needed by the algorithm.

The workflow is orchestrated by a central run manager. 
This coordinates the work of several components, among 
which there are the event generator, the geometry and phys-
ics managers, and the user application. The main event loop 
can be controlled by either the GeantV application or the 
user framework. Primary tracks, defining the original input 
collision event, are either generated internally or injected 
by the user, buffered by an event server. The track-stepping 
loop is re-entrant, executed concurrently in several threads. 
Each thread takes and processes tracks from the event server. 
Once all tracks from a given event are transported, another 
event is generated/imported. The scheduler respects the con-
straint not to exceed the maximum number of events in flight 
set by the user.

GeantV Scheduler

The scheduler’s main task is to gather data efficiently in bas-
kets for all the components, in order to improve vectoriza-
tion. Also, the multi-threaded approach needs to have good 
scaling to make efficient use of all available cores. During 
the study, several different approaches to achieve both of 
these goals were tested, resulting in several versions of the 
scheduler.

The first version of scheduling was mostly geometry-
centric. It tried to benefit from the observation, illustrated 
in Fig. 2, that many track steps are done in a smaller number 
of important detector volumes/materials (volume locality). 
At the least, geometry calculations could be vectorized for 
such baskets. The model had a central work queue that han-
dled baskets containing tracks located in the same geometry 
volume. Dedicated transport threads concurrently picked 
baskets from the queue and transported them to the next 
boundary. Whenever a track entered a new volume, it was 
copied into a pending basket for that volume. The worker 
thread that managed to fill a given basket beyond a threshold 
was then responsible for dispatching it to the work queue and 
replacing it with a recycled empty basket. A garbage collec-
tor thread was responsible for pushing partially filled baskets 
to the work queue whenever the queue started to be depleted. 
Merging produced hits and storing them to the output file 
was managed by a special I/O thread.

This first approach focused on demonstrating track-level 
parallelism based on geometry locality, although vectorized 
algorithms for baskets were not available at the start of the 
project. This was an extremely useful step for understanding 
the differences and peculiarities of the basket-based track 
workflow compared to the single-track approach. However, 
the model had scaling issues due to high contention on spe-
cific baskets and frequent flushes done by the garbage col-
lector during the event tails.

Fig. 1   An algorithm-centric view of the operations performed for 
updating the track state during a single step for the scalar and vec-
tor cases. Tracks are handled by pointer (Track*) rather than by value 
due to the need to reshuffle per algorithm

Fig. 2   Geometry volume locality is observed in most detector simula-
tions. This example illustrates the sorted number of simulated steps 
per volume in an ATLAS simulation from 2011. For this particular 
simulation, 50% of the steps are executed in 50 out of 7100 logical 
volumes
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A second version of the scheduler introduced support 
for explicit SIMD vectorization. The basket contained a 
track SOA with aligned arrays ready to be copied into the 
vector registers. Track data was copied in and out of the 
SOA, as tracks were passing from one basket to another. 
A simplified tabulated physics model was available in this 
version and, since it was not vectorized, the scheduler was 
still dealing only with geometry-local baskets. The prototype 
complexity increased and several tunable parameters were 
introduced in an attempt to implement an adaptive behav-
ior, optimizing the performance of different setups and in 
different simulation regimes. Gathering and scattering data 
into the SOA baskets introduced new overheads due to extra 
memory operations, plus extra bottlenecks in the concur-
rent approach. To minimize the cost of memory operations, 
awareness of non-uniform memory access (NUMA) was 
introduced for handling basket data, leading to improve-
ments of up to 10% of the simulation time.

The final version of the GeantV scheduler is shown in 
Fig. 3. Track data is described as a POD structure and 
pre-allocated in contiguous memory blocks. Each thread 
takes pointers to primary tracks from an event server, stor-
ing them in an input buffer (having the role of particle 
stack). The stepping loop is implemented as a sequence of 
stages, each implementing a specific part of the processing 
required to make a single step for a population of tracks. 
Pointers to tracks tagged to execute a given stage are accu-
mulated in the input stage basket, processed by the stage 
algorithms, then dispatched to the input stage basket of the 
next stage. This implements a stepping pipeline for track 
populations. The scheduler takes bunches of track pointers 
(last generations first) and copies them in the input basket 

of the first stage, triggering the pipeline execution. The 
stage basket is dispatched internally to specific handlers 
of specific processing tasks. For example, the propagation 
stage dispatches all neutral tracks to a linear propagator 
and the charged ones to a field propagator. The handlers 
of vectorized algorithms first accumulate (basketize) 
enough tracks to make the algorithm execution efficient. 
Subsequently, only the members of the track structure 
needed by the algorithm are gathered in an SOA before 
being processed, and then the results are scattered back 
to the original track pointers. Scalar algorithms make use 
directly of the stage basket track pointers, without having 
to gather/scatter data, so scalar and vector workflows can 
coexist. The last stage in the stepping pipeline implements 
the final stepping actions and calls the user application for 
scoring (tallying hits in sensitive detectors), before com-
pleting the cycle by copying the surviving tracks back to 
the prioritized particle stack. The scheduler has the role 
to push tracks in the stepping pipeline until exhausting 
the initial track population, then refilling it from the event 
server. Globally, the scheduler has also to balance the 
workload among concurrent threads and enforce policies 
to optimize the global workflow. In addition to fixing many 
of the issues identified in the previous versions, such as 
contention in multi-threaded mode and memory behavior, 
this version introduced a generic model for basketizing, 
corresponding to the availability of more vectorized algo-
rithms, in addition to geometry ones. The new framework 
significantly improved the basketizing efficiency, while 
also accommodating scalar and vector processing flows, 
switching from one to another depending on the workflow 
conditions.

Fig. 3   The final version of GeantV scheduler, accommodating both scalar and vector processing flows
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Scalar and Vector Workflows

To support both scalar and vector workflows in the same 
framework, a common interface class called handler was 
introduced to wrap all simulation algorithms in a com-
mon tasking system. The algorithm needs to implement 
the appropriate scalar and vector interfaces taking as input 
either a single track pointer or a vector (basket) of tracks. 
The vector method acts as a dispatcher for the SIMD version 
of the algorithm. It has to first gather the needed data from 
the container of tracks and copy it into a custom SIMD data 
structure. For example, geometry navigation requires only 
the track position and direction, while magnetic field propa-
gation needs also the charge, momentum, and energy. The 
SIMD structure is then passed to the vectorized algorithm. 
The newly produced track state variables are then scattered 
to the original track pointers. To feed such handlers in a 
workflow, tracks executing the same algorithm need to be 
gathered in SIMD baskets before being handed to the vector 
interface. In the case vectorization of a given algorithm is 
not implemented or inefficient, the scalar interface can be 
directly invoked, using a scalar pipeline for this algorithm.

Algorithms of the same type are grouped into simulation 
stages. The simulation stages refer to specific operations 
that have to be executed in a pipelined manner to perform 
a single step that moves a particle from one position to the 
next. The sequence of stages executed per step by baskets 
of tracks can be followed in Fig. 4. At the beginning of the 
step, a PreStep stage initializes the track flags and separates 
killed tracks, handling them to a final SteppingActions to 
be accounted and scored. The remaining tracks enter the 
stage ComputeIntLen, which samples physics processes’ 

cross-sections and proposes an interaction length. Subse-
quently, a GeomQuery stage computes the geometry step-
ping limits in the current volume and a PrePropagation 
stage uses the actual step to determine in advance if multi-
ple scattering will affect the current step. The actual track 
propagation is performed during a PropagationStage, having 
one handler for neutral and one for charged particles. The 
multiple scattering deflection is added after the propagation 
in a PostPropagation stage, and any continuous processes 
are subsequently applied by the AlongStepAction stage. For 
steps limited by physics processes, a PostStepActions stage 
is executed, and then the final SteppingActions stage that 
accounts for stopped tracks and executes user actions. Every 
stage has an input basket per thread, used to execute the 
stage either in scalar mode, by looping over the contained 
tracks, or in vector mode, by passing the full basket to the 
interface.

The workflow is executed in the following manner. Each 
thread collects a set of primary tracks in a special buffer, 
called StackBuffer, which emulates the functionality of a 
typical track stack (also used in Geant4). Secondary tracks 
of a higher generation are also pushed into this buffer and 
prioritized compared to their ancestors. The workload man-
ager only copies the highest generation tracks into the basket 
of the first stage, then executes it. Once processed, the tracks 
are copied to the input basket of the second stage, and so on. 
Each stage has one or more follow-ups, so most particles 
get pushed along the stepping pipeline, but some particles 
may loop between stages before being able to execute the 
complete step. As an example, charged particle propaga-
tion requires repeated queries to the geometry before finally 
crossing the volume boundary. The stepping loop just pushes 
the input buffers executing the stages one after another, mul-
tiple times, until the baskets are empty. It then takes a new 
bunch of tracks from the StackBuffer. During this loop, some 
tracks typically end up in unscheduled SIMD baskets, but a 
subsequent loop can fill these SIMD baskets and flush them 
back into the pipeline.

Concurrency Model

The GeantV prototype implements parallelism at the track 
level. It supports an internal mode where the workload is 
parallelized among threads managed by the GeantV sched-
uler. It also supports an external mode implemented as a call 
to a re-entrant task transporting an event set, where the par-
allelism is controlled by the framework that makes the call.

Primary tracks produced by an event generator are stored 
in a concurrent event server and delivered to worker threads 
in bunches of customized size. The track data storage itself 
is pre-allocated to avoid dynamic memory management, 
partitioned per NUMA domain, and only pointers to tracks 
are delivered via the event server interfaces, as shown in 

Fig. 4   The sequence of stepping stages for baskets of particles in the 
GeantV prototype. Stages are connected in a predefined sequence 
similar to the stepping approach in Geant4, but there are also short-
cuts or back connections that allow dumping stopped particles or 
repeating some stages. Each stage provides scalar and, in most cases, 
vector handlers for the stage algorithms
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Fig. 5. Once a thread picks up a set of primary tracks, it 
becomes the only user of each track in the set for the given 
step. Due to this design, there is no synchronization needed 
when changing the state of a track. Threads handle tracks 
in their buffers; however, they share a single set of SIMD 
baskets per NUMA domain, so a thread may steal the tracks 
accumulated in these baskets by other threads. Even in scalar 
mode, when the SIMD baskets are empty, there is a mecha-
nism allowing threads to steal tracks from each other as a 
mechanism of work balancing during the processing tail at 
the end of events.

The concurrency model was designed to minimize the 
synchronization needs and to reduce contention in the con-
current services, while sharing track data to increase basket 
populations. The thread-specific state data needed by the 
different methods cooperating for track propagation is aggre-
gated in specific objects (called TaskData), different for 
every thread. A TaskData object is passed as argument to the 
stepping loop method executed by a given thread, becoming 
visible to all the callees requiring it. This approach avoids 
the need of syncronizing concurrent write operations on 
state data.

To maximize the basket population, vectorized handlers 
have a common SOA basket shared between threads. This 
was a requirement for enhancing the vector population, but 
it has a large cost of increased contention and loss of data 
locality. To improve this, thread-local copies of the SIMD 
basket are created for the handlers with the largest popula-
tion of tracks, such as those for field propagation and mul-
tiple scattering. For these, the track population in a single 
thread is enough to fill them, without workflow perturbation 
or basket population loss. This allowed a large reduction in 
contention in the multi-threaded basket mode.

An important feature for fine-grained workflows is load 
balancing. The GeantV workflow is naturally balanced by 
the event server, which acts as a concurrent queue. The main 
problem that occurs is the depletion of the stack buffers of 
each thread when most of the remaining particles reside in 
SIMD baskets that do not have a large enough population 
to execute efficiently in vectorized mode. Such a regime 
becomes blocking when the number of events in flight has 
already reached the maximum specified by the user, so the 
scheduler enters the so-called flush mode. All SIMD baskets 
are simply flushed and the scalar DoIt methods are executed 
by the first thread triggering this mode. Flushed particles 
are gathered in the stage baskets of this thread, which feeds 
the thread but depletes, even more, the other threads that 
were already starving. This unbalancing mechanism is com-
pensated by a round-robin track sharing mechanism, which 
allows threads to feed not only from the event server, but 
also from the shared buffers of other threads. To preempt 
the depletion regime, threads always share a small frac-
tion of their own track populations, but will consume those 
themselves if no other client has. This mechanism of weak 
sharing allows the reduction of contention in the normal 
regime. Sharing is dominant during event tails and is also 
more important when running with many threads.

The externally-driven concurrency mode is the so-called 
external loop mode. In this mode, no internal threads are 
launched. The run manager provides an entry point that is 
called by a user-defined thread and that takes a set of events 
coming from the user framework. This will subsequently 
book a GeantV worker to perform the stepping loop, and 
will notify the calling framework via a callback. An example 
is provided, performing a simplified simulation of the CMS 
detector steered by a toy CMSSW [9] framework, mimicking 
the features of the full multi-threaded software framework of 
an LHC experiment. The GeantV simulation can be wrapped 
in a TBB (Threading Building Blocks, Intel®) [10] task and 
executed in a complex workflow, as described in Sect. 5.2.

Implementation

This section describes the core components of GeantV 
libraries and modules: VecCore, VecGeom, VecMath, propa-
gation in a magnetic field and electromagnetic (EM) phys-
ics. Auxiliary modules, such as I/O and user interfaces, are 
briefly summarized as well.

Vector Libraries: VecCore

Portable and efficient vectorization is a significant challenge 
in large-scale software projects such as GeantV. The Vec-
Core library [6] was created to address the problem of lack 
of portability of SIMD code and unreliable performance 

Fig. 5   Schematic view of parallelism for the GeantV prototype. Mul-
tiple transportation tasks, handling their task data, share a set of prop-
agator objects, one per NUMA domain. Each propagator shares a set 
of simulation stages with their SIMD baskets, but each transport task 
will handle its stack buffer of tracks. The system threads are sched-
uled by the run manager, and they will pick-up a free task data object 
from a concurrent queue. Each transport tasks will preload tracks 
from a concurrent event server, executing the stepping loop
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when relying solely on auto-vectorization by the compiler. 
VecCore allows developers to write generic computational 
kernels and algorithms using abstract types that can be dis-
patched to different backend implementations, such as the 
Vc [7] and UME::SIMD [8] libraries, CUDA, and scalar. 
VecCore provides an architecture-agnostic API, illustrated in 
Fig 6, that covers the essential parts of the SIMD instruction 
set. These include performing arithmetic in vector mode, 
computing basic mathematical functions, operating on ele-
ments of a SIMD vector, and performing gather and scat-
ter, load and store, and masking operations. Code written 
using VecCore can be annotated for running on GPUs with 
CUDA, and can be portable across ARM®, PowerPC®, and 
Intel® architectures, if not relying on features specific to a 
particular backend (e.g. using CUDA-specific variables such 
as thread and block indices, or calling external library func-
tions that may be available only on the CPU).

VecCore is used to implement vectorized geometry primi-
tives in VecGeom (described in Sect. 3.2), and vectorized 
physics models in GeantV. A brief discussion of VecCore 
with code samples can be found in Ref. [6], and examples of 
VecCore usage within VecGeom and GeantV appear in the 
following sections as well.

Geometry Description: VecGeom

Introduction

Detector simulation relies on the availability of methods to 
describe and construct the detector layout in terms of ele-
mentary geometry primitives, as well as interfaces that allow 
the determination of positions and distances with respect 
to the constructed layout. Well-known examples of such 
geometry modelers are the Geant4 geometry module and 
the ROOT TGeo library [11]. Both enable users to build 
detectors out of hierarchical descriptions of (constructive) 
solids and their containment within each other.

The vectorized geometry package, named VecGeom, 
was chosen as one of the first areas in which to study the 
optimal usage of SIMD and SIMT paradigms for passing 
vector data between algorithms, which is one of the main 
targets of GeantV. From this point of view, the primary 

development focus was implementing algorithms capable 
of operating on elements of baskets in parallel. This entails 
geometry primitives, such as a simple box, that offer ker-
nels to calculate distances for a group of tracks in one 
function call, in addition to the normal case where only 
one track is handled.

Below as an example the signature for a typical geom-
etry primitive is followed by the corresponding signature 
of the new vector/basket interface: 

Moreover, data structures and algorithms in VecGeom 
are laid out to enable efficient operation in heavily multi-
threaded frameworks. For instance, a clear separation 
of state and services enables frequent track or context 
switches in the navigation module. This module is respon-
sible for predicting where a track will go in the geometry 
hierarchy along its straight-line path. Multi-platform usage 
was targeted since the beginning: the same code base is 
intended to compile and run on CPUs as well as GPU 
accelerators.

Besides these primary goals, the development of 
VecGeom was guided and influenced by other require-
ments and circumstances. The first is to continue offer-
ing traditional interfaces operating on the single-particle 
(scalar) level. This ensures backward compatibility with 
the Geant4 or TGeo systems and is, in any case, needed 
to treat particles that have not been put into a basket. 
Secondly, another geometry project called USolids [12], 
funded by the EU AIDA project, was already in place, aim-
ing to review and modernize the algorithms of Geant4 and 
TGeo and to unify the geometry code base. The VecGeom 
project joined forces with the USolids project for better 
use of available resources. As a consequence, VecGeom 
was factored out into a standalone repository and with 
the potential to evolve independently of GeantV. There-
fore, VecGeom serves GeantV, with a basketized treat-
ment and GPU support, as well as making the modernized 
code available to clients in traditional scenarios using the 
single-particle interface.

The multitude of use cases and APIs to support (scalar, 
basketized, CPU, GPU) poses the risk of code duplication. 
In order to reduce this, VecGeom started with an approach, 
adopted by most GeantV modules, in which standalone 
(static) templated algorithmic kernels are instantiated mul-
tiple times with different types and specializations behind 

Fig. 6   Illustration of VecCore API operations
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the public interfaces. This development architecture is vis-
ualized in Fig. 7, where the typical use cases are depicted 
as functional chains of algorithms (scalar, vector, GPU), 
all implemented in terms of the same kernel templates. In 
order to make this happen, the kernels are written in such 
a way that they can be instantiated with native C++ types 
as well as with SIMD vector types (as offered by vectoriza-
tion libraries such as Vc). Furthermore, all constructs used 
have the proper annotation to compile on the GPU (using 
CUDA). VecCore, prototyped within the VecGeom effort, 
provides the abstractions needed to write these generic 
kernels.

Using this development approach, VecGeom has evolved 
into a geometry library that offers similar features to the 
classical Geant4 geometry or TGeo for transport simulation 
for single particle queries. On top of this, these algorithms 
are also made available for basket queries or for execution 
on CUDA GPUs. In particular, all major geometry primi-
tives have been implemented, and hierarchical detectors can 
be constructed from them via composition and placement. 
To solve the complex geometry tasks typically needed in 
particle detector simulation, such as determining the mini-
mum distance of particles to any other material boundary 
or computing the intersection points with the next object 
along a particle’s straight-line path, VecGeom offers naviga-
tor classes that operate on top of these primitives.

Today VecGeom’s objective is to be a high-performance 
library for these tasks in general. A lesson learned in the 
development was that it is worth taking a more loosely 
defined approach to achieve good performance and to benefit 
from SIMD instructions. In particular, VecGeom targets both 
basketized (or horizontal) vectorization as well as inner-loop 
(vertical) vectorization, depending on the complexity of the 
algorithm. A simple box primitive is an example of the for-
mer, and a complicated tessellated shape is an example of 
the latter. The best SIMD performance for a box is obtained 
with the use of baskets, yet a SIMD speedup for the tessel-
lated solid is available even in scalar/single-particle mode 
and does not require basket input. However, processing bas-
kets can still be beneficial due to positive cache effects.

VecGeom has been discussed and presented in various 
publications [13–15]. The following sections briefly review 
a few important results for specific aspects of VecGeom.

The Performance of Geometry Primitives

Geometry primitives (or solids) are, in addition to affine 
transformations, the basic building blocks of complex detec-
tors. The range goes from simple structures such as boxes, 
tubes, and cones, to more complex entities such as poly-
cones, polyhedrons, and tessellated solids (see, e.g., the 
GDML reference manual [16] for a description). In general, 
VecGeom offers improved performance of the solid algo-
rithms with respect to previous implementations in Geant4 
and TGeo and even with respect to USolids [12]. In most 
cases, the improvement is due to better algorithms, often as 
a natural consequence of the effort to restructure towards 
SIMD-friendly code. In the case of simpler geometry primi-
tives, the implementations provide real SIMD acceleration 
for basketized usage. Figure 8 exemplifies this for a tube 
segment, where the SIMD acceleration was found to be a 
factor of 2 or better with the AVX instruction set (maximum 
of 4 vector lanes) via the use of VecCore and Vc.

For the more complex solids, some performance improve-
ments for the scalar interface are shown in Fig. 9. In these 
cases, an additional SIMD acceleration for the basket inter-
face is not feasible due to divergent code paths taken by dif-
ferent particles in a basket. However, as mentioned, the vec-
tor units can often still be utilized by vectorizing inner loops 
or inner computations. This technique is used heavily in the 
tessellated solid, polyhedra, and multi-union cases [14], and 
it contributed to the excellent performance gain compared to 
previous implementations.

Fig. 7   The code organization of VecGeom that motivates VecCore

Fig. 8   Performance examples of VecGeom on the shape level for the 
case of a more elementary solid primitive, a tube segment. This dem-
onstrates the performance improvement of important functions for the 
one-particle interface (1) (better algorithms) as well as an additional 
SIMD acceleration for the basket interface (2), automatically obtained 
by instantiating the same underlying kernel with Vc vector types
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The Performance of Navigation Algorithms

Apart from solid primitives, VecGeom offers navigation 
algorithms for solving geometry problems such as distance 
calculations between particles and geometry boundaries 
in composite geometry scenes made up of many primi-
tives. These navigation algorithms are the primary point of 
contact or interface between the geometry and the simula-
tion engine. The algorithmic chain in Fig. 7 is a simplified 
example of a typical navigation algorithm flow. This chain 
contains transformations of global particle coordinates to 
the frame of reference of the volume in which the particle 
is currently situated, and performs distance queries to the 
solids embedded in this volume.

Just as with the geometry primitives, complexity defines 
the performance scenario for SIMD acceleration. 

1.	 Simple geometry limit: In this case the current volume 
contains only a few (simple) solids, e.g. in simple show-
ering modules in calorimeters.

	   In this limit, SIMD-accelerated geometry navigation 
of a basket is feasible for GeantV because most of the 
algorithmic chain can process baskets efficiently. Table 1 

gives a few benchmark performance values that show the 
gain from using baskets and SIMD for simple volumes. 
In the generic case, the gain is rather modest because the 
SIMD throughput is limited by some non-vectorizable 
parts. The typical non-vectorizing operation is particle 
relocation after crossing boundaries, which becomes 
more expensive with increasing complexity, due to 
divergence of the location at the end of the step and the 
need to access a larger amount of non-local transforma-
tion matrix and 3D solid data. However, a process [15] 
was developed that can auto-generate code implement-
ing specialized navigators that take into account the spe-
cific properties of the geometry. This generated code 
can reduce the non-vectorizable parts significantly. This 
increases the gain from baskets and SIMD, but is also 
beneficial in its own right to improve the performance of 
the scalar interface. The drawback of specialized navi-
gators is that they require a generation workflow to be 
run before simulation, and so far they have not been 
extensively tested within GeantV. This explains, in part, 
why the overall gain from baskets in the current version 
of GeantV did not materialize for geometry navigation. 
Navigation specialization requires the analysis of all 
possible geometry state transitions for tracks crossing 
any placement of a given volume (possibly replicated) to 
its neighbours. Cached in the form of compiled code, the 
method performs global to local conversions between 
states. If the number of transitions is small (e.g. in the 
case of well-packed touching neighbour volumes), the 
number of crossing candidates to check can be much 
smaller than in the generic case, so the search can be 
accelerated. For complex structures, the number of 
combinations can lead to very large libraries with inef-
ficient instruction caching. The navigation specialization 
approach is nevertheless very promising and will con-
tinue to be optimized in the context of future VecGeom 
developments.

2.	 Complex geometry limit: In this case, the current vol-
ume contains many solids, which typically occurs for 

Fig. 9   Performance speedups of more complex primitives (polycone, 
extruded solid, polyhedron) for scalar interfaces, compared with 
Geant4 and TGeo. Speedups are averages over all such solids found 
in the ALICE detector. In these complex cases, no additional basket 
SIMD acceleration is feasible

Table 1   The time (in s) to 
navigate a batch of test particles 
in selected volumes of the CMS 
detector, and speedup factors for 
selected methods

The time is dominated by the ComputeStep navigation interface of VecGeom in both the single-particle 
and basket (vector) mode. The test is done using the generic (normal) implementation of the navigator 
algorithm, as well as with specialized, generated code that is tailored to the specific volume in question. 
There is a small SIMD acceleration observed for baskets in simple volumes. This SIMD benefit can be 
enhanced with specialized navigators. In case of complex volumes (with many containing other volumes), 
there is no SIMD acceleration from the basket treatment

Volume Type Normal scalar Normal vector Specialized scalar Specialized 
vector

Time (s) Time (s) Speedup Time (s) Speedup Time (s) S

HVQX Simple 12.6 10.6 1.2 6.4 2.0 4.7 2.7
ZDC_EMFiber Simple 10.1 8.8 1.2 5.9 1.7 2.6 3.9
ZDC_EMLayer Complex 27.0 27.0 1.0 19.7 1.4 19.3 1.4
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container volumes inside which many other modules are 
placed.

	   In this limit, due to the large number of geometry 
objects to test, acceleration structures are typically used 
to reduce the complexity from O(N) to O(log(N)), in the 
case of hit-detection or ray-tracing, where N is the num-
ber of geometry objects present in this volume. This, in 
turn, makes it difficult to achieve a coherent instruction 
flow for all particles in a basket and to avoid branch-
ing. However, as for the tessellated solid, the naviga-
tion algorithms can benefit from SIMD acceleration via 
internal vectorization. In Ref. [15], a particular regular 
tree data structure, based on bounding boxes, was pro-
posed, which can be traversed with a SIMD speedup. 
The VecGeom implementations for tessellated solids 
and for navigation are based on the same data struc-
ture. Table 2 shows a comparison of the performance 
of the navigation algorithms in given complex volumes 
using Geant4, TGeo, or VecGeom. The benefit of the 
SIMD speedup is highlighted by the additional gain 
when switching from SSE4 to AVX2 instructions on 
the x86_64 architecture. This benefit is also available in 
non-basketized modes via internal vectorization.

	   There are many possible layouts of acceleration struc-
tures with SIMD support. This gives room for further 
improvement by selectively choosing the best possible 
acceleration structures for any given geometry volume. 
In this respect, VecGeom is ready to interface with ker-
nels available from industrial ray-tracing libraries, such 
as Intel® Embree [17, 18], which has SIMD support.

VecMath

VecMath is a library that collects general-purpose mathe-
matical utilities with SIMD and SIMT (GPUs) support based 
on VecCore. Templated fast math operations, pseudorandom 
number generators, and specific types (such as Lorentz vec-
tors) were initially extracted from GeantV, then developed 
and extended within VecMath. The library is being extended 
to support vector operations for 2D and 3D vectors, and gen-
eral-purpose vectorized algorithms. VecMath is intended as 
a core mathematical library, free of external dependencies 

other than VecCore and usable by vector-aware software 
stacks.

Fast Math

The Math.h header in the VecMath library contains tem-
plated implementations for FastSinCos, FastLog, FastExp, 
and FastPow functions. The functions can take either scalar 
or SIMD types as arguments. While the scalar specializa-
tions redirect to the corresponding Vdt [19] implementa-
tions, the SIMD specialization is currently implemented 
based on Vc types.

Pseudorandom Number Generation

The VecRNG class of VecMath provides parallel pRNGs 
(pseudorandom number generators) implementations for 
both SIMD and SIMT (GPU) workflows via architecture-
independent common kernels, using backends provided by 
VecCore. Several state-of-the-art RNG algorithms are imple-
mented as kernels supporting parallel generation of random 
numbers in scalar, vector, and CUDA workflows. For the 
first phase of implementation, the following representa-
tive generators from major classes of pRNG were selected: 
MRG32k3a [20], Random123 [21], and MIXMAX [22]. 
These generators meet strict quality requirements, belong-
ing to families of generators that have been examined in 
depth [23] or that have evidence from ergodic theory of 
exceptional decorrelation properties [22]. All pass major 
crush-resistant tests such as DIEHARD [24] and BigCrush 
of TestU01 [25]. In addition, constraints in the size of the 
state and the performance were considered: (1) a very long 
period ( ≥ 2200 ), obtained from a small state (in memory), 
(2) fast implementations and repeatability of the sequence 
on the same hardware configuration, and (3) efficient ways 
of splitting the sequence into long disjoint streams.

The design choice for the class hierarchy was the exclu-
sive use of static polymorphism, motivated by performance 
considerations. Every concrete generator inherits through 
the CRTP (curiously recurring template pattern) from the 
VecRNG base class, which defines mandatory methods and 
common interfaces. VecRNG is exclusively implemented in 

Table 2   The time (in s) to process all test rays for a list of complex detector volumes, and speedup factors with respect to Geant4

The worst time value for each volume is shown in red, while the best is in blue. VecGeom’s SIMD-enabled navigation performs consistently bet-
ter than any existing solutions

Volume # daughters Geant4 TGeo VG (SSE4.2) VG (AVX2)

Time (s) Time (s) Speedup Time (s) Speedup Time (s) Speedup

ALIC (ALICE) 65 0.74 1.07 0.69 0.30 2.47 0.23 3.22
TPC_Drift (ALICE) 641 14 2.2 6.3 1.2 11.7 0.9 15.6
MBWheel_1N (CMS) 789 0.84 1.09 0.77 0.49 1.71 0.35 2.40
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header files, and provides a minimal set of member meth-
ods. This approach allows more flexibility in the higher-level 
interfaces for specific computing applications, but minimizes 
the overhead in compilation time.

The essential methods of VecRNG interfaces are 
Uniform<Backend>() and Uniform<Backend>(State_t& s), 
which generate the backend type of double-precision u.i.i.d 
(uniformly independent and identically distributed) numbers 
in [0,1), and update the internal fState and the given state s, 
respectively. The State_t is defined in each concrete genera-
tor and provided to the base class through RNG_traits. One 
of the associated requirements for each generator in VecRNG 
is to provide an efficient skip-ahead algorithm, sn+p = fp(sn) 
(advance a state sn by p sequences, where p is the unit of 
the stream length or an arbitrary number) in order to assign 
disjointed multiple streams for different tasks. For example, 
the mandatory method, Initialize(long n), moves the ran-
dom state at the beginning of the given n th stream. Each 
generator supports both scalar and vector backends with 
a common kernel. Random123 has an extremely efficient 
stream assignment without any additional cost since the key 
serves as the stream index, while MRG32k3a uses transition 
matrices (A), which recursively evaluate (As mod m) using 
the binary decomposition of s. The vector backend uses N 
(SIMD length) consecutive substreams and also supports 
the scalar return type, which corresponds to the first lane of 
the vector return type. Besides the Uniform method, some 
commonly used random probability distribution functions 
are also provided.

GeantV Tracking and Navigation

GeantV implements basketized vectorization of geometry 
navigation queries following the workflow described in 
Sect. 2.1.2. Geometry “baskets” are passed to a top-level 
navigation API, then dispatched to VecGeom to benefit from 
its vectorization features as described in Sect. 3.2.3. The 
geometry queries are integrated into the stepping procedure 
in a special GeomQuery stage, providing a large number 
of handlers, one per logical volume in the user geometry. 
Each query for computing the distance to the next bound-
ary and safety within the current volume can be executed in 
either scalar or vector mode. The efficiency in the vectorized 
case depends strongly on the volume shape and number of 
daughters. The track position and direction data are inter-
nally gathered into SOA data structures by VecGeom and 
dispatched to the 3D solid algorithms, updating navigation 
states held by the GeantV track structure. Even in the scalar 
calling sequence, VecGeom vectorizes the calls to the inter-
nal navigation optimizer.

An initial attempt to basketize and call the vector DoIt 
method for all volumes in a complex geometry such as CMS 

proved to be inefficient. The main reason was not VecGeom 
vectorization inefficiency, but the impact of SIMD basketiz-
ing on the GeantV workflow. CMS geometry has O(4K) vol-
umes, out of which ∼ 80% of the steps are performed in only 
∼ 10% of the volumes. In a GeantV vector flow scenario, 
after an initial propagation out of the central vertex volumes, 
most tracks become isolated in SIMD baskets belonging to 
many different, less important volume handlers. The work-
flow enters starvation mode and has to force frequent flushes 
of these baskets and execution of geometry queries in scalar 
mode. The effect worsens for complex geometry setups, typi-
cal for detectors at the LHC. In simple setups, composed of 
just a few geometry volumes, this scenario does not happen 
and basketization gains are evident in the case that the geom-
etry code takes a sizeable fraction of the execution time.

A new dynamic basketizing feature is implemented to 
alleviate this effect. Initially all volume basketizers are 
switched to ON, but the frequency of flushes versus vec-
torized executions is measured and triggers scalar mode 
for inefficient baskets. Depending on the tuned efficiency 
threshold, the prototype will end up disabling most volume 
basketizers and keeping only about 5% active. Due to the 
fact that some shapes with intensive computation (such as 
polycones and polyhedra) are not vectorized in VecGeom 
in multi-particle mode, the overall vectorization efficiency 
is rather poor and is reduced further by scatter/gather 
overheads.

Related to the geometry, GeantV uses a different strategy 
per step for the boundary crossing algorithm in a magnetic 
field, compared to Geant4. The algorithm first estimates the 
deviation of the particle moving with a given step along the 
helix arc using a small angle approximation, compared to a 
straight-line propagation with the same step. Constraining 
this bending error to be less than an acceptable tolerance 
gives the maximum allowed step in magnetic field, �field . The 
geometry navigation interface is queried for the distance to 
the next boundary along a straight line, �boundary , as well as 
the isotropic safe distance within the current volume, �safe . 
The propagation step is first constrained by the minimum 
between the physics step limit, �physics , and the next bound-
ary limit, �boundary . The second constraint is the maximum 
between the magnetic field limitation and the safety. This 
allows particles with small momenta to ignore trajectory 
bending in the limit of nearby volumes, and particles with 
large momenta to ignore nearby volumes and travel for-
ward much farther in the case that the deflection is small. 
In practice, this allows larger steps to be taken near volume 
boundaries without the risk of crossing accidentally. Finally, 
the step to be taken is the minimum of either the geometry 
or the physics limit, within the field/safety constraint. This 
step is passed to the integrator algorithm to move the track to 
the new position. If it was the geometry that limited the step, 
the geometry is queried for a possible final relocation after 
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the propagation; otherwise, the algorithm is repeated until 
either the physics or geometry distance limits are reached. 
Note that after the track kinematics are updated, tracks lim-
ited by geometry that have not completed crossing into the 
next volume are copied back into the geometry stage basket 
and considered in a subsequent execution of this stage. The 
tracks having reached the next boundary are forwarded to 
the PostPropagation stage, as shown in Fig. 4.

EM Physics Models and Vectorization

The ultimate goal of the GeantV R&D project is to exploit 
the possible computational benefits of applying vectoriza-
tion techniques to HEP detector simulation code. From the 
physics modeling point of view, the most intensively used 
and computationally demanding part of these simulations 
is the description of electromagnetic (EM) interactions of 
e− , e+ , and � particles with matter. This is what motivated 
the choice of EM shower simulation code to demonstrate 
the possible computational benefits of applying track-level 
vectorization.

Geant4 provides a unique variety of EM physics models 
to describe particle interactions with matter [26], from the 
eV to PeV energy range, with different levels of physics 
accuracy. Each application area can find a suitable set of 
models with the appropriate balance between the accuracy 
of the physics description and the corresponding computa-
tional complexity. Moreover, Geant4 provides a pre-defined 
collection of EM physics models and processes for differ-
ent application areas in the form of EM physics construc-
tors [27]. Among these, the so-called EM standard physics 
constructor (sometimes called EM Opt0) is recommended 
by the developers for HEP detector simulations.

A corresponding set of EM models has been provided for 
the GeantV transport engine, together with the appropriate 
physics simulation framework. The accuracy of each GeantV 
model implementation was carefully tested through indi-
vidual, model-level tests by comparing the computed final 
states and integrated quantities (e.g. cross-sections, stopping 
power) to those produced by the corresponding Geant4 ver-
sion of the given model. Moreover, several simulation appli-
cations have been developed to test and verify the GeantV 
EM shower simulation accuracy, including both a general, 
simplified sampling calorimeter and a complete CMS detec-
tor setup. In all cases, the GeantV simulation results, meas-
ured using quantities such as energy deposit distributions in 
a given part of the detector, number of charged and neutral 
particle steps, secondary particles, etc., agreed with the cor-
responding Geant4 simulation results to within 0.1% (see 
more in Sect. 4).

The final state generation, or interaction description, 
pieces of these models are the most computationally 

demanding subset of the physics simulation. At the same 
time, they provide the physics code that can be the most 
suitable for track level vectorization. The final state genera-
tion usually includes the generation of stochastic variables, 
such as energy transfer, scattering, or ejection angles, from 
their probability distributions, determined by the corre-
sponding energy or angle differential cross sections (DCS) 
of the underlying physics interaction. The probability den-
sity functions (PDF) are proportional to the DCS, which is 
usually a complex function and very often only available 
in numerical form. This implies that the analytical inver-
sion of the corresponding cumulative distribution function 
(CDF) is unknown. For this reason, to generate samples of 
the stochastic variables needed to determine the final state 
of a primary particle that underwent a physics interaction, 
different numerical techniques have to be used.

The composition–rejection method, for example, is one 
of the most extensively used method in particle transport 
simulation codes to generate random samples according to 
a given PDF. However, it is not very suitable for vectoriza-
tion, being based on an unpredictable number of loop execu-
tions depending on the outcome of the random variable. This 
implies that if this algorithm was vectorized over primary 
tracks, the different lanes of the vector would reach exit con-
ditions in a non-deterministic way, at different moments, 
thus reducing the number of used lanes, eventually causing 
a loss of any potential computational gain. For this reason, 
special care was taken to find new sampling algorithms, 
more suitable for vectorization, and also to implement solu-
tions that could provide the maximum possible benefits of 
track-level vectorization, even when applied to existing and 
well known sampling techniques.

As an outcome of this R&D phase, two methods were 
implemented and tested in the GeantV EM Physics library. 
In GeantV jargon, the first method is known as “sampling 
tables”, which makes it possible to use an alias method in 
combination with sampling tables, thanks to the introduction 
of a discrete random variable as an intermediate step. The 
second method is known as “lane-refilling rejection”, or sim-
ply “rejection”, which takes advantage of vectorization even 
in the presence of non-deterministic sampling techniques. 
More details about the implementation of the EM physics 
models and their vectorization can be found in Ref. [28].

Using the above mentioned unit tests to analyze the per-
formance of the vectorized EM models compared to their 
(optimized) scalar versions, excellent 1.5–3× and 2–4× 
vectorization gains were achieved on Haswell and Skylake 
architectures, respectively. The instruction set used on both 
architectures was AVX2, since AVX512 was not supported 
by the Vc backend. Figure 10 shows the speedup of the final 
state generation of different electromagnetic physics models 
obtained with SIMD vectorization in the cases of the two 
different methods.
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As a result of these developments, the physics simulation 
part of the GeantV R&D project provides the possibility of 
exploiting the benefits offered by applying track-level vec-
torization on a complete EM shower simulation suitable for 
HEP detector simulation applications.

A relatively wide range of performance variation in the 
algorithms and their vectorization gains is observed. This 
is due to the fact that each of the EM physics models under 
study translates to a final state sampling algorithm with 
unique computational characteristics more favorable for one 
sampling technique or the other. In addition to this, while the 
sampling table-based final state generations have a constant 
run time under any external conditions, the efficiency of a 
given rejection algorithm can change significantly with the 
primary particle energy. This is illustrated in Fig. 11 that 
shows the relative speedup of these two techniques applied 

to the Bethe–Heitler e−∕e+ pair production model, as a func-
tion of the primary � particle energy. The two algorithms 
perform similarly at lower energies, while the rejection 
algorithm becomes ∼35% faster at higher � energies simply 
because of the smaller rejection rate.

The results shown indicate that the GeantV vectorized 
EM physics library has to be tuned to select the most effi-
cient algorithm for any specific physics process, depending 
on the specific conditions. The complexity of the underlying 
DCS, the target material composition, or the primary parti-
cle energy are examples of conditions that can heavily affect 
the physics performance. The GeantV physics framework 
has been designed to take all of these considerations into 
account and to allow the choice of the most efficient algo-
rithm for final state generation, depending on the primary 
particle energy or detector region. This makes it possible to 
obtain the maximum possible performance, while keeping 
the memory consumption of the algorithms under control, 
even in the case of the most complex HEP detector simula-
tion applications.

Magnetic Field Integration

The integration of the equations of motion for a charged 
particle in a non-uniform pure magnetic field (or an electro-
magnetic field) accounts for about 15–20% of the CPU time 
of a typical HEP particle transport simulation. This integra-
tion is typically performed using the family of Runge–Kutta 
methods, which involves the generation of multiple inter-
mediate states (x, p), and the evaluation of the field and 
the corresponding equation of motion. Many floating point 
operations are carried out for each step of each track, provid-
ing substantial work for each initial data point, but without 
any expensive functions such as logarithms or trigonometric 
functions. In GeantV, the input to the field propagation stage 
is a basket of tracks. Each track has a requested step length 
for integration (see Sect. 3.4), obtained from the physical 
step size, the distance to the nearest boundary, and the cur-
vature of the track (to avoid missing boundaries).

The tracks’ positions are typically scattered throughout 
the detector. The integration of separate tracks is carried out 
in separate vector lanes in order to create the most portable 
code, and to make the best potential use of vector units with 
different widths. The vectorization of this part of a parti-
cle transport simulation has an important requirement. All 
steps of charged particles must be integrated, so long as the 
step can affect the deposition of energy or other quantities 
measured.

The lower level parts of the integration can be fully vec-
torized, because the operations proceed in lockstep, synchro-
nously over the lanes of a vector with each lane correspond-
ing to a different track:

Fig. 10   Speedup of the final state generation of different electro-
magnetic physics models obtained with SIMD vectorization in case 
of different sampling algorithms. The results were obtained by using 
Google Benchmarks  [29] on an Intel® Haswell CoreTM i7-6700HQ, 
2.6 GHz, with the Vc backend and AVX2 instruction set processing 
256 tracks. “Scal” and “Vec” refer to scalar and vector implementa-
tions, while “Table” and “Rej” refer to the sampling table and rejec-
tion methods, respectively

Fig. 11   Speedup of the rejection-based final state sampling compared 
to the sampling table-based one in case of the Bethe–Heitler e−∕e+ 
pair production model
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•	 the evaluation of the EM field at each track’s current or 
predicted location, either using interpolation (as in our 
benchmark example) or other methods such as the evalu-
ation of a function;

•	 the evaluation of the ‘force’ part of the equation of 
motion using the Lorentz equation;

•	 and a single step of a Runge–Kutta algorithm, which 
provides an estimate of the end state of a track (position, 
momentum) and the error in this estimate.

The top level of Runge–Kutta integration involves checking 
whether the estimated error conforms to the required accu-
racy and checking if a successful step finishes the required 
integration interval. If the integration goes on, it must also 
calculate the size of the next integration step. Different 
actions are required depending on whether a step succeeded 
or not. In case a step was not successful, integration must 
continue for those tracks. A lane with a finished track, or one 
that reached the maximum allowed number of integration 
substeps, must be refilled from the potentially remaining 
pool of tracks in the basket.

Since all charged particles are involved, there is a large 
population of particles undertaking integration steps during 
a simulation. Larger-size baskets to accumulate work in field 
integration were created, and can be configured separately 
from the general basket size. With larger baskets, the frac-
tion of lanes doing useful work increases substantially, get-
ting close to unity, as shown in Table 3.

Unfortunately, increasing the size of the buffer for field 
propagation has an additional effect, which counteracts the 
increase in efficiency from the reduction of idle lanes. It 
increases the number of simultaneous tracks in flight, as 
larger baskets accumulate more tracks. In turn, this increases 

the memory usage, which is proportional to the the num-
ber of tracks in flight. The effects can be seen clearly in 
Fig. 12, where a linear relation between the buffer size for 
field propagation and the memory usage is evident. It is pos-
sible, however, to reduce memory usage by starting fewer 
simultaneous events, as seen in the additional measurements 
with 1, 8, 16, or 32 simultaneous events.

Input and Output (I/O)

Input

Simulation input consists of particles to be transported 
through the detector. These can be either realistic collision 
events produced by Monte Carlo event generators or sin-
gle particles (similar to a test beam) to study a particular 
response. The use of an interface (the so-called event record) 
makes the generation and the simulation steps independent, 
as schematically shown in Fig. 13. For the GeantV transport 
engine, it is irrelevant how the ’primary’ (input particles) 
are produced. The simulation threads concurrently process 
particles from the input.

The interface to the HepMC3 [30] event record has 
been implemented (the HepMCGenerators class). This 

Table 3   Fraction of ‘inactive’ lanes, in which the integration has 
already finished, for different values of the basket size

Two configurations were measured: the default, in which tracks were 
processed in the original order of the basket, and the other (‘pre-pro-
cessed’), in which selected lanes with estimated work (length s over 
radius of curvature R) above a threshold value were brought to the 
front of the basket. Measurements are from single-threaded simula-
tions of 100 events, each with 10 primary electrons of 10 GeV energy 
in the CMS setup. The threshold used was s∕R > 3

Basket size Percentage of idle lanes

Default Pre-processed

16 18.6 14.0
32 13.0 6.6
64 7.3 2.5
128 3.9 0.3
256 2.3 0.0
512 1.5 0.1
1024 0.7 0.1

Fig. 12   Memory size of a simulation versus the basket size for field 
propagation. Simulations with different number of simultaneous 
events are shown. The number of primaries per event is also varied, 
using 16 (default) and 8. All are single-threaded simulations of 100 
events, each with 16 primary electrons with 10 GeV energy in the 
CMS setup. The simulations were run on a MacBook Pro 2016 with 
16GB RAM running MacOS 10.13.6
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interface can read both HepMC3 ASCII data and ROOT 
files containing serialized objects. The different types of 
input files are recognized by their file extensions. The 
interface selects the stable (outgoing) particles from the 
provided event and passes them to the transport engine. It 
can also apply optional cuts, for instance on � (pseudora-
pidity), � (azimuthal angle), or momentum.

Output

The detector simulation produces hits that contain energy 
deposition and timing information in the sensitive parts of 
the detector, which are the output of the program. In the 
case of GeantV, those hits are produced concurrently by 
all the simulation threads and need to be recorded prop-
erly. Thread-safe queues have been implemented to handle 
the asynchronous generation of hits from several threads 
simultaneously. The GeantFactory machinery takes care 
of grouping the hits into so-called HitBlocks and put-
ting them in the queues. Two possible approaches were 
tried for saving the hits into a file. In the first, all the hits 
produced by different threads were given to one ‘output 
thread’ for serialization. This approach turned out not to 
scale properly and became a bottleneck. The problem was 
solved by the second approach, where the serialization 
was performed by each transport thread and the ‘output 
thread’ was only responsible for the actual writing of the 
data to the file. This approach did not adversely affect 
the memory consumption in any visible way. The imple-
mentation is based on the TBufferMerger class provided 
by ROOT [11]. Each transport thread fills, in parallel, 
its ROOT TTree objects, and the TBufferMerger merges 
these TTrees and saves them into the file on disk, as 
shown in Fig. 14.

This architecture has been profiled and shows very 
good scaling behavior, as seen in Fig. 15. In particular, 
it solves the bottleneck problem of the ‘single thread 
serialization’ approach. More details on the usage of the 
multithreaded output are provided in Sects. 3.8.1 and 5.2.

MC Truth

In addition to the hits, users may be interested in saving the 
kinematic output, so-called MC truth information. This con-
sists of the generated particles (or at least some of them) that 
produced those hits. The handling of MC truth is quite detec-
tor dependent and no general solution exists. The algorithms 
selecting which particles to store, how to keep connections 
between them, and how to associate hits to them are not 
straightforward and, most of the time, require some trade-
offs between the completeness of the stored event informa-
tion and its size. In general, it is not desirable to store all the 
particles, as this would only waste the disk space without 
providing any useful information. For instance, typically 
delta rays (low-energy secondary electrons), low-energy 
gamma showers, etc. are not stored. It is best to store all the 
particles needed to understand the given event and to associ-
ate to the output hits. In all cases, it is necessary to set the 
particles’ connections in order to form consistent event trees.

In addition to all of the above points, multi-threading 
and concurrency only increase the complexity, because the 

Fig. 13   A diagram showing how the HepMC event record is used as 
the GeantV input format

Fig. 14   A diagram of the output architecture, which is based on 
ROOT’s TBufferMerger

Fig. 15   The I/O performance compared to the ‘single thread seriali-
zation’ approach. These tests used an Intel® Xeon® CPU E5-2630 v3 
@ 2.40 GHz (Haswell), 2 × 8 cores, HT = 2 (16 native threads, 32 in 
hyperthreading mode), disk: SSD  430 MB/s non-cached write speed 
(measured with: dd if=/dev/zero of=/tmp/testfile bs=1G count=1 
oflag=direct)
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order of processing the particles is non-deterministic. There 
are situations where, depending on the load of the proces-
sor, processing of the ‘daughter’ particle may be completed 
before the ‘mother’ particle’s propagation ends. Once fin-
ished, the events need to be reassembled from the products 
generated by the different threads after parallel processing.

Following the idea that there is no perfect or complete 
strategy for handling MC truth, users must be able to decide 
which particles to store. The GeantV particle transport, 
therefore, must provide the possibility of flagging particles 
as ‘to be stored’ according to some user-defined rules and, at 
the same time, to ensure that the stored event has consistent 
mother-daughter links, as well the correct hit associations. 
Taking all these requirements into account, MC truth han-
dling was implemented using an architecture that has a light 
coupling to the transport engine, with minimal interaction 
with the transport threads, and at the same time provides the 
flexibility to implement custom particle history handlers. In 
this design, shown in Fig. 16, the interface provided by the 
MC truth manager (MCTruthMgr class) receives concurrent 
notifications from transport threads about adding new pri-
mary or secondary particles, ending particles, or finishing 
events. It then delegates the processing of particles’ history 
to a concrete MC truth implementation. In other words, 
the implementation is composed of the interface from the 
MCTruthMgr class and the underlying infrastructure for the 
particles’ history (with a light-weight, transient, interme-
diate event record) and the user code that implements the 
decision-making (filtering) algorithm, as well as the con-
version to the users’ event format. As a proof of principle, 
an example using HepMC3 as the MC truth output format 

is provided. This demonstrates how to implement a simple 
filtering algorithm based on particles’ energy, allowing a 
consistent particle history to be serialized into an output file.

User Interface

GeantV provides ‘user actions’ (similar to those in the 
Geant4 toolkit) that allow users to control the program flow 
at the level of run, event, track and step. Concurrent contain-
ers allow users to accumulate different kinds of information 
and merge the information from the different threads at the 
end of the run. Scoring is done using dedicated stepping 
actions in which information from the sensitive volumes is 
accessible.

Scoring Interfaces

The GeantV prototype implements specific scoring inter-
faces that aim to facilitate handling user-defined data struc-
tures for mixed concurrent events. The concurrency aspect 
is handled by having multiple copies of the scoring data 
structures attached to GeantV task data objects. Each run-
ning worker thread picks up a different task data object, 
percolating it as an argument to the user scoring interfaces. 
Since the maximum number of events transported concur-
rently, Nmax , is limited, the user scoring data structures have 
to be indexed in arrays having the same limit: Nmax . The 
user class must have a trivial default constructor and copy 
constructor, and has to implement methods to merge and 
clear the data for a given event slot. The users are provided 
the interface to attach custom data types to each task, usable 

Fig. 16   An example MC truth-handling architecture based on the GeantV MCTruthMgr class, with the HepMC event record as the user’s output 
format
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subsequently in their application for scoring in a thread-safe 
way. A detailed example using this pattern can be seen in the 
CMSFu​llApp​ example from the GeantV Git [31] repository. 
Another example is presented in Sect. 5.2.

GeantV Applications and Physics Validations

The complexity of detector simulation software requires rig-
orous testing and continuous monitoring during development 
in order to ensure code correctness and to keep simulation 
precision and computing performance under control. Several 
tests and applications, with different levels of complexity, 
have been developed in order to meet these needs.

Particle transport simulation is composed of several 
individual components, including the geometry modeler, 
material description, physics models and processes, held 
together by the simulation framework. The framework is 
used to set up a flexible modeling environment, including 
a generic computation workflow controlled by high-level 
manager objects. As a consequence, the individual build-
ing blocks are accessed through their interfaces and provide 
their functionalities through the framework. Checking the 
correctness of individual components is a pre-requisite for 
ensuring the above-mentioned quality criteria. Subsequently, 
executing complete simulation applications that exploit and 
exercise the whole framework is an essential final step in 
this testing procedure.

Model-level tests allow the verification of the responses 
of individual physics models by directly calling their inter-
face methods. This makes it possible to test in an isolated 
way the correctness of the integrated quantities (e.g. atomic 
cross section, stopping power, etc.) and differential quan-
tities (e.g. energy or angular distribution of the final-state 
particles) that the physics models provide during the simula-
tion. The production of such model-level tests was enforced 
as part of the physics model development procedure. The 
results were verified by comparing with the theoretical 
expectations and the corresponding Geant4 tests. To test 
and validate the overall simulation framework, including 
its building blocks, complete simulation applications were 
developed, along with the corresponding Geant4 applica-
tions, if these were not already available.

An application with a simple setup (TestEm51), with 
a configurable particle gun and a configurable target, 
was developed as a first-level test application. In spite of 
its relative simplicity, this application can produce sev-
eral integrated quantities (e.g. mean energy deposit, track 
length, number of steps, backscattering and transmission 

coefficients, etc.) and differential quantities (e.g. transmit-
ted/backscattered particle angular/energy distributions). The 
primary particle and target properties can be modified easily. 
This application was the perfect tool for primary testing, 
validation, and debugging during the development of the 
physics framework.

The second application developed was a generic, sim-
plified sampling calorimeter simulation (TestEm3), similar 
to that used for monthly validation by the Geant4 electro-
magnetic (EM) physics developers. With its intermediate 
complexity, this application was used for verification of the 
simulation by comparing several differential and integrated 
quantities to those provided by the corresponding Geant4 
simulation. As an example of such a differential quantity, the 
mean energy deposit in the calorimeter by electrons gener-
ated with 10 GeV energy as a function of the layer number 
(proportional to the depth) is shown in Fig. 17 and compared 
to the corresponding Geant4 (version 10.4.patch03) simu-
lation results. Integrated results, such as the mean energy 
deposit, track lengths in the absorber and gap materials, or 
the mean number of secondary particles and simulation steps 
obtained from the same simulation setup, are summarised in 
Tables 4 and 5. All measured quantities demonstrate agree-
ment within the per mil level compared to the corresponding 
values obtained from Geant4.

Finally, a simulation application using the complete CMS 
detector (FullCMS) was developed in order to validate and 
verify the correctness and robustness of the overall frame-
work when reaching the complexity of an LHC experiment. 
While a similar level of agreement as mentioned above was 
found between the GeantV and the corresponding Geant4 
simulation results, this application was mainly used for per-
formance analysis and profiling.

Fig. 17   Mean energy deposit by E 
0
 = 10 GeV e − in a simplified 

sampling calorimeter as a function of the layer number simulated 
by GeantV and Geant4 (10.4.patch03). The calorimeter is 50 layers 
of 2.3 mm lead and 5.7 mm liquid argon. A 4 T transverse magnetic 
field was applied and 0.7 mm secondary production threshold was 
used

1  whenever possible, identical names are used for the GeantV and 
Geant4 applications

https://gitlab.cern.ch/GeantV/geant/blob/master/examples/physics/FullCMS/GeantV/src/CMSFullApp.cxx
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Usability Aspects

Reproducibility

Due to the stochastic nature of particle physics processes, 
detector simulation results are influenced by the generated 
random number sequence. Different sequences will gener-
ally produce slightly different, but statistically compatible, 
results. Such sequences are pseudo-random, controlled and 
reproducible based on an initial ‘seed’ (the next generated 
number is fully determined by the current generator state). 
Reproducibility is an important requirement in the case 
of HEP detector simulation: simulations with the same 
initial configuration (primary particles and pRNG choice 
and seed) must give the same results. Even in case of non-
sequential processing, the simulation must be repeatable 
when starting from the same initial configuration of the 
pRNG engine. This must hold true even if different choices 
are made during a run, e.g. using vector kernels for a set 
of physics processes of selected tracks. A key practical 
reason is the need to reproduce and debug problems that 
occur during the simulation of a particular event or initial 
particle. In general, the reliability of a simulation that can-
not be exactly repeated is more difficult to assess.

In GeantV, baskets of tracks undergoing the same inter-
action are accumulated to enable computations based on 
vectors of track properties, with the goal to perform the 
bulk of the computational work using these vectors. The 
remaining tail of tracks is treated with sequential (non-vec-
torized) code, but using the same algorithms as the vector 
code. Multi-threading is used to gather larger populations of 
tracks having similar properties and enable wider vectors, 
targeting more efficient use of the vector code and higher 
performance. Due to the indeterminate order of execution 
in multi-threading, the track content of baskets is not pre-
served in each run. In addition, a different set of remaining 
‘unbasketized’ tracks is processed in scalar mode in each 
run, particularly during the final ramping down phase of the 
simulation. To be reproducible, a particular algorithm must 
obtain the same pRNG output value (variate) for a track, 
whether it is processed as part of a vector in a basket of 
tracks (‘vector’ mode) or as a single track using the non-
vectorized code (‘scalar’ mode).

To obtain the same results for a track’s physics interac-
tions (or other operations), the same sequence of output val-
ues of a pRNG is needed. This is achieved by associating a 
single pRNG state with each track. Whenever a new track is 
created, either as a primary particle or in a process, a new 
state of the pRNG must be generated deterministically and 
associated with the track. This idea, called ‘pseudo-random’ 
trees, was first proposed in the 1980s in a particle transport 
application [32]. A first implementation was also created 
using linear congruential generators. Applications in other 
parallel and branching computations have been proposed 
since then. The recent review in Ref.  [33] has an over-
view and an evaluation of the proposed methods. One such 
method for constructing seeds, called the pedigree method, 
was developed by Leiserson et al. [34] to exploit determin-
istic parallel computations written in Cilk. This method was 
implemented in particle transport simulation [35] using 
Geant4 [26] as a test-bed.

The approach adopted for GeantV depends on two pieces: 
first, an initial seed for the scalar mode or a set of seeds for 
the vector mode is assigned; second, a unique sub-stream 
index is determined for each track. The stream index for the 

Table 4   Detailed results of the simulation from irradiating a simpli-
fied sampling calorimeter (50 layers of 2.3 mm Pb + 5.7 mm LAr; 
cut = 0.7 mm) with 3 × 105 electrons generated with energy 10 GeV 

in a 4 T magnetic field: mean and RMS values for the energy deposit 
( Edep ) and the charged particle track length ( Ltr)

∗More events would be required to see the agreement between the RMS values

Material Geant4 GeantV

Edep (GeV) rms∗ (MeV) Ltr (m) rms (cm) Edep (GeV) rms∗ (MeV) Ltr (m) rms (cm)

Pb 7.6220 68.787 5.4071 5.0523 7.6383 68.857 5.4187 5.0566
LAr 2.2367 53.0346 11.1017 27.2538 2.2207 52.5708 11.0255 27.0225

Table 5   Detailed results of the simulation from irradiating a simpli-
fied sampling calorimeter (50 layers of 2.3 mm Pb + 5.7 mm LAr; cut 
= 0.7 mm) with 3 × 105 electrons generated with energy 10 GeV in a 
4 T magnetic field: mean number of secondary e− , e+ and � particles, 
as well as the mean number of steps made by charged and neutral par-
ticles

∗The geometry is always called before the physics step limit (at the 
pre-step point), which, in the case of GeantV, results in a slightly dif-
ferent step limit for e −/e+

Mean number of: Geant4 GeantV %-diff.

Gamma 5181 5179 − 0.04
Electron 8891 8899 0.09
Positron 534.5 534.5 0.00
Charged steps∗ 36572 35887 − 1.87
Neutral steps 35030 35063 0.09
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primary track consists of high precision bits set by the event 
number and low precision bits by the track index. For the 
secondary (or daughter) tracks, the stream index is gener-
ated in a collision-resistant way using the current state of 
the pRNG carried by the (mother) track that undergoes an 
interaction.

To enable reproducibility of the vector code for physics 
processes, a vector pRNG must be created in order to gener-
ate the output in each vector lane of the pRNG correspond-
ing to each track index in the basket. In GeantV, this role 
is played by an instance of a proxy class, acting as a vector 
pRNG. The proxy provides all the expected outputs in each 
vector lane (as individual pRNGs would behave for each 
track) and advances the state of each track’s pRNG accord-
ingly. The first implementation of a proxy class gathers the 
contents of the scalar pRNGs into an instance of the corre-
sponding VecRng class (e.g. gathering MRG32k3a<double> 
into MRG32k3a<Double_v>). The proxy instance is reus-
able, by explicitly attaching and detaching the set of track 
pRNG states.

Reproducibility was tested using a limited set of GeantV 
physics processes, including bremsstrahlung, ionisation, and 
Compton scattering, which undergo a self-contained e− − � 
cascade process. The pRNG used in the tests is ThreeFry 
from the Random123 package [21]. This counter-based gen-
erator was chosen because the stream is easily split in sepa-
rate sequences, the state size is moderate (128 bits), and the 
method of initialization from a seed is trivial.

The numbers of tracks and steps in a simulated dataset 
were measured using several different settings. 1000 events 
were simulated, each comprised of ten 10 GeV electrons 
impinging on a 50-layer lead and liquid argon calorimeter. 
The simulation was run using either 1 or 4 threads and in one 
of two modes: the default mode, in which a per-thread state 
of one serial pRNG and one vector pRNG are used in each 
thread; and the ‘reproducible’ mode in which the method 
described above is used. Using the value ( No ) for the ‘repro-
ducible’ mode run with 1 thread as a baseline, the ratios of 
the number (N) of tracks and steps are shown in Fig. 18.

It is verified that the reproducible mode maintains the 
constant number of tracks and steps for all tested configura-
tions, as required. In addition, those numbers are different 
from the single-threaded mode for each of the scalar (Seq-
1T) and vector (Vec-1T) modes by 0.2–0.6%—the single-
threaded mode is reproducible by definition if a pRNG with 
a fixed seed (for scalar) or seeds (for vector) is repeatable on 
the same hardware, but its sequence is different from that of 
the reproducible mode which maintains reproducibility for 
all configurations with the set up described earlier. In non-
reproducible multi-threaded modes, the number of tracks 
and steps fluctuates for each trial as expected, with averages 

(and variances) within one sigma of the values of the repro-
ducible mode.

Reproducibility introduces an overhead in the simulation 
from copying and assigning pRNG states during the simu-
lation workflow, gathering scalar states to a SIMD vector 
state or joining and splitting states in the proxy approach, 
and synchronizing the index of states in output (Random123 
specific). Figure 19 shows an example of the CPU overhead 
as the ratio of the time to execute in reproducible mode to 
the time to execute in default mode. The method tested is 
gathering scalar pRNG states to a vector state and then split-
ting states in reverse. Another approach, using the join-split 
method, shows a similar (2–5%) performance degradation 
for the reproducible mode.

Alternative proxy-based implementations are under 
development, including one that avoids the cost of copy-
ing the data. This is most interesting for the cases in which 
the average number of variates required is small and/or the 
pRNG state is large.

Experiment Framework Integration

The Compact Muon Solenoid (CMS) experiment uses a 
custom, fully-featured, multi-threaded software frame-
work called CMSSW  [9, 36–38]. This software frame-
work is used to produce billions of simulated events every 

Fig. 18   The ratio of the total number of tracks (steps) of the default 
(non-reproducible) mode normalized to the reproducible configura-
tion, from which the total number of tracks (steps) is N

0
 . 10 GeV e− 

tracks are tested with scalar (Seq) and vector (Vec) configurations 
with 1 thread (1T) and 4 threads (4T)
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year, employing the Geant4 simulation toolkit. In addition, 
CMSSW handles various other components including event 
generation, detector geometry, magnetic field, and scoring. 
The last component includes the creation of simulated hits 
that are used as input for custom electronics simulations.

The most important test of GeantV with CMSSW was 
to demonstrate the compatibility of the threading models. 
In production, CMSSW uses event-level parallelism with 
Geant4. This approach isolates each event in its thread. By 
avoiding communications between threads, the thread-safety 
of the application is easier to guarantee. In contrast, GeantV 
may process tracks from multiple events together in multiple 
threads. The GeantV approach was first tested in a simplified 
multi-threaded framework that uses the same Intel® TBB 
task-based processing as CMSSW. This test was success-
ful and led to the development of the external loop mode 
for GeantV (Sect. 2.1.3), in order to allow the experiment’s 
software framework to control the distribution of tasks to 
threads.

Subsequently, the GeantV engine was fully integrated into 
CMSSW. To allow a more efficient trading of tasks between 
CMSSW and GeantV, a new CMSSW framework feature 
called ExternalWork is employed [39]. With ExternalWork, 
the actions of the CMSSW module that runs GeantV are split 
into two steps: acquire and produce. In the acquire step, the 
input event data is obtained and sent to GeantV. The acquire 
step is non-blocking, so it returns control of the thread after 
spawning a task for GeantV to process the event. Once 

GeantV has finished processing the event, it executes a call-
back function, which adds the produce step to the TBB task 
queue. In the produce step, the CMSSW output products are 
created and placed in memory. This is depicted in Fig. 20. 
Without the use of asynchronous callbacks, the framework 
could be blocked if an event is loaded in one thread but then 
finishes processing in a different thread, after GeantV bas-
ketizes the event’s tracks together with other events. In the 
future, it may be possible to decouple the loading of event 
data from the spawning of tasks by making the external loop 
mode more sophisticated, which could further increase the 
efficiency of this kind of parallel processing.

To demonstrate the full compatibility of GeantV with 
the experiment software framework and the steps necessary 
to reuse Geant4-based applications with the new transport 
engine, all of the additional components mentioned above 
are important. It is straightforward to convert generated 
events, stored in the HepMC format, into native GeantV 
input. The CMS detector geometry can be converted into a 
TGeo representation, which is automatically recognized by 
GeantV and can be navigated by VecGeom. For simplicity, 
a constant magnetic field of 3.8T is used.

The scoring code required significantly more effort to 
adapt. There are two approaches to scoring in Geant4: sen-
sitive detectors or watchers. Sensitive detectors are classes 
assigned to sensitive volumes, whose methods are auto-
matically called when tracks traverse those volumes. This 
approach is the most efficient, because the volume name 
does not have to be checked. In contrast, watchers check 
every volume before deciding if they should execute their 
methods and record hit data. The second approach was cho-
sen for the compatibility demonstration because the first 
approach is not available in GeantV and, in addition, as cur-
rently implemented in CMSSW, the first approach has more 
dependencies on Geant4 classes.

The full suite of scoring classes for the CMS detector com-
prises roughly 10,000 lines of code. A simplified scoring class 
that handles the electromagnetic and hadronic calorimeters 
was used as a demonstrator. These detectors were chosen 
because their scoring algorithms are relatively complex, rely-
ing on many Geant4 objects and interfaces, and because they 
are sensitive to the electromagnetic physics processes that have 

Fig. 19   The overhead of the reproducibility in simulation (CPU) time 
for the strategy using gathering scalar states to a vector state for dif-
ferent configurations and splitting states in reverse. 10 GeV e− tracks 
are simulated with scalar (Seq) and vector (Vec) configurations with 
1 thread (1T) and 4 threads (4T)

Fig. 20   The ExternalWork feature in CMSSW, showing the commu-
nication between the experiment software framework and GeantV
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been vectorized in GeantV. The goal was to be able to use the 
exact same scoring code with both Geant4 and GeantV, to 
avoid regressions or increased maintenance burdens. Both the 
objects and interfaces differ between Geant4 and GeantV, so 
the demonstrator class is turned into a class template, where 
the template parameter is a traits class that collects all relevant 
objects and aliases them to common names. To address the 
differences in interfaces, specialized wrapper classes, with 
consistent methods, are provided for both Geant4 and GeantV. 
These wrapper classes handle the event, step, and geometry 
volume objects. This approach, using template wrappers and 
traits classes, has several benefits. It allows complete reuse 
of the scoring code with virtually no changes in the imple-
mentation, and it has no impact on performance, because the 
templates are evaluated at compile time.

However, there is another element to scoring in GeantV: 
thread-safety. In Geant4, as mentioned, each event is isolated 
in its thread, so having one instance of each scoring class per 
thread suffices. In GeantV, because tracks from multiple events 
are processed in multiple threads, steps for a given event may 
occur in different threads simultaneously. Rather than upset-
ting the complex scoring code by trying to make the existing 
classes accept input from multiple threads without causing 
data races, the chosen approach creates one instance of the 
scoring class per thread, per event. When a given event finishes 
processing in GeantV, the per-thread scoring classes dedicated 
to that event merge their output into a cache associated with the 
event, which is also accessible to CMSSW. This aggregation 
process is supported by the TaskData construct in GeantV, as 
depicted in Fig. 21 and also discussed in Sects. 3.4 and 3.8.1. 
The duplication of scoring class instances can increase the 
memory usage; however, this is mitigated by sharing read-
only members, such as maps of detector volumes, between 
instances of the class.

With all of these elements in place, equivalent simulations 
can be run in CMSSW using Geant4 and GeantV. This allows 
testing of both physics and computing performance, which 
are reported in Sect. 6.6. The CMSSW module and support-
ing code that demonstrates the integration of GeantV can be 
found at Ref. [41].

Performance Results

In this section, an investigation of various performance 
aspects of the GeantV prototype is presented. Both a sim-
plified example of a sampling calorimeter and a complex 
application that uses the CMS geometry and complete EM 
physics were used as benchmarks.

Several configurations of the core GeantV engine were 
tested to highlight the contribution of different components 
to the observed overall performance. Two key aspects of 
performance were examined: the intrinsic performance of 
the GeantV applications as measured by various perfor-
mance counters, and comparisons between different con-
figurations of the GeantV applications with the equivalent 
applications running in Geant4. Finally, the performance 
from the user’s perspective, by modifying the CMS simu-
lation application to accommodate the GeantV engine with 
scoring, and comparing with the existing, similarly con-
figured Geant4-based application was examined as well.

Simulation performance has multiple dependencies on 
different parameters. The most important is the complex-
ity of the application itself. Changing production cuts, 
tracking cuts, or tracking precision can result in orders of 
magnitude differences in the number of simulated particles 
and steps. The benefits of running an application in the 
GeantV framework can vary hugely when different cuts 
are applied. The geometry complexity and the magnetic 
field settings are other application-dependent parameters 
that can greatly affect the CPU profile.

Another dimension to explore is the performance 
dependence on the hardware architecture (CPU, vector 
architecture, cache layout), and on the compiler and opti-
mization flags. Measurements on several different systems 
were performed, although the coverage is far from com-
plete. This analysis gives insight into how the application 
manages scarcity or abundance of various resources and 
consequently highlights areas where performance is good, 
as well as areas to improve.

Finally, different configurations of GeantV were 
explored: varying the basket size and the size of the event 
cache, and switching basketization off to emulate single 
track transport. This provides insight into the performance 
of individual components or scheduling features.

Global Performance

A set of global performance metrics to compare the 
GeantV examples with the equivalent Geant4 ones were 
selected: total execution wall clock time, instructions per 
cycle (IPC) and FLOPS per cycle (FPC), computational 
intensity (FLOPS per memory operation—FMO), and the 
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Fig. 21   The process of aggregating scoring information from events 
being processed in multiple threads



Computing and Software for Big Science             (2021) 5:3 	

1 3

Page 23 of 34      3 

fraction of vector instructions (single and double preci-
sion). Cache misses at different levels, as well as TLB 
(translation lookaside buffer) misses were also evaluated. 
These global counters were measured using the default 
GeantV settings, varying only the complexity of the appli-
cation. Different platforms with different vector architec-
tures and CPU cache configurations were tested.

For the performance benchmark results and compari-
sons described in this section, equivalent standalone CMS 
applications of GeantV and Geant4 were used, unless oth-
erwise stated. These utilised the 2018 CMS GDML detector 
description and a magnetic field map interpolating a grid of 
field values extracted from CMSSW. The default scheduling 
mode used for GeantV is an optimized, vectorized mode in 
which basketization and vectorization are turned on for all 
sub-modules except for geometry; other modes will be spe-
cifically mentioned whenever appropriate. The 8.3.0 version 
of GCC was used with the default optimization level (-O3) 
and build type (Release). An input of 1000 events of sixteen 
10 GeV electrons was simulated on dedicated machines, 
with no other running processes, where the measurement 
uncertainty was less than 0.5%.

Table 6 shows the characteristics of the hardware plat-
forms used for the tests. The results of the CPU benchmark 
of GeantV (version beta) compared to Geant4 (version 10.5) 
with the CMS detector are given in Table 7. The hardware 
platforms considered are Intel® E2620 (Sandy Bridge), 
Intel® E2680 (Broadwell), and AMD® 6128 (Opteron). As 
shown in the “Speedup” column in Table 7, the relative CPU 
performance ratio of Geant4 to GeantV widely varies on 
different platforms. The impact of different configurations 
of the magnetic field on the relative speedup is marginal on 
the same hardware platform; the results from Intel® E2620 
are shown in Table 8 as an example.

It turns out that the Geant4 performance is more sensitive 
to the size of cache memory and fluctuates more compared 
to GeantV. An extended performance benchmark study on 
various hardware platforms and different compilers is also 
available in Appendix 9.

There are a variety of performance metrics (hardware 
counters) provided by PAPI (performance application pro-
gramming interface) [42]. A combination of PAPI counters 
provides useful information about code performance, such 
as floating-point operations, instruction per cycle, cache 
behaviors, memory access patterns, and so on. For example, 
floating-point operations per cycle is a good measure for the 
CPU utilization, while instruction per cycle quantifies good 
balance with minimal stalls. To collect profiling informa-
tion along with hardware counters, Open∣Speedshop [43] is 
employed as the primary profiler. This program provides an 
integrated toolkit and analysis framework for various per-
formance experiments and measurements. Table 9 shows 
the IPC of GeantV compared to Geant4, which indicates 
that GeantV executes relatively more instructions per cycle. 
Since the number of instructions completed is approximately 
proportional to the total floating-point operations, the FPC 
of GeantV with respect to Geant4 follows the same pattern.

Another important performance metric is FMO, which 
quantifies data locality or computational intensity. Table 10 
shows the FMO of GeantV compared to Geant4, which 
implies that GeantV has better data locality than Geant4 in 
the platforms tested, even with widely varying cache sizes 
and policies. The reason that FMO on Intel® E2680 (Broad-
well) is much larger (better) than other architectures may 
be due its relatively large memory and L3 cache shown in 
Table 6, which leads the smaller number of load and store 

Table 6   Properties of the hardware platforms used for performance 
tests: CPU (GHz), Memory (GB) and L3 cache size (MB)

Processor CPU Memory L3 cache

Intel E2620 (Sandy Br.) 2.0 32 15
Intel E2680 (Broadwell) 2.4 128 35
AMD 6128 (Opteron) 2.3 64 12

Table 7   Performance comparison between GeantV and Geant4: the 
average CPU time in seconds per event for simulating sixteen 10 GeV 
electrons propagating through the CMS detector and the magnetic 
field

Processor SIMD Geant4 GeantV Speedup

Intel E2620 AVX 4.94 2.33 2.12
Intel E2680 AVX2 2.18 1.63 1.43
AMD 6128 SSE4 6.63 4.33 1.53

Table 8   Performance comparison between GeantV and Geant4: 
the impact of different configurations of the magnetic field on Intel 
E2620 (Sandy Bridge)

In the CPU performance ratios G4/GV and G4/GV(vect), the denomi-
nators refer to GeantV in scalar mode and vector mode, respectively

Configuration GeantV (s) G4/GV G4/GV(vect)

Zero field 1794 1.86 1.95
Uniform (3.8T) 2412 1.97 2.19
CMS field map 2621 1.88 2.12

Table 9   The IPC, instructions (INS) per cycle (CYC), of GeantV 
compared to Geant4

Processor GeantV Geant4

INS/CYC​ IPC INS/CYC​ IPC

Intel E2620 7038/6610 1.06 8388/10788 0.78
Intel E2680 6474/5521 1.17 8914/5514 1.62
AMD 6128 7813/8839 0.88 8459/11228 0.75
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instructions. Nevertheless, the FMO is relatively small for 
both Geant4 and GeantV, which indicates that the typical 
HEP detector simulation is a memory-bound application.

Nonetheless, the resulting speedup and the platform 
dependency are not driven by a specific set of functions or 
libraries. For example, the percentage of the total CPU time 
by Geant4 library, shown in Table 11, is very comparable on 
different hardware platforms. This is also true for GeantV, as 
shown in Table 12, which indicates that the relative speedup 
seems to be a global effect spread over all the code.

To understand the underlying cause of the overall perfor-
mance difference between Geant4 and GeantV, instruction 
and data cache misses at different levels were also studied. 
Tables 13 and 14 show instruction and data cache misses in 
L1 and L2, respectively. The GeantV application shows far 
fewer instruction cache misses in L1, which is attributed to 
the fact that GeantV has much simpler code structure and 
consists of smaller libraries.

Most modern hardware systems have a TLB that serves 
as the cache for page tables that map addresses between 
virtual memory and physical memory. Table 15 shows both 
instruction and data TLB cache misses for GeantV compared 
to Geant4. In general, GeantV leads substantially fewer TLB 
misses compared to Geant4. However, it turns out that the 
total cost for TLB misses is a relatively small fraction of the 
total elapsed time. For example, the 330 million TLB misses 
on the Intel® E2620 cost about one second.

Table 10   Floating-point instructions per memory operation (FMO) in 
terms of floating point operations (FO) over the sum of load instruc-
tions (LD) and store instructions (SR)

Processor FLOP/(LD+SR)

GeantV Geant4

Intel E2620 1718/3402 (0.50) 2181/5509 (0.40)
Intel E2680 2347/1758 (1.34) 3824/3100 (1.23)
AMD 6128 3191/3704 (0.86) 1620/5515 (0.29)

Table 11   The percentage of CPU time spent in each Geant4 library 
for simulating sixteen 10 GeV electrons propagating the CMS detec-
tor

Library (%) Intel Intel AMD
E2620 E2680 6128

libG4geometry.so 41.8 43.6 42.3
libG4processes.so 22.0 20.8 21.0
libG4global.so 7.3 8.0 7.5
libG4tracking.so 7.3 6.5 7.2
libG4track.so 6.0 4.7 5.8
full_cms 5.2 6.1 6.6
libG4clhep.so 3.3 3.0 3.0
libm-2.12.so 2.7 3.5 2.9
libG4particles.so 1.2 0.7 1.0
libG4digits_hits.so 1.1 1.3 1.0

Table 12   The percentage of CPU time spent in each GeantV library 
for simulating sixteen 10 GeV electrons propagating the CMS detec-
tor

GeantV library (%) Intel Intel AMD
E2620 E2680 6128

libGeant_v.so 42.1 46.3 43.2
libRealPhysics.so 36.0 34.2 37.3
libGeantExamplesRP.so 14.1 14.1 14.5
libc-2.12.so 3.8 1.8 1.1
libVmagfield.so 3.1 2.8 3.1
libm-2.12.so 0.6 0.6 0.6

Table 13   L1 cache misses in 1 billion hardware counters between 
Geant4 (G4) and GeantV (GV)

ICM and DCM are Instruction and Data Cache Misses, respectively. 
The Level 1 latency is typically 3 cycles

Processor ICM DCM

GV G4 GV G4

Intel E2620 54 429 218 269
Intel E2680 39 511 188 272
AMD 6128 49 309 141 144

Table 14   L2 cache misses in 1 billion hardware counters between 
Geant4 (G4) and GeantV (GV)

ICM and DCM represent instruction and data cache misses, respec-
tively. The Level 2 latency is typically 12 cycles

Processor ICM DCM

GV G4 GV G4

Intel E2620 19 36 86 46
Intel E2680 23 29 101 51
AMD 6128 17 3.6 55 10

Table 15   TLB misses in 1 million hardware counters between Geant4 
(G4) and GeantV (GV)

IM and DM represent instruction and data TLB misses, respectively. 
The TLB miss latency is typically 6 cycles

Processor IM DM

GV G4 GV G4

Intel E2620 53 4256 3168 4626
Intel E2680 N/A N/A 24 82
AMD 6128 55 149 88 1628
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Scheduler Performance

The performance of the GeantV workload scheduler was 
evaluated to quantify the impact of different parameters: 
number of events in flight, basket size, scalar emulated mode 
against basketized mode. The observed vectorization gains 
per component were measured. The performance impact of 
the cool-down phase when basketization is less efficient was 
also evaluated.

The main task of the GeantV scheduler is to maximize 
the amount of work executed via SIMD baskets compared to 
scalar. Handling too many baskets being filled concurrently 
during stepping becomes challenging when all the available 
tracks to be transported are exhausted and the limit of the 
number of events in flight is reached. To avoid the stall, the 
scheduler has to fire some of the partially filled baskets in 
the scalar mode, allowing work to continue at the cost of 
reducing the basket (and subsequently vectorization) effi-
ciency. The efficiency drop increases with the simulation 
stage complexity, so for example basketizing all geometry 
volumes in a complex setup becomes prohibitively expen-
sive. For this reason, the scheduler needs to keep active only 
a limited set of baskets, ideally those that are most “popular” 
in terms of fraction of tracks processed by the associated 
algorithms. For example, the basket associated with vector-
ized field propagation is most popular, since it handles all 
charged particles. The same applies to multiple scattering 
and to some physics processes.

For the geometry case, it is difficult to predict which 
are the volumes handling most steps. Switching from sca-
lar to vector execution mode for a given basket based on 
a “track popularity” score, a dynamic basketizing strategy 
was adopted. The simulation starts with no active geometry 
basket, executing navigation in scalar mode, and activat-
ing a given basket only when the number of handled tracks 
reaches a high watermark. This strategy gradually activates 
basketization for the volumes getting the highest particle 
multiplicity (i.e. the central barrel for collider experiment 
setups). As transported tracks are exhausted and baskets 
have to be processed in the scalar mode, their popularity 
is demoted until reaching a low watermark, which triggers 
their deactivation. This strategy allows to maintain a rather 
constant active (i.e. not stalled in SIMD baskets) track popu-
lation while maximizing the SIMD flow via popular baskets.

In the multi-threaded mode, SIMD baskets are filled con-
currently in order to maximize the available population per 
category. The drawback is that multi-threading consumes 
much faster the reserve of buffered tracks, which forces more 
frequent scalar executions if the number of events slots is 
kept constant. Figure 22 shows the fraction of total tracks 
processed in SIMD mode for the main simulation stages, 
depending on the number of threads. While the very popular 
stages such as field propagation have a rather constant high 

SIMD dispatch efficiency, unpopular baskets suffer depletion 
much faster with increasing number of threads. For example, 
geometry basketization becomes very inefficient for more 
than few tens of active geometry baskets. This behavior calls 
for replicating SIMD baskets per thread rather than sharing 
them, which gives very good results for the propagation and 
multiple scattering stages. For geometry this strategy does 
not bring unfortunately any improvement. Besides the sched-
uler efficiency to dispatch baskets, the global performance is 
highly impacted by the intrinsic efficiency of the basketizing 
procedure, involving gather and scatter actions as well as 
concurrent access. As presented in detail in Ref. [44], the 
main conclusion is that the basketizing dynamics strongly 
depends on the complexity of the workflow and on state 
parameters, such as number of tracks in flight, particle pro-
duction budget, or percent to completion for a given event.

The GeantV scheduler has an option to run in single track 
mode, which emulates Geant4-style sequential tracking. 
Table 16 compares the performance of GeantV single track 
mode to the default (basketized) mode, showing, but for mar-
ginal variations on different platforms, that the impact of the 
GeantV scheduler or data locality from basketization is not 
the primary source of the performance difference between 
Geant4 and GeantV in scalar mode. Note that computing 
performance depends on the basket sizes for the magnetic 
field, for physics, and for the multiple scattering process, 

Fig. 22   Scheduling efficiency for SIMD baskets of different catego-
ries depending on the number of threads. CMS benchmark shooting 
50 events with 100 GeV electrons, using 16 events in flight

Table 16   The relative CPU performance of the GeantV single track 
mode, GV-strk, which emulates Geant4-style tracking, compared with 
the default GeantV basketized mode, GV-bskt 

Processor GV-bskt (s) GV-strk (s) GV-strk/
GV-bskt

Intel E2620 2621 2960 1.13
Intel E2680 1628 1533 0.94
AMD 6128 4457 4817 1.08
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and may need to be optimized for each hardware platform 
separately. The default number of tracks per basket used for 
these comparisons was 16.

Profiling Analysis

This section presents detailed profiling information that 
illustrates the relative performance of different compo-
nents (geometry, physics and magnetic field propagation) 
along with the major hotspots. Results are compared with 
Geant4 to understand which components exhibit different 
performance features. These profiles are also presented 
for different configurations of the CMS application with 
varied cuts and for the simplified calorimeter example. 
Tables 17, 18 and 19 are lists of the top 10 functions of 
GeantV for different configurations, ranked by the exclu-
sive CPU time, while Table 20 is the list of top functions 
from the Geant4 application. In general, there are no unex-
pected hotspots or bottlenecks, which indicates that both 
GeantV and Geant4 applications are reasonably modular 
and granular already. On the other hand, there exist notice-
able differences between the scalar and the vector mode of 
GeantV. For example, the CPU fraction of CMSmagField

::EstimateFieldValues is significantly reduced in the vec-
tor mode as it is efficiently vectorized. The overhead from 
the geometry basketization is largely due to the extra track 
handling, such as Handler::AddTrack and Handler::Flush, 
which are shown in Table 18 but not in Table 19. It is also 
worthwhile to note that Spline::GetValueAt of GeantV takes 
significantly less time than its equivalent function in Geant4, 
G4PhysicsVector::Value, which is the top CPU function in 
recent versions of Geant4.

Vectorization Performance

The performance of basketization is compared by switching 
it on or off for each component. This requires a mode that 
allows the grouping of tracks into baskets, but dispatching 
tracks in scalar mode. With this mode, the overheads of bas-
ketization can be evaluated.

Table 21 shows the fraction of vector instructions in each 
module of GeantV and the relative CPU gain introduced by 
vectorization with respect to the scalar mode for each of the 
enabled vectorization options. The CPU gain is relatively 
small, even though the fraction of vector instructions is 

Table 17   Top 10 functions in GeantV scalar mode

% time Function name

8.22 CMSmagField::EstimateFieldValues
5.44 ScalarNavInterfaceVGM::NavIsSameLocation
5.36 DormandPrinceRK45::StepWithErrorEstimate
3.32 SimpleABBoxLevelLocator::LevelLocate
2.99 __GI_memcpy
2.98 SimulationStage::Process
2.87 PhysicsProcess::PostStepLimitationLength
2.75 Spline::GetValueAt
2.25 GSMSCModel::ComputeParameters
2.19 HybridNavigator::GetHitCandidates_v

Table 18   Top 10 functions in GeantV vector mode

% time Function name

5.45 ScalarNavInterfaceVGM::NavIsSameLocation
4.95 Handler::AddTrack
4.66 Handler::Flush
4.32 CMSmagField::EstimateFieldValues
3.44 SimulationStage::CopyToFollowUps
3.13 SimpleABBoxLevelLocator::LevelLocate
2.78 SimulationStage::Process
2.78 PhysicsProcess::PostStepLimitationLength
2.55 memcpy
2.48 GeomQueryHandler::DoIt

Table 19   Top 10 functions in GeantV vector mode, except geometry 
(i.e, using the scalar mode for Geometry)

% time Function name

6.68 ScalarNavInterfaceVGM::NavIsSameLocation
4.84 CMSmagField::EstimateFieldValues
4.17 SimpleABBoxLevelLocator::LevelLocate
3.56 SimulationStage::Process
3.11 PhysicsProcess::PostStepLimitationLength
2.86 memcpy (libc-2.12.so)
2.74 HybridNavigator::GetHitCandidates_v
2.68 Spline::GetValueAt
2.56 SimulationStage::CopyToFollowUps
2.47 DormandPrince5RK::StepWithErrorEstimate

Table 20   Top 10 functions in Geant4

% time Function name

6.52 G4PhysicsVector::Value
5.20 G4ScalarRZMagFieldFromMap::GetFieldValue
3.36 G4Navigator::LocateGlobalPointAndSetup
2.52 G4DormandPrince745::Stepper
2.38 G4Navigator::ComputeStep
2.36 G4VEmProcess::PostStepGPIL
1.92 G4PropagatorInField::ComputeStep
1.77 G4Transportation::AlongStepGPIL
1.67 G4VoxelNavigation::ComputeStep
1.64 G4Mag_UsualEqRhs::EvaluateRhsGivenB
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significant. This is due to several factors, including the bas-
ketization overheads (10–25%, as shown in in Appendix 9) 
and inefficiency from gather/scatter and mask operations in 
vectorization. In addition, the poor vector performance of 
the geometry is not due to a lack of vectorization, but to the 
execution of sequential algorithms used in navigation. Note 
that the sizable amount of vector instructions in scalar mode 
(15.67%) comes from both compiler auto-vectorization and 
VecGeom internal vectorization.

Concurrency Performance

This section presents the multi-threaded performance of the 
GeantV applications compared to the Geant4 equivalent. 
This includes a discussion of the scalability features and 
pros and cons for track-level parallelism versus event-level 
parallelism.

The strong scaling behavior of the GeantV prototype is 
shown in Fig. 23. The efficiency loss of about 25% when 
filling 16 physical cores is not ideal. It is caused both by 
extra memory contention for shared track basketizers, and 
by a decrease in basket efficiency as the number of threads 
increases.

Figure 24 shows the memory usage versus the number of 
threads, in a configuration keeping all basketizers active. As 
a general remark, the memory footprint is largely dominated 
by the number of tracks in flight. Increasing the number 
of threads requires more tracks for load balancing, but the 
memory can be kept under control at the price of lower-
ing the basket efficiency. A particular inverse slope effect 
is observed for small number of threads, more accentu-
ated for large event buffers. In this domain more track data 
needs to be allocated for the same amount of tracks when 
fewer threads are used. The main reason for this “abnormal” 

behavior is related to the track reuse policy, in connection 
with the fact that basketization “steals” tracks from the 
workflow. The single-thread mode tends to release tracks 
from baskets later compared to the multi-thread one, which 
increases the fragmentation for track memory blocks. This 
effect degrades also the computing efficiency, and reflects 
the complexity of the scheduling mechanism in basketized 
mode, which is subject to further optimization procedures.

Performance in an Experiment Framework

The performance of GeantV is analyzed after integra-
tion into the CMS simulation framework as discussed in 
Sect. 5.2. In order to compare with Geant4, it is necessary 
to configure the application as similarly as possible to the 
options available in GeantV. These settings include an 

Table 21   Vector instructions, the fraction of vector instructions 
(PAPI_DP_VEC)/(PAPI_DP_OPS), and the relative gain in CPU 
usage by vectorization of a specific module with respect to the scalar 
mode

Here, PAPI_DP_OPS and PAPI_DP_VEC are floating point (double 
precision) operations and double precision vector/SIMD instructions 
in 1-billion counters, respectively. MSC-vec is the case when vectori-
zation in the GeantV multiple scattering (MSC) model is turned on. 
The Opt-vec mode is the same as All-vec, but Geom-vec is turned off

Mode PAPI_ DP_OPS PAPI_ DP_VEC % Gain

Scalar 1770 277 15.67 –
Geom-vec 1771 333 18.82 0.96
Field-vec 1858 814 43.83 1.08
MSC-vec 1789 397 22.24 1.02
Phys-vec 1785 343 19.25 1.00
All-vec 1868 1051 56.26 1.00
Opt-vec 1868 996 53.35 1.12

Fig. 23   Strong scaling versus threads for the CMS example bench-
mark on a dual-socket Xeon® CPU E5-260 v3 @ 2.40 GHz with 8 
cores per socket. The simulation was performed separately for scalar 
and basketized workflows

Fig. 24   Maximum resident memory dependence on the number of 
threads for different size of the event buffer in the full basketized 
mode. Measurements are done with a fixed number of 100 events in 
the CMS example benchmark on a dual-socket Xeon® CPU E5-260 
v3 @ 2.40 GHz having 8 cores per socket
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EM-only physics list that supports the same models that have 
been vectorized in GeantV, as well as the same production 
cuts and other cuts. The same magnetic field integrator and 
stepper are used. The CMS detector geometry corresponds 
to the version operated in 2018. CMS has also introduced 
several optimizations to improve the CPU performance of 
the Geant4-based simulation, including Russian roulette and 
shower libraries [45, 46]; the optimizations that are not com-
patible with GeantV are disabled. There is good agreement 
in the physical output quantities from equivalent GeantV 
and Geant4 runs in the CMS software, validating the per-
formance comparisons [47].

The tests are conducted using 500 generated events with 
two electrons, each at E = 50GeV , with random direc-
tions in � and � . A constant magnetic field of B = 3.8 T is 
used. The CMSSW tests compare single-threaded to multi-
threaded performance, as multi-threaded jobs are neces-
sary for efficient use of the WLCG resources. To ensure a 
constant workload, the number of events per thread is kept 
constant in each test by reusing the initial 500 generated 
events. Unused threads are kept busy to simulate production 
conditions with all cores in use. The CPU and memory usage 
of the main program are estimated with ROOT file output 
disabled, as the overhead from output is the same for Geant4 
and GeantV, and therefore irrelevant. In the GeantV tests, 
vectorized algorithms are enabled for multiple scattering and 
magnetic field propagation. Both the basketized and single 
track modes of GeantV operation are tested.

Several different Intel® machines were used for the tests, 
with different cache sizes and other parameters. Table 22 
summarizes the results. This table also includes results from 
the GeantV built-in standalone CMS test with similar set-
tings, in order to characterize the performance observed in 
the full CMSSW framework. There is virtually no difference 
in performance between basketized mode and single track 
mode. In all cases, the single thread speedup in CMSSW 
exceeds the single thread speedup from the standalone test. 
This is likely due to the additional instructions included 
when running in the CMSSW framework. The smaller 

instruction size from GeantV plays an even more important 
role in this case, as it allows more CMSSW instructions to be 
cached by the CPU. More pronounced speedups, along with 
more pronounced differences between CMSSW and the stan-
dalone, are seen in machines with smaller caches, supporting 
this explanation. Unfortunately, the speedup declines as the 
number of threads is increased, because GeantV does not 
scale as well as Geant4 with multiple threads. As expected, 
GeantV uses more memory than Geant4. For both programs, 
the memory usage increases linearly with the number of 
threads. Figures 25 and 26 depict the scaling behavior of 
throughput and memory for Geant4 and GeantV as the num-
ber of threads increases, using the E5-2683 v3 machine.

Lessons Learned

The GeantV R&D project performed an in-depth investiga-
tion of alternative particle transport scheduling models for 
simulation. While the main objective was to achieve impor-
tant speedups from vectorization and extra locality, there 
were several other direct or derived studies producing impor-
tant results and conclusions. These are briefly discussed in 
the following subsections.

Vectorization Model, Basketization and Parallelism

In order to take advantage of code that executes in using vec-
tor instructions, tracks that are similar need to be gathered 
together, and this introduces many significant challenges.

One challenge is the trade-off between memory usage 
and efficiency. For example, it was necessary to restrict the 
number of shapes for which tracks were collected into shape-
specific baskets, in order to avoid memory explosions from 
both the number of baskets and the number of tracks in flight 
needed to fill those baskets. However, this means that only 
the shapes that are selected can benefit from vectorization.

Similarly, in order to fit within the user memory budget, 
the number of events in flight must be limited. In practice, 

Table 22   CMSSW test results 
with different machines, both 
single-threaded and multi-
threaded

Standalone results are included as a comparison. Ratios of throughput (#events/s) and memory usage are 
both shown. The “N threads” column shows the result for the maximum number of threads (physical cores) 
for each machine. The cache value corresponds to the largest cache for each processor: L3 for the E5-2683 
v3 and Gold 6248, and L2 for the E5-2660 v2

Machine Clock (GHz) Cache (kB) Cores Throughput [GV/G4] RSS memory [GV/
G4]

Standalone CMSSW CMSSW

1 thread 1 thread N threads 1 thread N threads

E5-2683 v3 2.00 35840 28 1.60 1.69 1.30 1.56 2.34
Gold 6248 2.50 28160 20 1.49 1.66 1.18 1.54 2.31
E5-2660 v2 2.20 4096 8 2.14 2.63 2.18 1.42 2.36
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this means that when the number of tracks in flight for a 
given event starts to ramp down significantly, the event 
should be closed out so that a new one can start, avoid-
ing starvation. To close out an event is an expensive opera-
tion whose cost grows with the total number of baskets: it 
requires finding all outstanding baskets that still have at least 
one track belonging to the event and processing them to 
completion in scalar mode, since they have not reached the 

threshold to run in vector mode. All of these factors, plus 
the lack of vectorized navigation, means that the gains from 
vectorization of the geometry stage are marginal at best, 
even though the VecGeom primitives are among the best 
vectorized code.

When introducing multiple threads, load balancing 
becomes yet another challenge where synchronization 
points (however small they may be) are needed to deter-
mine how much of the work can be and should be shared 
between threads, and to do the actual sharing. In order to 
increase scaling, it has been necessary to reduce the amount 
of sharing between threads several times, at the expense of 
vector efficiency. An early version copied track data from 
one thread to another thread’s input stack essentially every 
time a track left a volume to go into a volume of a differ-
ent type. In a later version, this happened only for tracks in 
overflowing baskets when a different thread was idle (ran 
out of local tracks to process). Even in this limited case, 
the cost was noticeable, in particular during event tails. In 
order to reduce contention in the shared resources, a notion 
was introduced of a group of threads all pinned to a NUMA 
domain. Each group of threads is essentially independent 

Fig. 25   Top: throughput in events per second for Geant4 (G4, black), 
GeantV (GV, blue), and GeantV single track mode (GVst, purple). 
Middle: throughput ratio for Geant4/GeantV (blue) and Geant4/
GeantV single track mode (purple). Bottom: speedup calculated as 
throughput (N threads)/throughput(1 thread). The E5-2683 v3 CPU 
was used for these tests

Fig. 26   Top: RSS memory in megabytes for Geant4 (G4, black), 
GeantV (GV, blue), and GeantV single track mode GVst, purple). 
Bottom: RSS memory ratio for Geant4/GeantV (blue) and Geant4/
GeantV single track mode (purple). The E5-2683 v3 CPU was used 
for these tests
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of the others, with the tracks always staying within a single 
group. This arrangement also helps to reduce the amount of 
memory transfer across NUMA domains.

At first, it was assumed that there would be a benefit from 
gathering the memory fetches as closely as possible. Even 
though improved CPU data cache usage was observed in the 
implementation that passed the tracks from baskets to basket 
by copying the data, the real bottleneck, and major user of 
CPU time, was memcpy itself. The gain from avoiding mem-
cpy was measured to be very large, even though it resulted 
in a much less efficient access pattern for filling the vector 
register, due to a more fragmented data layout in memory. 
On the other hand, the cost of filling the vector register from 
this fragmented memory layout is noticeable, and in fact it 
is one of the major problems blocking any efficiency gain 
from vectorization.

Geometry

The VecGeom library was one of the first software compo-
nents put in place for GeantV. It helped to pave the way for 
GeantV as a whole, as it led to the development of VecCore, 
a framework for abstracting vector operations for different 
processor architectures, which demonstrated that SIMD 
acceleration can be achieved in a portable manner. The pro-
gramming model developed for VecGeom was generalized 
by introducing VecCore, which has been used in GeantV 
to write code that, with a single implementation, can be 
instantiated to support either scalar or vector inputs. This 
model was not only used to improve the run-time perfor-
mance of several algorithms with vector inputs, but also to 
improve the run-time performance of some algorithms even 
when the input is scalar. Which type of gain is more relevant 
depends strongly on the detector being simulated. It was also 
shown that automatic code generation and specialization of 
the algorithms, tailored to the target geometry, can lead to 
significant further performance improvements.

Physics

Since the modeling of electromagnetic (EM) interactions 
of e−, e+ and � particles with matter is the most intensively 
used and most computationally demanding part of most 
high-energy physics detector simulations, EM physics pro-
cesses were selected to be vectorized. Beyond vectoriza-
tion, the existing code was first reviewed, overhauled and 
improved, based on an exhaustive review of the relevant 
literature. This resulted in optimized versions of the code 
that brought significant performance improvements. Using 
model-level tests to analyze the performance of the vector-
ized EM models compared to their (optimized) scalar ver-
sions, excellent vectorization gains were achieved: 1.5–3× 
and 2–4× on Haswell and Skylake (AVX2) architectures, 

respectively. Unfortunately, these synthetic model test gains 
are not visible when integrated into a full application that 
has to deal with the entire range of models, particle types, 
and energies in a stochastic manner.

Magnetic Field

The integration of the equations of motion of a charged 
particle in a non-uniform pure magnetic field (or an elec-
tromagnetic field) accounts for about 15–20% of the CPU 
time of a HEP application. After reengineering and vector-
izing the implementation, improvement in the ratio of the 
Geant4 run-time over the GeantV run-time was measured 
in the benchmark example from a factor 1.88 in fully scalar 
mode to a factor 2.12 with the integration of the equations of 
motion implementation executed in vector mode.

Interfacing with User Task‑Parallel Frameworks

Concerning the ability to integrate the GeantV prototype in 
the experiments’ simulation frameworks, two essential ques-
tions are whether the run-time performance gains are repro-
duced when the simulation is executed within the experi-
ment framework and how much effort is needed to replace 
the simulation engine with the new implementation. GeantV 
and CMS software developers worked closely together to 
explore this integration. During this co-development effort, 
there were several iterations on some of the fundamental 
features of the internal scheduler and its interfaces in order 
to ease the integration effort and improve run-time effi-
ciency. Thanks to this collaboration, one of the results is 
the realization that the integration of the prototype of the 
GeantV toolkit within an experiment framework is relatively 
straightforward. The other major result is that the run-time 
performance gain seen in the standalone example is also 
seen in the integrated example, and is even slightly better.

Summary and Conclusion

The GeantV R&D project has reached its conclusions after 
several years of development and study undertaken in the 
context of an international collaboration with the partici-
pation of the LHC experiments and under the umbrella of 
the HEP Software Foundation (HSF). Its main objective of 
demonstrating an achievable speedup of a novel approach 
based on parallel particle transport has been realized with 
the delivery of a prototype that simulates full electromag-
netic showers in a realistic and complex calorimeter. It has 
been shown that the performance gain from the vectorization 
of the individual software components is largely lost in the 
process of reshuffling the particles for the vector operations. 
On the other hand, it has also been observed that significant 
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improvements in the performance of the simulation soft-
ware can be obtained by better exploitation of data and code 
locality, as well as through more compact code based on 
modern programming idioms. These findings are informing 
the direction of future improvements of the Geant4 toolkit, 
including the investigation of architectural revisions.

Furthermore, the GeantV project has delivered the modu-
lar software packages VecGeom, VecCore, and VecMath, 
which are having a significant impact in different software 
areas within high energy physics. Those packages have 
already gone through all the phases of development, valida-
tion, and integration. They are now used in production by 
toolkits like Geant4 and ROOT and are delivering noticeable 
gains in performance.

In summary, the GeantV R&D project has contributed 
a set of useful libraries to the HEP software community, as 
well as valuable knowledge which has been used to inform 
further development of detector simulation toolkits. Future 
lines of work include modernization of the Geant4 simula-
tion toolkit code, R&D for efficient utilization of accelera-
tors in modern hardware platforms, and investigation of fast 
simulation techniques that promise to provide the necessary 
speed and physics fidelity needed for a larger fraction of use 
cases in future HEP experiments.
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Appendix: Performance Benchmark

Most of the multi-thread scaling and vectorization perfor-
mance analysis was based on data collected using high-end 
machines, and the most relevant results have been described 
on Sect. 6. Another approach to performance analysis has 
also been carried out: a comparative study using several dif-
ferent, typical end-user machines, in order to collect perfor-
mance data for a wide spectrum of machine specifications. 
The goal of using a more heterogeneous set of machines 
was to assess how lower-grade processors and low-memory 
conditions would affect the performance of the prototype.

The study was based on 1000 events per job with a sin-
gle 10 GeV electron per event, using the 2018 CMS geom-
etry available from the GeantV repository. For Geant4, 
release 10.4.p03 in single thread mode was the base-
line configuration. To minimize external interference, jobs 
were submitted to machines with no other running pro-
cesses. Each job configuration was run ten times, and the 
results are based on simple averages of CPU times.

Some of the performance numbers from different archi-
tectures are provided in the following tables. The first few 
columns describe details of each machine’s configuration, 
including processor, brand, operating system, memory and 
compiler version used. The last columns represent perfor-
mance results, providing timing averages and uncertainty 
estimates.

Table 23 shows global performance measurements. 
The absolute timing measurements in the GeantV column 
roughly agree with processor power and clock speeds. 
The ratio of Geant4 to GeantV performance ranges from 
1.03 to 1.92 for different hardware platforms. GeantV in 
single track mode (strk) shows some expected correlation 
with the Geant4 to GeantV ratio. The best vector gains are 
achieved for hardware with the best SIMD capabilities, but 
a low level of vectorization density is also observed, prob-
ably due to the difficulty of vectorizing HEP simulations.

Table  24 shows the basketization overheads, in an 
attempt to assess the performance costs attributable to 
packing the data for vectorization efficiency, but without 
the corresponding vectorization gains, for jobs where the 
vectorized algorithms had been explicitly disabled. The 
basketization process collects tracks with similar charac-
teristics, in order to maximize the SIMD synchronization 
(e.g. vectorization efficiency), as described earlier.

The track basketization was done separately per simula-
tion stages (magnetic-field propagation, physics, geometry, 
multiple scattering), as the requirements for each stage are 
different. The geometry basketization requirements are the 
most strict, since tracks need to be in physical volumes 
which are instances of the same logical volume. This pro-
duces a very large number of baskets, as compared to the 
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basketization requirements for other stages, corresponding 
to a very significant performance degradation. Ultimately, 
the best performing GeantV configuration had geometry 
basketization (and vectorization) disabled at the job ini-
tialization level, which is shown in the FPM and Vector 
gain table columns.

Different machines present different constraints for the 
GeantV run-time environment. The observed performance 
can reflect some of those aspects, and some trends can be 
observed. However, a more precise interpretation of the 
effects of different parameters is hard to derive unambigu-
ously from the final numbers.
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