
Available on CMS information server CMS CR -2020/033

The Compact Muon Solenoid Experiment

Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Conference Report
04 February 2020 (v2, 09 March 2020)

Bringing heterogeneity to the CMS software
framework

Oliver Gutsche for the CMS Collaboration

Abstract

The advent of computing resources with co-processors, for example Graphics Processing Units (GPU)
or Field-Programmable Gate Arrays (FPGA), for use cases like the CMS High-Level Trigger (HLT) or
data processing at leadership-class supercomputers imposes challenges for the current data processing
frameworks. These challenges include developing a model for algorithms to offload their computa-
tions on the co-processors as well as keeping the traditional CPU busy doing other work. The CMS
data processing framework, CMSSW, implements multithreading using the Intel?s Threading Build-
ing Blocks (TBB) library, that utilizes tasks as concurrent units of work. In this talk we will discuss
a generic mechanism to interact effectively with non-CPU resources that has been implemented in
CMSSW. In addition, configuring such a heterogeneous system is challenging. In CMSSW an appli-
cation is configured with a configuration file written in the Python language. The algorithm types are
part of the configuration. The challenge therefore is to unify the CPU and co-processor settings while
allowing their implementations to be separate. We will explain how we solved these challenges while
minimizing the necessary changes to the CMSSW framework. We will also discuss on a concrete
example how algorithms would offload work to NVIDIA GPUs using directly the CUDA API.

Presented at CHEP2019 24th International Conference on Computing in High Energy and Nuclear Physics



Bringing heterogeneity to the CMS software framework

Andrea Bocci1, David Dagenhart2, Vincenzo Innocente1, Christopher Jones2, Matti
Kortelainen2,∗, Felice Pantaleo1, and Marco Rovere1

1CERN, Geneva, Switzerland
2Fermi National Accelerator Laboratory, Batavia, IL, USA

Abstract. The advent of computing resources with co-processors, for example
Graphics Processing Units (GPU) or Field-Programmable Gate Arrays (FPGA),
for use cases like the CMS High-Level Trigger (HLT) or data processing at
leadership-class supercomputers imposes challenges for the current data pro-
cessing frameworks. These challenges include developing a model for algo-
rithms to offload their computations on the co-processors as well as keeping
the traditional CPU busy doing other work. The CMS data processing frame-
work, CMSSW, implements multithreading using the Intel’s Threading Build-
ing Blocks (TBB) library, that utilizes tasks as concurrent units of work. In this
talk we will discuss a generic mechanism to interact effectively with non-CPU
resources that has been implemented in CMSSW. In addition, configuring such
a heterogeneous system is challenging. In CMSSW an application is configured
with a configuration file written in the Python language. The algorithm types
are part of the configuration. The challenge therefore is to unify the CPU and
co-processor settings while allowing their implementations to be separate. We
will explain how we solved these challenges while minimizing the necessary
changes to the CMSSW framework. We will also discuss on a concrete exam-
ple how algorithms would offload work to NVIDIA GPUs using directly the
CUDA API.

1 Introduction

Co-processors or computing accelerators like graphics processing units (GPU) or field-
programmable gate arrays (FPGA) are becoming more and more popular to keep the cost
and power consumption of computing centers under control. For example, GPUs are used in
many leading supercomputers, are being used in a trigger farm by ALICE [3], and are being
considered in trigger farms for the LHC Run 3 in CMS [1] and LHCb [2]. The CMS’ data
processing framework (CMSSW) [4–8] implements multi-threading using the Intel Thread-
ing Building Blocks (TBB) [9] library utilizing tasks as units of concurrent work. While in
principle non-CPU resources could be interacted with in the TBB tasks directly in a straight-
forward way, the non-CPU APIs typically imply blocking the calling thread. Such blocking
would lead to under-utilizing the CPU.

In this paper we describe generic mechanisms to interact with non-CPU resources effec-
tively from the TBB tasks (Section 2), and to configure CPU and non-CPU algorithms in a

∗e-mail: matti@fnal.gov



unified way that works well together with the rest of the CMS computing infrastructure (Sec-
tion 3). As a first step to gain experience, we have explored various ways for how algorithms
could offload work to NVIDIA GPUs with CUDA [10]. Section 4 describes a pattern that
we have found most effective so far, and has also the least impact on the rest of the CMSSW
framework.

2 Concurrent CPU and non-CPU processing

When computations are offloaded to non-CPU resources, the CPU program needs to eventu-
ally know when the offloaded work is finished. The simplest way to perform this synchro-
nization is to introduce a blocking wait on the CPU thread1, i.e. the CPU thread waits for
the completion of the offloaded work. The CPU thread can wait either by busy waiting or
sleeping. The downside of the former approach is that the CPU core is unable to do other
work, implying that such waits should be short at best, while the downside of the latter ap-
proach is that the latency from the work completion to the CPU thread resuming work is
longer than in the former approach. CMS data processing applications typically have always
some work that could be done concurrently with the offloaded work, and therefore the busy
waiting would clearly lead to wasting CPU resources.

In the case of CMS applications, the thread-sleeping approach also has a subtle downside.
The number of available CPU cores is decided externally to the application, and may be less
than the total number of logical CPU cores of the compute node. In addition, we can not
assume that the compute node would enforce the limit on the number of CPU cores the
CMS application is allowed to use, instead the CMS application should act as a good citizen
and keep at most the allowed number of CPU cores busy on the average. With CPU-only
work good CPU utilization can be achieved simply by initializing the TBB thread pool to
use the same number of threads as the number of cores, and letting the TBB task scheduler
keep the threads busy. In this way all the CPU cores are kept utilized as long as there are
enough tasks to fill the threads, without a risk of using additional CPU cores. Offloading
computational work and synchronizing the CPU thread by sleeping to wait for the offloaded
work to finish would lead to under-utilization of the CPU cores. In principle the application
could be configured to use more threads than allowed CPU cores, but then the ratio of threads
to cores would become a tunable parameter that would depend for example on the exact
application type, the CPU performance, the offloaded-to-resource performance, and the data
being processed. In order to avoid introducing such an additional tunable parameter, we chose
to develop a generic mechanism that allows the CPU thread to run other TBB tasks while the
offloaded work is being run elsewhere

The basic idea of the External Worker concept is to replace the blocking waits with a
callback-style solution. Traditionally the algorithms scheduled by the CMSSW framework
(called modules) have one function that is called by the framework for each event. The
exact function name depends on the module type2, for the simplicity in the following only
the producer module case is described. The concept itself, however, is general and works
similarly with filter and analyzer modules as well. It could be further noted that the External
Worker concept resembles the async_node in the TBB Flow Graph library [9].

The traditional produce() member function is split into two stages: acquire and pro-
duce. First, the framework calls an acquire() member function, that can only read event
data products, and should launch the offloaded work. The acquire() function is given

1E.g. in CUDA cudaDeviceSynchronize(), cudaStreamSynchronize(), cudaEventSynchronize().
2Analyzer modules are only allowed read event data products and have a member function analyze(), producer

modules can also insert new data products and have a member function produce(), and filter modules can also
decide whether a trigger path should continue or stop execution and have a member function filter()



a reference-counted holder object (edm::WaitingTaskWithArenaHolder) that holds the
TBB task that will make the framework to call the produce() function. The holder object is
intended to be notified upon completion of the offloaded work. Internally the holder decreases
the reference count, and once the count reaches zero, the contained TBB task is enqueued to
the task arena the holder also holds a pointer to. Thanks to the explicit use of the task arena
the holder can be given to non-TBB threads to be signaled. The holder is also capable of
delivering exceptions. See Section 4.1 on how this mechanism can be used with CUDA.

3 Unified configuration for CPU and non-CPU algorithms

CMS uses a hash of the application configuration to segregate data from different workflows.
The simplest approach to configure jobs using GPUs would be to create a configuration differ-
ent from a CPU-only job. In this approach, however, the data from a single dataset processed
with CPU-only and with GPU resources would have different hashes, and therefore would
be treated as different datasets. Such a feature would significantly restrict the flexibility of
the CMS data processing workflow management system, which consists of a global pool of
jobs that can, in principle, run at any site. To preserve the flexibility of processing parts of a
dataset on any architecture, the configuration hash must be the same for all architectures.

We wanted to be able to keep CPU and non-CPU algorithms separate to enable an evolu-
tionary migration path. For example, in order to introduce non-CPU algorithms, the current,
working and validated, CPU algorithms can be left untouched. In addition, the natural work
division may differ for different hardware architectures. It could also happen that some non-
CPU architectures are in conflict in a way that prevents dynamically loading their libraries
into the same application. On the other hand, we do not want to preclude having CPU and
non-CPU algorithm in the same module either.

The CMSSW framework already tracks the input data of each module event by event. We
decided to use the same provenance tracking mechanism to store also information about the
choice of technology. This information enables us to inspect afterwards the architecture on
which a given event was processed.

Based on the aforementioned goals, we developed the SwitchProducer concept in the
CMSSW configuration, depicted in Figure 1. The SwitchProducer allows specifying multiple
modules that are associated to the same module label3. The modules for different cases can be
either totally different modules, or differently configured instances of the same module. Thus
all possibilities are specified in the part of the configuration that affects the hash computation.
The mechanism makes the choice between the cases at runtime on the worker node based
on available technologies. The mechanism relies on the CMSSW’s module scheduling logic
of consumer modules dictating which producer modules are run. For example in the case of
Figure 1, if the worker node has a GPU, only the hits@gpu module is run to produce the
input for seeds module. If, on the other hand, the worker node does not have a GPU, both
hits@cpu and clusters modules are run.

It should be noted that the SwitchProducer requires that the producer modules of all the
cases produce exactly the same data product types (hits@cpu and hits@gpu in in Figure 1).
This constraint ensures that the choice by the SwitchProducer is transparent to all consumer
modules (e.g. seeds in Figure 1).

3In CMSSW each module must have a label that is unique within a process. The event data products produced
by the module are associated to the module label.



clusters = Producer("ClusterProducer",
input = "raw"

)
hits = SwitchProducer(

cpu = Producer("HitProducer",
input = "clusters"),

gpu = Producer("HitProducerGPU",
input = "raw")

)
seeds = Producer("SeedProducer",

input = "hits"
)

raw

clusters

hits@cpu hits@gpu

hits

seeds

Figure 1. A configuration fragment showing an example of how the SwitchProducer would look like
(left), and a data dependence graph corresponding the configuration (right). On the CPU case, the
HitProducer depends on a data product clusters, whereas on the GPU case, the HitProducerGPU
takes directly the raw as an input. The SwitchProducer decides at runtime on the worker node which
of the two producers should be used.

4 Pattern to interact with CUDA runtime

Based on the external worker (Section 2) and SwitchProducer (Section 3) concepts we de-
veloped tools and a pattern to interact with the CUDA runtime from CMSSW modules. The
pattern is described as follows. We wanted the CPU to be able to do other work while the
GPU is running an algorithm. This asynchronous execution is described in Section 4.1. We
wanted to minimize data movements between the CPU and the GPU. This goal required the
ability to share resources like GPU memory or a CUDA stream between modules, which is
described in Section 4.2. A mechanism to transfer data only when necessary is then described
in Section 4.3. The design of the tools should also be extendable to multiple non-CPU device
types, and be able to make use of multiple devices per type.

Much of the interaction with the CMSSW framework is done by a wrapper template
cms::cuda::Product<T> for data products (of type T, which itself can be partly or fully in
the GPU memory), and a helper object cms::cuda::ScopedContext4 that is intended to be
used in the body of the module’s acquire() and produce() functions.

The pattern has similar functionality as CUDA graphs [10], that is a directed acyclic graph
of memory transfers, kernel launches, and host functions, but at a higher level. In theory
CUDA graphs could be used in the background, but preliminary investigations indicate that
the current implementation of CUDA graphs is too restrictive for our usage pattern.

4.1 Asynchronous execution

In order to avoid the CPU waiting for GPU work to finish only the asynchronous CUDA
runtime API calls may be used during event processing. Essentially this constraint means
memory transfers and memset calls, because the kernel launches are asynchronous by con-
struction. The asynchronous API calls require the use of CUDA streams. Work items queued
in a single CUDA stream are executed serially, but concurrently with respect to work in other
CUDA streams.

4In reality the class has a couple of variants, but for the discussion in this paper grouping them into one is
sufficient.



The Product<T> and ScopedContext tools were developed such that each parallel
branch in the module DAG5 automatically gets its own CUDA stream. With such an ap-
proach the available concurrency is maximally expressed to the CUDA runtime, which can
then schedule work as it sees best.

In addition, possible synchronization points need to be carefully avoided. These syn-
chronization points include for example memory allocations with the CUDA runtime API,
explicit synchronization calls, and calls to assert() in kernel code. The simplest way to
avoid dynamic memory allocations through the CUDA runtime API during event processing
would be to allocate the necessary device and pinned host memory for each module at the
beginning of the job. This approach has, however, several drawbacks. Most importantly, it
would lead to allocation of much more memory than is actually needed at any given time to
cover all possible cases: 1) need to allocate memory for all concurrent events even though
not all them will be processed by the same module at the same time; 2) not all modules will
be running concurrently because of data dependencies; and 3) the allocated memory would
have to be large enough to cover the largest need of the processed events, and typically there
are large variations between events.

To address all these drawbacks, we decided to use a memory pool for both the device
and the pinned host memory for the memory allocations done on the host. At the time of
writing these memory pools are based on the CachingDeviceAllocator from the CUB
library [11]. While this memory pool allocates its memory during the event processing,
essentially by caching the allocations, the cost of the API calls gets amortized.

It should be noted that only modules that need to synchronize the GPU and CPU for some
CUDA stream, for example to transfer some data from GPU to CPU, need to use the External
Worker mechanism (Section 2) instead of an explicit synchronization call6. Modules that
only queue asynchronous GPU work can call the CUDA runtime API directly, in a way that
resembles the streaming_node in the TBB Flow Graph library [9].

The proper signaling of work completion is handled by the ScopedContext: the
WaitingTaskWithArenaHolder must be given to the constructor of the ScopedContext,
and the destructor of ScopedContext queues a callback function into its CUDA stream with
cudaStreamAddCallback() to which the WaitingTaskWithArenaHolder is passed. The
callback function then notifies the WaitingTaskWithArenaHolder, and in case of errors,
creates an exception object to be propagated.

4.2 Sharing of resources between modules

A chain of modules with producer-consumer relationships on the data in GPU memory run
most efficiently if they agree at least on running their work on the same device. Furthermore,
it would be beneficial for a linear chain of work to be queued into the same CUDA stream,
and in case of branches in the DAG, let the CUDA runtime to deal with the synchronization
between the branches.

The GPU data product wrapper Product<T> holds the device ID, the CUDA stream
where the producing work was queued into, and a CUDA event to mark the completion of
the asynchronous processing in case that did not finish by the time the module’s produce()
function ended. A module that queues more GPU work with Product<T> as an input con-
structs ScopedContext with the Product<T> as an argument. The ScopedContext then
sets the current device based on the input product, and re-uses the CUDA stream from the
input product if the module is the first one to ask it from the Product<T>. If another module

5The modules form a directed acyclic graph (DAG) by their data dependencies.
6See footnote 1



re-used the CUDA stream first, the ScopedContext creates a new CUDA stream and uses
that.

The only way for a consumer to obtain T from Product<T> is via the ScopedContext.
Upon request by the module, the ScopedContext checks whether the Product<T> uses
the same CUDA stream as the ScopedContext was constructed with. If it does, the T ob-
ject can be returned immediately, because the sequential nature of CUDA stream ensures
the proper synchronization. In case the CUDA streams are different, the availability of T
is checked via the CUDA event. If the CUDA event indicates that the asynchronous work
producing T has completed, the T can again be returned safely. If the work is still incom-
plete, the ScopedContext introduces a wait on its CUDA stream on the CUDA event of the
Product<T> by calling cudaStreamWaitEvent() before returning the T object.

4.3 Minimization of data movements

The CMSSW framework runs a producer module only if some other module consumes the
output data product of the producer module. We can make use of this behavior to minimize
the data transfers from GPU to CPU by adding additional, specific modules that only queue
the data transfers. This way the transfers are avoided if no other module asks for a CPU copy
of data in GPU memory, but the capability to do the transfer exists in case a module asking
for such a copy is added into the configuration.

This approach works well together with the SwitchProducer mechanism in the configu-
ration (Section 3), and the way data in GPU memory is passed from one module to another
(Section 4.2). In practice the user is expected to use the SwitchProducer to choose between
the CPU module, and the module that transfers the GPU data back to CPU, and leave all the
dependent GPU modules to be run by the framework.

5 Summary

This paper described the generic building blocks we have developed for CMSSW that can
be used to continue the exploration of using non-CPU resources for CMS data processing.
We are exploring the performance characteristics of the described pattern for using CUDA
from the data processing modules. An example of the achieved performance on a real-world
application can be found in [1].

Acknowledgements

This document was prepared by the CMS Collaboration using the resources of the Fermi
National Accelerator Laboratory (Fermilab), U.S. Department of Energy, Office of Science,
HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting
under Contract No. DE-AC02-07CH11359.

References

[1] A. Bocci, these proceedings (2020)
[2] D. H. Cámpora Pérez, these proceedings (2020)
[3] D. Roht et al, J. Phys.: Conf. Series 396, 012044 (2012)
[4] C. D. Jones et al, J. Phys.: Conf. Series 513, 022034 (2014)
[5] C. D. Jones et al, J. Phys.: Conf. Series 664, 072026 (2015)
[6] C. D. Jones et al, J. Phys.: Conf. Series 898, 042008 (2017)



[7] C. Jones, presented in CHEP 2018, CMS-CR-2018-277 (2018)
[8] D. Dagenhart et al, these proceedings (2020)
[9] Threading Building Blocks, https://github.com/intel/tbb
[10] CUDA C Programming manual
[11] CUB, https://nvlabs.github.io/cub/


